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We consider the mathematical model for the viral dynamics of HIV-1 introduced in Rong
et al. (2007) [37]. One main feature of this model is that an eclipse stage for the infected
cells is included and cells in this stage may revert to the uninfected class. The viral
dynamics is described by four nonlinear ordinary differential equations. In Rong et al.
(2007) [37], the stability of the infected equilibrium has been analyzed locally. Here, we
perform the global stability analysis using two techniques, the Lyapunov direct method and
the geometric approach to stability, based on the higher-order generalization of Bendixson’s
criterion. We obtain sufficient conditions written in terms of the system parameters.
Numerical simulations are also provided to give a more complete representation of the
system dynamics.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the last decade, the mathematical models for the viral dynamics of HIV-1 have proved to be useful for describing the
interaction between virus and host cells in individual patients [35].

In recent years, much work has been done on the viral dynamics of human immunodeficiency virus (HIV), hepatitis B
virus (HBV), and hepatitis C virus (HCV) infections. These studies have provided insights on viral replication, host cell death
rate and treatment efficacy [36].

In the basic mathematical modelling of viral dynamics, used often to describe the dynamics of infections by HIV, HBV
and HCV, a simplified view of viral infection is assumed, through the coupled evolution of three populations: uninfected
cells, productively infected cells, and free viral particles. The viral dynamics is therefore described by the time evolution of
three variables that represent the concentrations of the three populations, [33].

In 2007, Rong and coworkers, [37], studied an extension of the basic model of HIV-1 infection. One main feature of their
model is that an eclipse stage for the infected cells is included and a portion of these cells is reverted to the uninfected class.
From the mathematical point of view, their extension implies that an extra cell population must be considered, resulting
in a four-dimensional model of nonlinear ordinary differential equations (we remark that ordinary differential equations
models are only one of the ways to describe the eclipse stage. Age-structured models have also been developed to address
this, see e.g. [1,32,38]).
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In [37], the stability of the infected equilibrium has been analyzed locally. Nevertheless, the question of global stability
for this type of viral infections dynamics is an intriguing and a difficult task. In fact, the four-dimensional nature of the
model makes the use of nonlinear stability methods nontrivial.

For this main reason, we reconsider the problem set in [37] and deal with the issue of global stability. More precisely,
we study the conditions of global stability for the equilibrium states employing two distinct techniques: Lyapunov’s direct
method and the Li and Muldