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Abstract

In this paper we discuss the polyhedral structure of several mixed integer sets involving two integer variables. We show that
the number of the corresponding facet-defining inequalities is polynomial on the size of the input data and their coefficients can
also be computed in polynomial time using a known algorithm [D. Hirschberg, C. Wong, A polynomial-time algorithm for the
knapsack problem with two variables, Journal of the Association for Computing Machinery 23 (1) (1976) 147–154] for the two
integer knapsack problem. These mixed integer sets may arise as substructures of more complex mixed integer sets that model the
feasible solutions of real application problems.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The description of the convex hull of elementary mixed integer sets has been useful in the generation of strong valid
inequalities for general mixed integer problems. The so-called MIR inequalities are probably the most successful
example in this area (see [2]). Recently, several elementary sets resulting from the aggregation of general MIP
inequalities have been studied in order to generate strong cutting planes for those general models. Marchand and
Wolsey [3] study the case of binary knapsack sets with a continuous variable and Günlük and Pochet [4] consider
models with multiple constraints with a continuous variable and a single integer variable per inequality.

In this paper we describe the convex hull of some mixed integer sets involving only two integer variables. First we
consider sets of the form

X = {(y1, y2, s) : a1 y1 + a2 y2 ≤ D + δs, y1, y2, s ≥ 0, y1, y2 integer},

where a1, a2, D ∈ Z and δ ∈ {−1, 1}. Then we consider the integer single node flow set with two arcs:

Z = {(x1, x2, y1, y2, s) : x1 + x2 ≤ D + s, 0 ≤ x1 ≤ a1 y1, 0 ≤ x2 ≤ a2 y2, s ≥ 0, y1, y2 integer}
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and discuss the relationship between conv(Z) and conv(Zs=0) where

Zs=0 = {(x1, x2, y1, y2) : x1 + x2 ≤ D, 0 ≤ x1 ≤ a1 y1, 0 ≤ x2 ≤ a2 y2, y1, y2 integer}.

Independently, Rajan [5] derived an equivalent description of conv(X). That description is based on an algorithm
that uses an algorithm from Kannan [6] and then solves a sequence of diophantine approximations.

Next we present the two main motivations to study the polyhedral structure of the convex hulls of these sets.
The first motivation is based on the observation that most of the known valid inequalities for general mixed integer
problems are generalizations of the basic MIR inequalities. These inequalities can be seen as the unique non-trivial
facet-defining inequalities for the convex hull of sets involving one integer and one continuous variable. If we consider
the set {(y, w) ∈ N0 × R : ay ≤ D + w} the basic MIR inequality for this set is given by

y ≤ bD/ac +
w

adD/ae − D
(1)

where D, a ∈ N and a does not divide D. In order to obtain new families of valid inequalities we study a model which
has two integer and one continuous variables. The introduction of an extra integer variable increases considerably
the complexity of the model. The reason is that in the 1-integer case, if the continuous variable is fixed we obtain
a set whose convex hull has only one non-trivial facet-defining inequality, while in the 2-integer case we obtain a
knapsack set with two integer variables which requires an algorithm to compute all coefficients necessary to obtain
the polyhedral description. Nevertheless, this model allows a polynomial description and the models studied here
inherit this property.

A second motivation to study this kind of sets involving two integer and one continuous variable is the fact that they
can be obtained from the relaxation and aggregation of more complex mixed integer sets that model real application
problems. In particular, several such applications to lot-sizing models can be easily found. Sets of the form X and Z
may arise when we consider machine capacity constraints in lot-sizing problems involving two types of batches, one
small and one large. Other situations can occur from the aggregation of the well known flow conservation constraints
and the elimination of the stock variables. For instance, Constantino [7] generates valid inequalities for the General
Single Item (GSI) lot-sizing model with lower and upper bounds on production and start-up times by studying two 2-
integer continuous sets obtained from relaxation and aggregation of the original model. Other applications also occur
in telecommunication problems such as the capacitated expansion problem (see [8]). In this problem X occurs when
we consider the flow capacity constraint on each arc. Typically, the flow capacity is equal to the installed capacity plus
an integral multiple of several (in this case two) modularity sizes.

In Section 2 we describe the convex hull of the set {(y1, y2, s) ∈ N2
0 × R : a1 y1 + a2 y2 ≤ D + s, s ≥ 0} with

a1, a2, D positive. This description is obtained using the following procedure:

(i) eliminate the continuous variable by considering the restriction of the polyhedra to one of the two faces s = 0 or
s = a1 y1 + a2 y2 − D;

(ii) describe the convex hull of the resulting 2-integer knapsack sets using a polynomial algorithm from Hirschberg
and Wong [1];

(iii) for each 2-integer facet-defining inequality find in polynomial time the lifting coefficient associated with the
continuous variable.

In Section 3 we consider other 2-integer continuous sets of the form X which we classify accordingly to the
polyhedral description and give some results on the polyhedral structure of those models. Finally, in Section 4, using
the same approach as in Section 2, we describe the convex hull of the integer single node flow set with two arcs and
of the set Zs=0.

2. Polyhedral description of a 2-integer continuous set

In this section we consider the set Y = {(y1, y2, s) : a1 y1 + a2 y2 ≤ D + s, y1, y2, s ≥ 0, y1, y2 integer} and
assume that a1, a2, D are positive integers and D > max{a1, a2}. Let Q denote conv(Y ). Consider the following sets
(see Fig. 1):

Y≤ = {(y1, y2) ∈ N2
0 : a1 y1 + a2 y2 ≤ D},

Y≥ = {(y1, y2) ∈ N2
0 : a1 y1 + a2 y2 ≥ D}
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Fig. 1. Sets Y , Y≤, Y≥.

and the corresponding convex hulls Q≤ = conv(Y≤) and Q≥ = conv(Y≥). The sets Y≤, Y≥ are obtained when the
continuous variable is eliminated by setting s = 0 and s = a1 y1 + a2 y2 − D, respectively.

Let Q1 = {(y1, y2, s) ∈ Q : s = 0} and Q2 = {(y1, y2, s) ∈ Q : s = a1 y1 + a2 y2 − D}. We define the restriction
of Q to s = 0 as the set Proj(y1,y2)

(Q1) and the restriction of Q to s = a1 y1 + a2 y2 − D as the set Proj(y1,y2)
(Q2).

Remark 1. The convex hull of the restriction of a set S to the supporting hyperplane H of a valid inequality for S is
equal to the restriction of the convex hull of S toH.

This fact implies that the equalities Proj(y1,y2)
(Q1) = conv(Y≤) = Q≤ and Proj(y1,y2)

(Q2) = conv(Y≥) = Q≥ hold.
For a given polyhedra P we denote by V (P) its set of extreme points.

Lemma 2. If (y∗1 , y∗2 , s∗) ∈ V (Q) then either s∗ = 0 or s∗ = a1 y∗1 + a2 y∗2 − D.

Proof. Suppose not. Considering 0 < ε ≤ min{s∗, s∗ − a1 y∗1 − a2 y∗2 + D} and P1
= (y∗1 , y∗2 , s∗ − ε),

P2
= (y∗1 , y∗2 , s∗ + ε) then P1, P2

∈ Y and (y∗1 , y∗2 , s∗) = 1/2P1
+ 1/2P2. �

Thus V (Q) ⊆ V (Q1)∪V (Q2). Since Q1 and Q2 are faces of Q the converse is also true, so V (Q) = V (Q1)∪V (Q2).

Lemma 3. (y∗1 , y∗2 , s∗) ∈ V (Q) if and only if one of the following conditions holds:

(i) s∗ = 0 and (y∗1 , y∗2 ) ∈ V (Q≤).
(ii) s∗ = a1 y∗1 + a2 y∗2 − D and (y∗1 , y∗2 ) ∈ V (Q≥).

Proof. Suppose (y∗1 , y∗2 , s∗) ∈ V (Q). Lemma 2 implies s∗ = 0 or s∗ = a1 y∗1 + a2 y∗2 − D. Suppose s∗ = 0 (the other
case is similar). Thus (y∗1 , y∗2 , 0) ∈ V (Q1). Using Corollary 3.6 in [9] we have (y∗1 , y∗2 ) ∈ V (Q≤).

To prove the converse suppose (y∗1 , y∗2 ) ∈ V (Q≤). If (y∗1 , y∗2 , 0) 6∈ V (Q) then there exists (y1
1 , y1

2 , s1) and
(y2

1 , y2
2 , s2) ∈ Q such that (y∗1 , y∗2 , 0) = 1/2(y1

1 , y1
2 , s1)+ 1/2(y2

1 , y2
2 , s2). As s1

≥ 0, s2
≥ 0 and 1/2s1

+ 1/2s2
= 0

then s1
= s2

= 0. Using Remark 1 we have (y1
1 , y1

2), (y2
1 , y2

2) ∈ Q≤, contradicting the hypothesis (y∗1 , y∗2 ) ∈ V (Q≤).
The proof for case (ii) is similar. �

Lemma 4. Let C(Q) = {(y1, y2, s) : a1 y1 + a2 y2 ≤ s, y1, y2, s ≥ 0} denote the characteristic cone of Q. Then
C(Q) = {r ∈ R3

: r =
∑3

j=1 λ jr j , λ j ≥ 0, j = 1, 2, 3} where r1
= (0, 0, 1), r2

= (1, 0, a1) and r3
= (0, 1, a2).

In order to obtain V (Q≤) we present two algorithms given in [1]. Those algorithms compute the points in V (Q≤)
that maximize a function f1 y1 + f2 y2 with f2

f1
≤

a2
a1

. In order to obtain the extreme points that maximize the function

with f2
f1

>
a2
a1

it suffices to exchange y1 with y2. The first algorithm is a non-polynomial algorithm that computes
coefficients with important properties (see Lemma 5 below) that are essential to prove Propositions 7 and 9. The
second algorithm is a polynomial version of the first and it is the algorithm that we may use in practice to compute
the necessary information to describe Q.
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Algorithm HW

Step 0: j ← 1, (y j
1 , y j

2 )←
(⌊

D
a1

⌋
, 0

)
, k ← 1, (ck, dk)←

(⌊
a2
a1

⌋
, 1

)
, `← 1,

(e`, f `)←
(⌈

a2
a1

⌉
, 1

)
, r ← 1.

Step 1: While y j
1 − ck

≥ 0 do

Set γ j
← D − a1 y j

1 − a2 y j
2 , ρk

≤←−a1ck
+ a2dk, ρ`

≥← a1e`
− a2 f `

(i) if γ j
≥ ρk
≤ set j ← j + 1, (y j

1 , y j
2 )← (y j−1

1 , y j−1
2 )+ r(−ck, dk);

(ii) if γ j < ρk
≤ and ρk

≤ ≥ ρ`
≤ set

k ← k + 1, (ck, dk)← (ck−1, dk−1)+ r(e`, f `);

(iii) if γ j < ρk
≤ and ρk

≤ < ρ`
≤ set

`← `+ 1, (e`, f `)← (e`−1, f `−1)+ r(ck, dk).

The algorithm starts with a trivial extreme point (y1
1 , y1

2) =
(⌊

D
a1

⌋
, 0

)
and, iteratively, computes rational

approximations, c
d and e

f , for a2
a1

( c
d ≤

a2
a1
≤

e
f ). Once a fraction c

d with a remainder ρ≤ = −a1c + a2d not

greater than the gap γ j is obtained another point (y j+1
1 , y j+1

2 ) can be obtained replacing c units of a1 with d units of
a2. Then γ j+1

= γ j
− ρ≤.

This algorithm is not polynomial and some points (y1, y2) generated may not be extreme. In order to obtain only
the extreme points in polynomial time as a function of the input data instead of considering always r = 1 it suffices
to compute r in Step 1 as follows:

(i) r = min

{⌊
γ j

ρk
≤

⌋
,

⌊
y j

1

ck

⌋}
;

(ii) r = min

{⌊
ρk
≤

ρ`
≥

⌋
,

⌈
ρk
≤ − γ j

ρ`
≥

⌉}
;

(iii) r =

⌊
ρ`
≥

ρk
≤

⌋
.

Notice that these computations avoid the occurrence in consecutive iterations of the same case in Step 1. Although we
are interested in obtaining the extreme points in polynomial time, the coefficients obtained using the non-polynomial
Algorithm HW have some important properties we will use later. However, we notice here that all the information
needed to describe Q can be obtained inO(log(D/ min{a1, a2})) elementary operations using the polynomial version
of Algorithm HW (see [1]).

Next we introduce the notation for the non-polynomial case. We denote by k(`) the index of the pair (c, d) used, in
(iii) of Step 1, to obtain (e`, f `), that is (e`, f `) = (e`−1, f `−1)+ (ck(`), dk(`)). Similarly, we use the notation `(k) to
denote the index of the pair (e, f ) used, in (ii) of Step 1, to obtain (c, d). Let n1 and n2 denote the number of distinct
pairs (c, d) and (e, f ) generated, respectively. Now we summarize some of the properties of these coefficients.

Lemma 5. (i) e`dk
− f `ck

= 1 if ` = `(k) or k = k(`). (ii) c1

d1 ≤ · · · ≤
cn1

dn1 ≤
a2
a1
≤

en2

f n2 ≤ · · · ≤
e1

f 1 . (iii) ck

dk , k =

1, . . . , n1 (resp. e`

f ` , ` = 1, . . . , n2) are the best approximations from below (resp. from above) to a2
a1

for that size

denominator. (iv) (a) The set {(c1, d1), . . . , (ck, dk)} is an integral Hilbert basis for Cone{(c1, d1), (ck, dk)}. (b) The
set {(e1, f 1), . . . , (e`, f `)} is an integral Hilbert basis for Cone{(e1, f 1), (e`, f `)}.

The first three properties are well known since the coefficients (c, d), (e, f ) are the sequence of convergents of the
reduced continuous fraction into which a2

a1
is expanded (see [10,1]). (iv) is essentially due to [11] and follows from

the non-polynomial version of the algorithm.
These algorithms can be easily adapted to generate V (Q≥).
We notice that as the number of extreme points is polynomial and these points can be obtained in polynomial time

it is possible to give an extended formulation of polynomial size for Q using the relation Q = conv(V (Q))+ C(Q).
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In order to give an explicit linear description of Q we generate two families of inequalities. Restricting Y to s = 0
we obtain Y≤. Then generating a valid inequality to Y≤ and lifting s we obtain a valid inequality to Y . Restricting Y
to s = a1 y1 + a2 y2 − D we obtain Y≥. Generating a valid inequality to Y≥ and lifting s we obtain a valid inequality
to Y .

Let us define Y= = {(y1, y2) ∈ N2
0 : a1 y1 + a2 y2 = D}, Y> = Y≥ \ Y= and Y< = Y≤ \ Y=.

Proposition 6. If

α1 y1 + α2 y2 ≤ α (2)

defines a non-trivial facet of Q≤, then

α1 y1 + α2 y2 ≤ α + βs (3)

defines a facet of Q, where β = max
{

α1 y1+α2 y2−α
a1 y1+a2 y2−D : (y1, y2) ∈ Y>

}
.

Proof. Consider a point (y∗1 , y∗2 , s∗) ∈ Y with a1 y∗1 + a2 y∗2 ≤ D ⇒ (y∗1 , y∗2 ) ∈ Y≤. Since (2) is valid for all
(y1, y2) ∈ Y≤, β > 0 (in Proposition 7 below we determine this value, however by exhibiting points in Y> it is easy
to verify that β > 0) and s∗ ≥ 0 it follows that α1 y∗1 + α2 y∗2 ≤ α + βs∗. If a1 y∗1 + a2 y∗2 > D then (y∗1 , y∗2 ) ∈ Y> and
s∗ > 0. Therefore,

β ≥
α1 y∗1 + α2 y∗2 − α

a1 y∗1 + a2 y∗2 − D
≥

α1 y∗1 + α2 y∗2 − α

s∗
⇒ α1 y∗1 + α2 y∗2 ≤ α + βs∗.

Notice that since (2) defines a facet of Q≤ and β is the smallest value in order for (3) to be valid for Q thus (3) must
define a facet of Q. �

Now we address the question of how to compute β. We need to consider the coefficients computed by
Algorithm HW. Notice that every facet of Q≤ contains two points (y j

1 , y j
2 ), (y j+1

1 , y j+1
2 ) ∈ V (Q≤) with

(y j+1
1 , y j+1

2 ) = (y j
1 , y j

2 ) + r(−ck, dk) for some k ∈ {1, . . . , n1} and some positive integer r . Thus α1 = dk
× κ ,

α2 = ck
× κ and α = κ(dk y j

1 + ck y j
2 ) for some κ > 0. We assume the coefficients are normalized, that is, κ = 1.

Let us also assume α2
α1
≤

a2
a1

(the other case is similar, it suffices to exchange a1 with a2) and assume that D is not
divided by a1 (in that case there would be no facet with α2

α1
<

a2
a1

since there would be only one extreme point that

maximizes every function f1 y1+ f2 y2 with f2
f1
≤

a2
a1

). We will use the notation γ (y1, y2) = D− a1 y1− a2 y2. Notice

that γ j
= γ (y j

1 , y j
2 ).

The following proposition states that β depends on the gap γ j and on one of the remainders ρ
`(k)
≥ = a1e`(k)

−

a2 f `(k), ρk−1
≤ = −a1ck−1

+a2dk−1 and, as we will see, it also depends explicitly on the position of the point (y j
1 , y j

2 )

in the plane. Notice that the coefficients (y j
1 , y j

2 ), (e`(k), f `(k)) and (ck, dk) can be obtained using the polynomial
version of Algorithm HW, and (ck−1, dk−1) = (ck, dk)− (e`(k), f `(k)). Thus, all the coefficients necessary to obtain
β can be computed in polynomial time.

Proposition 7. Let (2) define a facet of Q≤ containing the points (y j
1 , y j

2 ), (y j+1
1 , y j+1

2 ) ∈ V (Q≤) with

(y j+1
1 , y j+1

2 ) = (y j
1 , y j

2 ) + r(−ck, dk) for some k ∈ {1, . . . , n1} and some positive integer r . Assuming that
α1 = dk, α2 = ck , then β = 1

η j where η j
= a1d(D/a1)e − D if k = 1 and

η j
=

{
ρ

`(k)
≥ − γ j , if y j

2 ≥ f `(k),

ρk−1
≤ − γ j , if y j

2 < f `(k),

otherwise.

Proof. We will use properties from Lemma 5. First consider the case k > 1. Let

(y∗1 , y∗2 ) =

{
(y j

1 , y j
2 )+ (e`(k),− f `(k)), if y j

2 ≥ f `(k),

(y j
1 , y j

2 )+ (−ck−1, dk−1), if y j
2 < f `(k).
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Next we show that (y∗1 , y∗2 ) is the optimal solution to the maximization problem associated with the computation
of β. Let τ(y1, y2) denote τ(y1, y2) = α1 y1 + α2 y2 − α. So (2) can be written as τ(y1, y2) ≤ 0. Notice that
η j
= −γ (y∗1 , y∗2 ) and, from Lemma 5, τ(y∗1 , y∗2 ) = 1 which implies (y∗1 , y∗2 ) ∈ Y>. Using this notation we have

β = max
{

τ(y1,y2)
−γ (y1,y2)

: (y1, y2) ∈ Y>

}
. Hence, we need to show that

τ(y∗1 ,y∗2 )

−γ (y∗1 ,y∗2 )
≥

τ(y1,y2)
−γ (y1,y2)

for all (y1, y2) ∈ Y>. Since

the left-hand side is positive and (y1, y2) ∈ Y> ⇒ γ (y1, y2) < 0 we only need to consider those points such that
τ(y1, y2) ≥ 1 (notice that α1, α2, α are integer).

Claim 1. (a) a1 − α1η
j
≥ 0; (b) a2 − α2η

j
≥ 0.

Proof of Claim 1: Let w1 = −ck−1a1 + dk−1a2 and w2 = e`(k)a1 − f `(k)a2. Using (a) in Lemma 5 we obtain
dk−1w2 + f `(k)w1 = a1. There is a positive integer r such that γ (y j

1 , y j
2 ) = γ (y j+1

1 , y j+1
2 ) + r(−cka1 + dka2) =

γ (y j+1
1 , y j+1

2 )+ r(w1 − w2) ≥ w1 − w2 ≥ 0. Since

η j
=

{
w2 − γ j , if y j

2 ≥ f `(k),

w1 − γ j , if y j
2 < f `(k),

we have w2 ≥ η j and w1 ≥ η j . Thus a1 = dk−1w2 + f `(k)w1 ≥ (dk−1
+ f `(k))η j

= α1η
j . The proof of (b) is

similar.

Claim 2. (a) a1e`
− a2 f `

≥ η j
× (dke`

− ck f `) for all ` ≤ `(k); (b) −a1ct
+ a2d t > η j

× (−dkct
+ ckd t ) for all

t ≤ k.

Proof of Claim 2: For ` = `(k) we have dke`
− ck f `

= 1 and as we saw above a1e`
− a2 f `

= w2 ≥ η j . For
t = k we have −dkct

+ ckd t
= 0 and w1 = −a1ct

+ a2d t > 0. The proof for all ` < `(k) and for all t < k can
be made by induction using simultaneously (a) and (b) and noticing that (ct−1, d t−1) = (ct , d t ) − (e`(t), f `(t)) and
(e`−1, f `−1) = (e`, f `)− (ck(`), dk(`)).

Now consider (y′1, y′2) 6= (y∗1 , y∗2 ) such that (y′1, y′2) ∈ Y> and τ(y′1, y′2) ≥ 1. Three cases may occur:

Case 1. y′1 ≥ y∗1 , y′2 ≥ y∗2 . Let (c, d) = (y′1 − y∗1 , y′2 − y∗2 ). Thus

τ(y′1, y′2)

−γ (y′1, y′2)
=

τ(y∗1 , y∗2 )+ α1c + α2d

−γ (y∗1 , y∗2 )+ a1c + a2d
.

From Claim 1 comes c(a1 − α1η
j )+ d(a2 − α2η

j ) ≥ 0⇒ α1c+α2d
a1c+a2d ≤

1
η j ⇒

τ(y′1,y
′

2)

−γ (y′1,y
′

2)
≤

1
η j .

Case 2. y′1 ≤ y∗1 , y′2 ≥ y∗2 . Let (c, d) = (y∗1 − y′1, y′2 − y∗2 ). It cannot happen c
d > ck

dk because that would imply

τ(y′1, y′2) = τ(y∗1 , y∗2 ) − ckc + dkd < τ(y∗1 , y∗2 ) ⇒ τ(y′1, y′2) ≤ 0. So c
d ≤

ck

dk . If c
d < c1

d1 let p =
⌊

d ck

dk

⌋
− c,

otherwise take p = 0. Thus (c + p, d) ∈ Cone{(c1, d1), (ck, dk)}. Therefore, using (iv) in Lemma 5 (c, d) can be
written as (c, d) =

∑k
t=1 β t (ct , d t )− p(1, 0) where β t are non-negative integers. Thus

τ(y′1, y′2)

−γ (y′1, y′2)
=

τ(y∗1 , y∗2 )+
k∑

t=1
β t (−α1ct

+ α2d t )+ pα1

−γ (y∗1 , y∗2 )+
k∑

t=1
β t (−a1ct + a2d t )+ pa1

.

From Claim 2, for t = 1, . . . , k we obtain −α1ct
+α2d t

−a1ct+a2d t ≤
1
η j and, if p 6= 0 from Claim 1, pα1

pa1
≤

1
η j thus

τ(y′1,y
′

2)

−γ (y′1,y
′

2)
≤

1
η j .

Case 3. y′1 ≥ y∗1 , y′2 ≤ y∗2 . First we prove that (e, f ) = (y′1 − y∗1 , y∗2 − y′2) satisfies e
f ≥

e`(k)

f `(k) . Suppose e
f < e`(k)

f `(k) .

Notice that τ(y′1, y′2) ≥ 1 implies e
f ≥

ck

dk . If a2
a1
≥

e
f ≥

ck

dk , as ck

dk is the best approximation from below to a2
a1

for that

size denominator, we conclude f ≥ dk . Similarly, if a2
a1

< e
f < e`(k)

f `(k) then f ≥ f `(k)+1
≥ f `(k)

+ dk > dk . In both

cases we have y j
2 ≥ y∗2 − dk−1

= y′2 + f − dk−1
≥ dk

− dk−1
= f `(k). Thus (y∗1 , y∗2 ) = (y j

1 , y j
2 )+ (e`(k),− f `(k)).
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This implies y j
2 = y∗2 + f `(k)

= y′2 + f + f `(k) > dk . Now considering (y1, y2) = (y j
1 + ck, y j

2 − dk) we have

y1, y2 ≥ 0 and γ (y1, y2) ≥ 0. Thus (y1, y2) ∈ Y≤ and (y j
1 , y j

2 ) can be obtained as a linear convex combination of

(y1, y2) and (y j+1
1 , y j+1

2 ) which contradicts the hypotheses that (y j
1 , y j

2 ) ∈ V (Q≤).

Let p =
⌈

f e`(k)

f `(k)

⌉
− e if e

f > e1

f 1 and p = 0 otherwise. Thus (e − p, f ) ∈ Cone{(e1, f 1), (e`(k), f `(k))}. Now we

can use (iv) in Lemma 5 and the proof is similar to the proof of Case 2.
If k = 1 set (y∗1 , y∗2 ) = (dD/a1e, 0). Notice that k = 1 implies j = 1, thus (y j

1 , y j
2 ) = (bD/a1c, 0) and so

τ(y∗1 , y∗2 ) = 1. For all other (y′1, y′2) ∈ Y> such that τ(y′1, y′2) ≥ 1 only Case 1 or Case 2 considered above can occur.
Claim 1 also holds because c1

= ba2/a1c, d1
= 1 and η j < a1 imply a1 − d1η j

≥ 0 and a2 ≥ ba2/a1ca1 ≥ c1η j .
Thus, the proofs given for Case 1 and Case 2 are valid in this situation. Notice that in this case it is not necessary to
use Claim 2 in the proof of Case 2. �

Considering the restriction of Y to s = a1 y1 + a2 y2 − D we obtain similar results.

Proposition 8. If

α1 y1 + α2 y2 ≥ α (4)

defines a non-trivial facet of Q≥ then

(a1β − α1)y1 + (a2β − α2)y2 ≤ Dβ − α + βs (5)

defines a facet of Q, where β = max
{

α−α1 y1−α2 y2
D−a1 y1−a2 y2

: (y1, y2) ∈ Y<

}
.

Proof. Notice that (5) can be written as β(s+D−a1 y1−a2 y2)+α1 y1+α2 y2 ≥ α. The validity for (y1, y2, s) ∈ Y with
(y1, y2) ∈ Y≥ follows from the validity of (4) and β ≥ 0, s + D− a1 y1 − a2 y2 ≥ 0. If (y1, y2, s) ∈ Y with (y1, y2) ∈

Y<, then β ≥
α−α1 y1−α2 y2
D−a1 y1−a2 y2

⇒ (D−a1 y1−a2 y2)β ≥ α−α1 y1−α2 y2 ⇒ β(s+D−a1 y1−a2 y2)+α1 y1+α2 y2 ≥ α.
Since (2) defines a facet of Q≤ and β is the smallest value in order for (5) to be valid for Q thus (5) must define a
facet of Q. �

Now we obtain β considering α2
α1
≥

a2
a1

and assuming that D is not divided by a1. The case α2
α1
≤

a2
a1

is similar. It
suffices to exchange a1 with a2.

Proposition 9. Let (4) define a facet of Q≥ containing the points (y j
1 , y j

2 ), (y j+1
1 , y j+1

2 ) ∈ V (Q≥) with

(y j+1
1 , y j+1

2 ) = (y j
1 , y j

2 ) + r(−e`, f `) for some ` ∈ {1, . . . , n2} and some positive integer r . Assuming that
α1 = f `, α2 = e`, then β = 1

η j where η j
= D − a1b(D/a1)c if ` = 1 and

η j
=

{
γ j
+ ρ

k(`)
≤ , if y j

2 ≥ dk(`),

γ j
+ ρ`−1
≥ , if y j

2 < dk(`),

otherwise.

Since the proof of Proposition 9 is similar to the proof of Proposition 7 it will be omitted.

Theorem 10. The families of inequality (3) and (5) with the trivial set of inequalities y1 ≥ 0, y2 ≥ 0, s ≥ 0,
a1 y1 + a2 y2 ≤ D + s suffice to describe Q.

Proof. Considering a facet F defined by a non-trivial inequality

µ1 y1 + µ2 y2 ≤ µ+ νs ( f )

we show that this inequality either belongs to family (5) or it belongs to family (3).
First, we show that

(i) µ1, µ2, µ ≥ 0,
(ii) ν > 0,

(iii) νa1 > µ1, νa2 > µ2.
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Proof of (i). Suppose µ1 < 0. There must exist a point (y′1, y′2, s′) ∈ F satisfying y′1 > 0 since otherwise
F ⊆ {(y1, y2, s) : y1 = 0}. Thus (0, y′2, s′) ∈ Y and violates ( f ). Similarly we have µ2 ≥ 0. As (0, 0, 0) ∈ Y it
follows that µ ≥ 0.

Proof of (ii). Since (1, 0, a1) and (0, 1, a2) are directions of Q and µ1 and µ2 cannot be simultaneously zero
(otherwise F ⊆ {(y1, y2, s) : s = 0}) we have ν > 0.

Proof of (iii). We only prove νa1 > µ1 since the other case is similar. The existence of the direction (1, 0, a1)

implies νa1 ≥ µ1. Suppose µ1 = νa1. Let (y′1, y′2, s′) ∈ F ∩ Y that satisfies a1 y′1 + a2 y′2 < D + s′ (there must
exist such a point since, otherwise, F ∈ {(y1, y2, s) : a1 y1 + a2 y2 = D + s}). From this inequality and from
µ1
ν

y′1 +
µ2
ν

y′2 =
µ
ν
+ s′ we obtain (a2 −

µ2
ν

)y′2 < (D − µ
ν
). Now, consider a point (y′′1 , y′2, s′′) ∈ Y such that

s′′ = a1 y′′1 + a2 y′2 − D (for instance, setting y′′1 =
⌈

D−a2 y′2
a1

⌉
if D ≥ a2 y′2 or setting y′′1 = y′1, otherwise). This point

must satisfy µ1
ν

y′′1 +
µ2
ν

y′2 ≤
µ
ν
+ s′′ because ( f ) is valid for Y . From this inequality and from s′′ = a1 y′1+ a2 y′2− D

we have (a2 −
µ2
ν

)y′2 ≥ (D − µ
ν
) contradicting the previous inequality.

Now we are ready to prove that ( f ) either belongs to (3) or to (5). As dim(F) = 2 there are three affinely
independent points lying in F . First we consider the case where F is bounded. Thus we may consider extreme points
in Q.

From Lemma 3 every extreme point of Q lies in one of the planes defined by s = 0 and a1 y1 + a2 y2 = D + s.
Noticing that the three extreme points cannot all lie in the same plane simultaneously, we first suppose two of them
satisfy s = 0. If (y1, y2, s) is one of these two points, from Lemma 3, it must satisfy (y1, y2) ∈ Q≤ and, since s = 0,
it also satisfies µ1 y1 + µ2 y2 = µ. From the validity of ( f ) for Y it follows that µ1 y1 + µ2 y2 ≤ µ is valid for Y≤
and therefore it defines a facet of Q≤. Since µ1 and µ2 are non-negative and they cannot be simultaneously zero we
know that this inequality defines a non-trivial facet for Q≤. Now, consider a third extreme point (y∗1 , y∗2 , s∗) satisfying
a1 y∗1+a2 y∗2 = D+s∗ with s∗ > 0 which implies (y∗1 , y∗2 ) ∈ Y>. Thus, every point inF satisfies µ1 y1+µ2 y2 = µ+νs

where ν =
µ1 y∗1+µ2 y∗2−µ

a1 y∗1+a2 y∗2−D . In order for ( f ) to define a valid inequality ν must satisfy ν = max{µ1 y1+µ2 y2−µ
a1 y1+a2 y2−D : (y1, y2) ∈

Y>}. Therefore ( f ) belongs to family (3) where α1 = µ1, α2 = µ2, α = µ and β = ν. Now we consider the case
where there are two extreme points in the facet satisfying a1 y1 + a2 y2 = D + s. Using Lemma 3, (y1, y2) ∈ Q≥. Such
points must satisfy µ1 y1+µ2 y2 = µ+ν(a1 y1+a2 y2−D)⇒ (µ1−νa1)y1+(µ2−νa2)y2 = µ−νD. Notice that from
(iii), (µ1 − νa1) < 0 and (µ2 − νa2) < 0 and the validity of ( f ) for Y implies that (νa1 − µ1)y1 + (νa2 − µ2)y2 ≥

νD − µ is valid for Y≥ and therefore it defines a non-trivial facet of Q≥. Let α1 = νa1 − µ1, α2 = νa1 − µ2,
α = νD − µ. Now, considering a third extreme point (y∗1 , y∗2 , s∗) with s∗ = 0 and (y∗1 , y∗2 ) ∈ Y< we have
µ1 y∗1 +µ2 y∗2 = µ⇔ (νa1−α1)y∗1 + (νa2−α2)y∗2 = νD−α ⇔ α−α1 y∗1 −α2 y∗2 = ν(D− a1 y∗1 − a2 y∗2 ). In order
for ( f ) to define a valid inequality (y∗1 , y∗2 ) must satisfy (y∗1 , y∗2 ) ∈ arg max{ α−α1 y1−α2 y2

D−a1 y1−a2 y2
: (y1, y2) ∈ Y<}. Therefore

( f ) belongs to family (5) with α1 = νa1 − µ1, α2 = νa1 − µ2, α = νD − µ, β = ν.
It remains to consider the case in which F is not bounded. Let (v1, v2, v3) be a direction of F . Thus it must satisfy

µ1v1 + µ2v2 = νv3. From (iii) and noticing that v1, v2 ≥ 0 and v1 and v2 cannot be simultaneously zero, we have
νa1v1+νa2v2 > νv3 ⇔ a1v1+a2v2 > v3. But since (v1, v2, v3) is also a direction of Q we obtain a1v1+a2v2 ≤ v3
which contradicts the previous result. Thus there are no unbounded non-trivial facets. �

Example 11. Consider Y = {(y1, y2, s) : 21y1 + 76y2 ≤ 1154 + s, y1, y2, s ≥ 0, y1, y2 integer}. Setting s = 0 we
obtain Y≤ = {(y1, y2) : 21y1 + 76y2 ≤ 1154, y1, y2 ≥ 0 and integer}. Using Algorithm HW (see Table 1) we can
obtain

Q≤ = {(y1, y2) : y1 + 3y2 ≤ 54, 2y1 + 7y2 ≤ 109, 5y1 + 18y2 ≤ 274,

3y1 + 11y2 ≤ 166, y1 + 4y2 ≤ 60, y1 ≥ 0, y2 ≥ 0}.

Based on the description of Q≤ we obtain the following set of facet-defining inequalities for Q:

y1 + 3y2 ≤ 54+ s, 2y1 + 7y2 ≤ 109+ s, 5y1 + 18y2 ≤ 274+ s,

3y1 + 11y2 ≤ 166+
s

2
, y1 + 4y2 ≤ 60+

s

7
.

For instance, exchanging the coefficients of y1 and y2 (see the second table in Table 1) we obtain the
inequality 11y1 + 3y2 ≤ 166 containing (y j

1 , y j
2 ) = (14, 4), (y j+1

1 , y j+1
2 ) = (8, 26). Thus (ck, dk) = (3, 11),
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Table 1
Coefficients obtained using the polynomial version of Algorithm HW

a b γ c d R≤ e f R≥ a b γ c d R≤ e f R≥
54 0 20 3 1 13 4 1 8 15 0 14 0 1 21 1 1 55
51 1 7 3 1 13 4 1 8 15 0 14 0 1 21 1 3 13
51 1 7 7 2 5 4 1 8 15 0 14 1 4 8 1 3 13
44 3 2 7 2 5 4 1 8 14 4 6 1 4 8 1 3 13
44 3 2 7 2 5 11 3 3 14 4 6 1 4 8 2 7 5
44 3 2 18 5 2 11 3 3 14 4 6 3 11 3 2 7 5
26 8 0 18 5 2 11 3 3 8 26 0 3 11 3 2 7 5
26 8 0 18 5 2 29 8 1 8 26 0 3 11 3 5 18 2
26 8 0 76 21 0 29 8 1 8 26 0 8 29 1 5 18 2

8 26 0 8 29 1 13 47 1
8 26 0 21 76 0 13 47 1

In the left table considering a1 = 21, a2 = 76 and in the right table exchanging a1 with a2 (corresponding to exchanging y1 with y2).

(ck−1, dk−1) = (1, 4) and (e`, f `) = (2, 7). As b j < f `, then consider (14, 4) + (−1, 4) = (13, 8) ∈ Y≥. So
η j
= −γ (y j

1 , y j
2 )−a1ck−1

+a2dk−1
= −6−76×1+21×4 = 2. Hence β = 1/2. Exchanging again the coefficients

of y1 and y2 we obtain the inequality 3y1 + 11y2 ≤ 166+ s
2 .

Now, setting s = 21y1 + 76y2 − 1154, from s ≥ 0 we have Y≥ = {(y1, y2) : 21y1 + 76y2 ≥ 1154, y1, y2 ≥

0 and integer}. Again, computing the coefficients,

Q≥ = {(y1, y2) : 8y1 + 29y2 ≥ 440, 5y1 + 18y2 ≥ 274, 2y1 + 7y2 ≥ 107, y1 + y2 ≥ 16, y1 ≥ 0, y2 ≥ 0}.

Based on the description of Q≥ we derive the following set of inequalities:

5y1 + 18y2 ≤ 274+ s, 6y1 + 22y2 ≤ 332+ s, 9y1 + 34y2 ≤ 512+ s, 7y1 + 62y2 ≤ 930+ s.

These two sets of inequalities with the trivial facet-defining inequalities y1 ≥ 0, y2 ≥ 0, s ≥ 0, 21y1 + 76y2 ≤

1154+ s suffice to describe Q.

3. Other 2-integer continuous sets

In this section we briefly discuss other 2-integer continuous sets that may have practical importance. Since the
polyhedral description for those cases is similar to the description of Q we focus on the differences between Q and
the other polyhedra.

First, consider X = {(y1, y2, s) ∈ N2
0 × R+ : a1 y1 − a2 y2 ≤ D + s}, where a1, a2, D > 0. Let P = conv(X).

The major differences between P and Q are the corresponding characteristic cones and the fact that P may have one
non-trivial unbounded facet. Next we consider these two issues.

Lemma 12. Let C(P) = {(v1, v2, v3) : a1v1 − a2v2 ≤ v3, v1, v2, v3 ≥ 0} be the characteristic cone of P. Then
C(P) = {r : r =

∑4
i=1 µir i , µi ≥ 0, i = 1, 2, 3, 4} where r1

= (0, 0, 1), r2
= (0, 1, 0), r3

= (1, 0, a1), r4
=

(a2, a1, 0).

The bounded facets of P can be obtained in a similar fashion to the facets of Q, by considering the restriction of X to
s = 0 and the restriction of X to s = a1 y1 − a2 y2 − D. However P may have one more unbounded facet.

Proposition 13. The unbounded facets of P are defined by y1 ≥ 0, y2 ≥ 0, s ≥ 0, a1 y1 − a2 y2 ≤ D + s and

a1 y1 − a2 y2 ≤ D − m + s
g

g − m
(6)

where g = g.c.d.{a1, a2} and m = D − gb D
g c.

Notice that if m = 0, i.e. g divides D (the equation a1 y1 − a2 y2 = D, has integer solutions), the last two inequalities
become the same inequality. Thus we will assume m 6= 0.
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Proof. First we show that (6) defines an unbounded facet. To prove validity we show that (6) can be seen as a basic
MIR inequality. Considering a = g, y = (a1/g)y1 − (a2/g)y2 and w = s, then from (1) we obtain

(a1/g)y1 − (a2/g)y2 ≤ bD/gc +
s

gdD/ge − D
⇔ a1 y1 − a2 y2 ≤ D − m + s

g

g − m
.

To prove that (6) defines a facet consider the following three affinely independent points: (a, b, 0), (a, b, 0) +

(a2, a1, 0), (a′, b′, g − m) where (a, b) is a solution to a1 y1 − a2 y2 = D − m with y1, y2 ∈ Z+ and (a′, b′) is a
solution to a1 y1 − a2 y2 = D − m + g with y1, y2 ∈ Z+.

Next we show that if an inequality defines an unbounded non-trivial facet then it is defined up to the multiple of a
constant by (6). Let

α1 y1 − α2 y2 ≤ α + βs (7)

define such facet of P denoted by F . As (0, 0, 0) ∈ P we have α ≥ 0. If α1 < 0 then F ⊆ {(y1, y2, s) : y1 = 0}. So,
α1 ≥ 0. The existence of the directions (a2, a1, 0) and (1, 0, a1) implies α1a2 ≤ α2a1 and α1 ≤ a1β, respectively. Let
(v1, v2, v3) be a direction of F . From s ≥ 0 it follows that v3 ≥ 0. Suppose v3 > 0. There exists one (y′1, y′2, s′) ∈ F
with a1 y′1 − a2 y′2 < D + s′. Thus, there exists a λ > 0 such that (y∗1 , y∗2 , s∗) = (y′1, y′2, s′) + λ(v1, v2, v3)

and it satisfies a1 y∗1 − a2 y∗2 < D + s∗ and s∗ > 0. As β > 0 (the case β = 0 implies α1 = 0 and hence
F ⊆ {(y1, y2, s) : y2 = 0}) then the point (y∗1 , y∗2 , s+) ∈ P with s+ = max{0, a1 y∗1 − a2 y∗2 − D} violates (7).
Thus v3 = 0 and so α1v1 = α2v2. Using this equation and the inequality α1a2 ≤ α2a1 we conclude that a2v2 ≤ a1v1.
To prove the equality a2v2 = a1v1 we suppose a2v2 > a1v1. Let (y0

1 , y0
2 , s0) ∈ F with a1 y0

1−a2 y0
2 < D+ s0. Setting

λ = max{0, (a1 − (D + s0
− a1 y0

1 − a2 y0
2))/(−a1v1 + a2v2)}, the point (y0

1 + λv1 + 1, y0
2 + λv2, s0) ∈ P violates

(7). Since a2v2 = a1v1 and α1v1 = α2v2 the inequality (7) can be written as a1 y1− a2 y2 ≤ α′+ β ′s where α′ =
a1
α1

α

and β ′ =
a1
α1

β. As β ′ > 0, every point lying in F ∩ X either satisfies s = 0 or s = a1 y1 − a2 y2 − D (otherwise
we could decrease the value of s). Let us consider a point (y′1, y′2, s′) satisfying s′ = 0. Therefore a1 y′1 − a2 y′2 = α′.
Since (7) is a valid inequality we have α′ = max{a1 y1 − a2 y2 : a1 y1 − a2 y2 ≤ D, y1, y2 ∈ N0} = D − m.
Therefore β ′ > 1 (otherwise every point (y∗1 , y∗2 , s∗) ∈ X satisfying a1 y∗1 − a2 y∗2 = D + s∗ would violate (7)). Now
consider (y′1, y′2, s′) ∈ F satisfying s′ = a1 y′1 − a2 y′2 − D. Thus a1 y′1 − a2 y′2 = D − m + β ′(a1 y′1 − a2 y′2 − D).
So β ′ = 1 + m

a1 y′1−a2 y′2−D . Since (7) is a valid inequality we have (y′1, y′2) = arg min{a1 y1 − a2 y2 : a1 y1 − a2 y2 ≥

D, y1, y2 ∈ N0}. Therefore a1 y′1 − a2 y′2 − D = g − m ⇒ β ′ =
g

g−m . �

Now, we consider all mixed integer sets of the form:

X = {(y1, y2, s) ∈ N2
0 × R+ : a1 y1 + a2 y2 ≤ D + δs}

where a1, a2, D ∈ Z, δ ∈ {−1, 1}. The description of conv(X) is trivial for sets X where a1 and a2 have the same sign
and D has the opposite sign.

If δ < 0 then all non-trivial facets of conv(X) are obtained from the description of the convex hull of the restriction
of X to s = 0. For these cases α1 y1 + α2 y2 ≤ α + βs defines a non-trivial facet of conv(X) if and only if β = 0
and α1 y1 + α2 y2 ≤ α defines a non-trivial facet of conv(Xs=0) where Xs=0 = {(y1, y2) ∈ N2

0 : a1 y1 + a2 y2 ≤ D}.
Notice that lifting each non-trivial facet-defining inequality for conv(Xs=0) we obtain β = 0 and, conversely, each
non-trivial facet-defining inequality for conv(X) satisfies β = 0.

It remains to consider four cases with δ > 0. The case a1 > 0, a2 > 0 and D > 0 was considered in Section 2. The
case a1 < 0, a2 < 0, D < 0 is similar to the previous one. The case where a1 > 0 and a2 < 0 was considered above
and the case a1 < 0 and a2 > 0 is similar to that one.

Other important 2-integer continuous sets arise when upper and lower bounds on the integer variables are
considered. In those cases a polyhedral description can be obtained in a way similar to that given in Section 2.
However, for each particular situation it is necessary to adapt Algorithm HW to generate the extreme points of the
pure 2-integer polyhedra. To compute the lifting coefficient β of the continuous variable, some minor modifications
must be made in order to ensure that the point chosen to compute β (the point (y∗1 , y∗2 ) considered in the proof of
Proposition 7) satisfies these new constraints.
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4. The integer single node flow set with two arcs

In this section we consider the mixed integer set Z defined by:

x1 + x2 ≤ D + s, (8)

x1 ≤ a1 y1, (9)

x2 ≤ a2 y2, (10)

x1, x2, s ≥ 0, (11)

y1, y2 integers. (12)

We assume that a1, a2, D are positive integers with D > max{a1, a2}.
It is important to notice that there are only two integer variables involved in this model and so, for this particular

structure, all the information needed to describe conv(Z) will also be obtained from the 2-integer knapsack sets that
result from the elimination of the continuous variables.

Since there are several similarities between the study of conv(Z) and the study of Q in Section 2 we will omit
some details.

First consider the characteristic cone of conv(Z), denoted by C(Z).

Lemma 14. C(Z) = {(x1, x2, y1, y2, s) : x1 + x2 ≤ s, x1 ≤ a1 y1, x2 ≤ a2 y2, x1, x2, s ≥ 0} = {r ∈ R5
:

r =
∑5

j=1 λ jr j , λ j ≥ 0, j = 1, . . . , 5} where r1
= (0, 0, 0, 0, 1), r2

= (0, 0, 1, 0, 0), r3
= (0, 0, 0, 1, 0), r4

=

(a1, 0, 1, 0, a1) and r5
= (0, a2, 0, 1, a2).

All the extreme points of conv(Z) lie in the intersection of three of the following four hyperplanes defined by
x1 = a1 y1, x2 = a2 y2, x1 + x2 = D + s and s = 0. Thus, every extreme point of conv(Z) has to satisfy one of the
following set of conditions: (i) x1 = a1 y1, x2 = a2 y2, s = 0, (ii) x1 = D − x2 + s, x2 = a2 y2, s = 0, (iii) x1 = a1 y1,
x2 = D − x1 + s, s = 0, (iv) x1 = a1 y1, x2 = a2 y2, s = x1 + x2 − D.

In case (i) we have (y1, y2) ∈ Y≤. In case (ii), noticing that 0 ≤ x1 ≤ a1 y1 implies that 0 ≤ D − a2 y2 ≤ a1 y1, we
have (y1, y2) ∈ Y1 where

Y1 = {(y1, y2) ∈ N2
0 : a1 y1 + a2 y2 ≥ D, y2 ≤ D/a2}.

Note that Y1 differs from Y≥ because it includes the additional constraint y2 ≤ D/a2 that is implied by the non-
negativity constraint x1 ≥ 0. Similarly, in case (iii) we have (y1, y2) ∈ Y2 where

Y2 = {(y1, y2) ∈ N2
0 : a1 y1 + a2 y2 ≥ D, y1 ≤ D/a1}.

Finally, in case (iv), we have (y1, y2) ∈ Y≥.
Let us define Y1> = Y1 \ Y= and Y2> = Y2 \ Y=. First we consider the valid inequalities obtained from the lifting

of facet-defining inequalities for Q≤ = conv(Y≤) (corresponding to case (i)).

Proposition 15. If

α1 y1 + α2 y2 ≤ α (13)

is a valid facet-defining valid for Q≤ then the inequality

β1(x1 − a1 y1)+ β2(x2 − a2 y2)+ α1 y1 + α2 y2 ≤ α + βs (14)

is a valid facet-defining inequality for conv(Z), where

β = max
{

α1 y1 + α2 − α

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y>

}
,

β1 = max
{

α1 y1 + α2 y2 − α

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y1>

}
and β2 = max

{
α1 y1 + α2 y2 − α

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y2>

}
.
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Notice that the value of β can be computed as indicated in Proposition 7 and the computation of β1 and β2 is similar
with small differences. If k > 1 it is necessary to check if the point (y j

1 , y j
2 )+ (e`(k),− f `(k)) satisfies the additional

condition, y2 ≤ D/a2 or y1 ≤ D/a1, according to the coefficient we are computing, β1 or β2, respectively. If
k = 1 with α1 = 1, α2 = ba2/a1c then β2 = 1/(a1d(D − a2)/a1e + a2 − D). If α1 = ba1/a2c, α2 = 1 then
β1 = 1/(a2d(D − a1)/a2e + a1 − D). Now we are ready to prove Proposition 15.

Proof. Consider (x1, x2, y1, y2, s) ∈ Z . If (y1, y2) ∈ Y≤, from validity of (13) for Y≤ and noticing that β1(x1 −

a1 y1) ≤ 0, β2(x2 − a2 y2) ≤ 0 and βs ≥ 0 we conclude that (x1, x2, y1, y2, s) satisfies (14).
Now suppose (y1, y2) ∈ Y>. We may assume that only one of the three cases may occur: s > 0, x1 < a1 y1 or

x2 < a2 y2. In fact we are checking all the extreme points. Note that this verification is enough since β > 0 and, as in
Claim 1, we have α j − β j a j ≤ 0, j ∈ {1, 2} and βa j ≥ α j , j ∈ {1, 2} which ensures that moving along any direction
of C(Z) from a feasible point we obtain only feasible solutions. Assume x1 < a1 y1. If (y1, y2) ∈ Y1> then from the
definition of β1 we have

β1(a1 y1 + a2 y2 − D) ≥ α1 y1 + α2 y2 − α ⇒ β1(D − a1 y1 − a2 y2)+ α1 y1 + α2 y2 ≤ α.

Thus,

β1(x1 − a1 y1)+ β2(x2 − a2 y2)+ α1 y1 + α2 y2 ≤ β1(D − a1 y1 − a2 y2)+ α1 y1 + α2 y2 ≤ α ≤ α + βs.

The case (y1, y2) ∈ Y> \ Y1> cannot occur because it would imply y2 > D/a2 and, as we are assuming
x2 = a2 y2, s = 0 we would have x1 + x2 > D + s. The cases x2 < a2 y2 and s > 0 are similar. Since (13)
defines a facet of Q≤ and β, β1, β2 take the smallest values in order for (14) to be valid for conv(Z) then (14) must
define a facet of conv(Z). �

Example 16. Consider the set, Z = {(x1, x2, y1, y2, s) : x1 + x2 ≤ 1154 + s, 0 ≤ x1 ≤ 21y1, 0 ≤ x2 ≤ 76y2, s ≥
0, y1, y2 integer}. Based on the description of Q≤ we obtain the following set of facet-defining inequalities for
conv(Z):

y1 + 3y2 +
1
1
(x1 − 21y1)+

1
14

(x2 − 76y2) ≤ 54+
1
1

s,

2y1 + 7y2 +
1
1
(x1 − 21y1)+

1
6
(x2 − 76y2) ≤ 109+

1
1

s,

5y1 + 18y2 +
1
1
(x1 − 21y1)+

1
3
(x2 − 76y2) ≤ 274+

1
1

s,

3y1 + 11y2 +
1
2
(x1 − 21y1)+

1
2
(x2 − 76y2) ≤ 166+

1
2

s,

y1 + 4y2 +
1
7
(x1 − 21y1)+

1
7
(x2 − 76y2) ≤ 60+

1
7

s.

For instance, considering the facet-defining inequality y1 + 3y2 ≤ 54 for Q≤ we have (c1, d1) = (1, 3), thus k = 1.
So, β = β1 = 1/(21 × d1154/21e − 1154) = 1/1. That is, β and β1 are obtained for (y1, y2) = (55, 0). However,
β2 = 1/(21×d(1154− 76)/21e+ 76− 1154) = 1/14. We obtain the inequality y1+ 3y2+

1
1 (x1− 21y1)+

1
14 (x2−

76y2) ≤ 54+ 1
1 s.

Next we state similar results for the remaining cases without proof.

Proposition 17. If

α1 y1 + α2 y2 ≥ α (15)

is a valid facet-defining inequality for conv(Y1) containing only points in Y1> then the inequality

βs + α1 y1 + α2 y2 ≥ α + β1(x1 + x2 − D − s)+ β2(x2 − a2 y2) (16)

is valid for Z and defines a facet of conv(Z), where



A. Agra, M. Constantino / Discrete Optimization 3 (2006) 95–110 107

β = max
{

α − α1 y1 − α2 y2

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y>

}
,

β1 = max
{

α − α1 y1 − α2 y2

D − a1 y1 − a2 y2
: (y1, y2) ∈ Y<

}
and β2 = max

{
α − α1 y1 − α2 y2

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y2>

}
.

Note that β and β2 are zero if (15) is valid for Y> and Y2>, respectively, and they are strictly positive otherwise. In this
last case it can be easily checked that β and β2 are obtained for (y1, y2) = (dD/a1e, 0). So β = β2. The restriction
in Proposition 17 that the valid inequality (15) for Y1 must contain only points in Y1> ensures that β and β2 are non-
negative. The facet-defining inequalities excluded by this restriction belong also to the family of valid inequalities
introduced in Proposition 15.

In Example 16, conv(Y1) = {(y1, y2) : 8y1+29y2 ≥ 440, 5y1+18y2 ≥ 274, 2y1+7y2 ≥ 107, y1 ≥ 0, y2 ≥ 0}.
Only 2y1+ 7y2 ≥ 107 defines a non-trivial facet that includes only points in Y1>. Based on that inequality we obtain:
0s + 2y1 + 7y2 ≥ 107+ 1

6 (x1 + x2 − D − s)+ 0(x2 − 76y2).
Now we have a similar result considering Y2.

Proposition 18. If

α1 y1 + α2 y2 ≥ α (17)

is a valid facet-defining inequality for conv(Y2) containing only points in Y2> the inequality

βs + α1 y1 + α2 y2 ≥ α + β1(x1 − a1 y1)+ β2(x2 + x1 − D − s) (18)

is valid for Z and defines a facet of conv(Z), where

β = max
{

α − α1 y1 − α2 y2

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y>

}
,

β1 = max
{

α − α1 y1 − α2 y2

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y1>

}
and β2 = max

{
α − α1 y1 − α2 y2

D − a1 y1 − a2 y2
: (y1, y2) ∈ Y<

}
.

Continuing Example 16, conv(Y2) = {(y1, y2) : y2 ≥ 1, y1 + 4y2 ≥ 56, 3y1 + 11y2 ≥ 166, 5y1 + 18y2 ≥

274, 2y1 + 7y2 ≥ 107, y1 + y2 ≥ 16, y1 ≥ 0, y2 ≥ 0}. Based on these inequalities we derive the following set of
facet-defining inequalities for conv(Z):

1
1

s + y2 ≥ 1+
1

20
(x1 + x2 − 1154− s)+

1
1
(x1 − 21y1),

1
1

s + y1 + 4y2 ≥ 56+
1
7
(x1 + x2 − 1154− s)+

1
1
(x1 − 21y1),

0s + 2y1 + 7y2 ≥ 107+
1
6
(x1 + x2 − 1154− s)+ 0(x1 − 21y1),

0s + y1 + y2 ≥ 16+
1
14

(x1 + x2 − 1154− s)+ 0(x1 − 21y1).

Finally, we consider the last set of inequalities.

Proposition 19. If

α1 y1 + α2 y2 ≥ α (19)

is a valid facet-defining inequality for conv(Y≥) containing only points in Y> then the inequality

β(s + D − x1 − x2)+ α1 y1 + α2 y2 ≥ α + β1(x1 − a1 y1)+ β2(x2 − a2 y2) (20)
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is valid for Z and defines a facet of conv(Z), where

β = max
{

α − α1 y1 − α2 y2

D − a1 y1 − a2 y2
: (y1, y2) ∈ Y<

}
,

β1 = max
{

α − α1 y1 − α2 y2

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y1>

}
and β2 = max

{
α − α1 y1 − α2 y2

a1 y1 + a2 y2 − D
: (y1, y2) ∈ Y2>

}
.

Continuing Example 16 it can be checked that every facet of the form (20) can also be obtained either from (16) or
from (18). Note that the convex hulls of Y1, Y2 and Y≥ are very similar and, in general, they share a set of facets. Thus,
several facet-defining inequalities of conv(Z) may belong to more than one of the families (16), (18), (20). In fact, all
but the facet in the border of Q≥ adjacent to the facet defined by x1 = 0 (resp. x2 = 0) are also facets of conv(Y1)

(resp. conv(Y2)). Hence, conv(Y≥) can only contribute a new facet if it has only one non-trivial facet.
Now we consider two unbounded facet-defining inequalities that can be obtained by the MIR procedure.

Proposition 20. The inequality

xi − γi yi ≤ (ai − γi )bD/aic + s (21)

where γi = D − aibD/aic, and i ∈ {1, 2}, is valid for Z.

Proof. Consider the basic MIR inequality (1) with y = yi , a = ai , w = s + ai yi − xi . �

In Example 16 we have two unbounded non-trivial facet-defining inequalities: x1−20y1 ≤ 53+s, x2−69y1 ≤ 98+s.
In this example the inequalities presented so far with the trivial facet-defining inequalities suffice to describe conv(Z).

Proposition 21. Inequalities (21) are the unique inequalities defining unbounded facets of conv(Z).

Proof. Suppose F is an unbounded facet of conv(Z) defined by

ζ1x1 + ζ2x2 − µ1 y1 − µ2 y2 ≤ µ+ νs. (22)

First notice that ζ1, ζ2, µ1, µ2, µ, ν ≥ 0 and ν ≥ max{ζ1, ζ2}. The direction r1 cannot belong to the characteristic
cone of F (denoted by C(F)) because, otherwise, we would have ν = 0 which implies ζ1 = ζ2 = 0 and,
therefore, µ1 = µ2 = 0. Now we consider r4. If r4

∈ C(F) then a1ν = a1ζ1 − µ1. Consider a point
(x1, x2, y1, y2, s) ∈ F ∩ Z satisfying x1 + x2 < D + s. As ν > 0 and µ1 ≥ 0 then ζ1 > 0 ⇒ x1 = a1 y1.
Thus a1 y1+ x2 < D+s. On the other hand as (x1, x2, y1, y2, s) ∈ F we have (ζ1a1−µ1)y1+ζ2x2−µ2 y2 = µ+νs.
Using a1ν = a1ζ1 − µ1 we obtain a1 y1 + (ζ2/ν)x2 − (µ2/ν)y2 = µ/ν + s. From this equation and from the
inequality a1 y1 + x2 < D + s we have −(ζ2/ν)x2 + (µ2/ν)y2 + x2 < D − µ/ν. Now, considering the point
(x ′1, x2, y′1, y2, s′) ∈ Z with y′1 = d(D − x2 − s)/a1e, x ′1 = a1 y′1 and s′ = x ′1 + x2 − D we have a1 y′1 + x2 = D + s′.
But, as (22) is valid for Z we also have (ζ1a1 − µ1)y′1 + ζ2x2 − µ2 y2 ≤ µ + νs′. Again, since a1ν = a1ζ1 − µ1
it follows that a1 y′1 + (ζ2/ν)x2 − (µ2/ν)y2 ≤ µ/ν + s′. Using the equation a1 y′1 + x2 = D + s′ we obtain
−(ζ2/ν)x2 + (µ2/ν)y2 + x2 ≥ D − µ/ν, contradicting the previous strict inequality. Hence r4

6∈ C(F). Similarly
r5
6∈ C(F).
Hence, only r2 and r3 may belong to C(F). Suppose r2

∈ C(F). Thus µ1 = 0 which implies ζ1 = 0 because,
otherwise, we would have x1 + x2 = D + s for every point in F . Thus r3 cannot belong to C(F) because we
would obtain a valid inequality dominated by s ≥ 0. Since ζ2 > 0 we can write (22) as x2 − µ′2 y2 ≤ µ′ + ν′s.
We know that ν′ = ν/ζ2 ≥ 1. Suppose ν′ > 1 then s = 0 for every point in the facet because if s > 0 we
could decrease x2 and s in the same amount obtaining a point violating (22). Thus ν′ = 1. Now we prove that
µ′ = (a2 − µ′2)bD/a2c. Considering the point (x1, x2, y1, y2, s) = (0, a2bD/a2c, 0, bD/a2c, 0) ∈ Z we have
µ′ ≥ (a2 − µ′2)bD/a2c. Suppose µ′ > (a2 − µ′2)bD/a2c. As x2 ≤ a2 y2 ⇒ x2 − µ′2 y2 ≤ (a2 − µ′2)y2 we conclude
that if (x1, x2, y1, y2, s) ∈ F then, as µ′2 < a2, we have y2 > bD/a2c and, therefore, x1 + x2 = D + s. Thus,
µ′ = (a2−µ′2)bD/a2c. Finally we show that µ′2 = (D− a2bD/a2c). Considering the point (0, D, 0, bD/a2c+ 1, 0)

it follows that D−µ′2(bD/a2c+ 1) ≤ (a2−µ′2)bD/a2c. Thus µ′2 ≥ D− a2bD/a2c. Suppose µ′2 > D− a2bD/a2c.
From x2 ≤ D + s we have x2 − µ′2 y2 ≤ (D − a2bD/a2c) + a2bD/a2c − µ′2 y2 + s. If (x1, x2, y1, y2, s) ∈ F then
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µ′+s ≤ (D−a2bD/a2c)+a2bD/a2c−µ′2 y2+s ⇒ −µ′2bD/a2c ≤ (D−a2bD/a2c)−µ′2 y2 ⇒ µ′2(y2−bD/a2c) ≤

(D − a2bD/a2c). As we are assuming µ′2 > D − a2bD/a2c we must have y2 ≤ bD/a2c which implies x2 = a2 y2.
Hence µ′2 = D − a2bD/a2c. �

Theorem 22. conv(Z) is completely described by the trivial facet-defining inequalities and the families (14), (16),
(18), (20) and (21).

Proof. Since the proof is similar to the proof of Theorem 10 we omit some technical details.
Consider a facet F defined by a non-trivial inequality

ζ1x1 + ζ2x2 − µ1 y1 − µ2 y2 ≤ µ+ νs ( f ).

In the case where ( f ) defines an unbounded facet it was proven in Proposition 21 that ( f ) is of type (21). Thus,
suppose ( f ) defines a bounded facet and therefore it must include five affinely independent extreme points. Notice
that every extreme point satisfies one of the four types of conditions (i)–(iv). There must exist one extreme point
satisfying each one of those conditions otherwise ( f ) would not define a facet. For instance, if there were no points
satisfying conditions (i) then we would have x1 + x2 = D + s for every point in F . At least one set of conditions
must be satisfied by two extreme points. If that set is (i), (ii), (iii) or (iv) then, as in the proof of Theorem 10, we
may conclude that ( f ) can be written as (14), (16), (18) or (20), respectively. Observe that those cases excluded in the
hypothesis of Propositions 17–19 correspond to situations where (i) is satisfied by two extreme points and, therefore,
the corresponding facets are also of type (14). �

Now we consider the set Zs=0 = {(x1, x2, y1, y2) : x1+ x2 ≤ D, 0 ≤ x1 ≤ a1 y1, 0 ≤ x2 ≤ a2 y2, y1, y2 integer}.
Obviously, restricting conv(Z) to s = 0 we obtain conv(Zs=0). However the relation is stronger. In the description
of the bounded facets of conv(Z) only the family of inequalities (20) was obtained from the lifting of 2-integer valid
inequalities considering s ≥ 0 (the sets of conditions (i), (ii), (iii) consider s = 0). However, as is illustrated in
Example 16, the set of facets of conv(Y≥) is usually contained in the set of facets of conv(Y1) and conv(Y2). In that
case the set of inequalities (20) is contained in the sets of inequalities (16) and (18). In fact, it can be checked that
the unique exception is the case where conv(Y≥) has only one non-trivial facet. Thus if conv(Y≥) has more than one
non-trivial facet then a valid inequality for Z ,

ζ1x1 + ζ2x2 − µ1 y1 − µ2 y2 ≤ µ+ νs

defines a non-trivial facet of conv(Z) if and only if ν = max{ζ1, ζ2} and

ζ1x1 + ζ2x2 − µ1 y1 − µ2 y2 ≤ µ

is valid for Zs=0 and defines a non-trivial facet of conv(Zs=0).

Acknowledgements

We thank Laurence Wolsey for his helpful suggestions. This work was partly carried out within the framework of
ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.

References

[1] D. Hirschberg, C. Wong, A polynomial-time algorithm for the knapsack problem with two variables, Journal of the Association for Computing
Machinery 23 (1) (1976) 147–154.

[2] H. Marchand, L. Wolsey, Aggregation and mixed integer rounding to solve mips, Operations Research 49 (3) (2001) 363–371.
[3] H. Marchand, L. Wolsey, The 0-1 knapsack problem with a single continuous variable, Mathematical Programming 85 (1) (1999) 15–33.
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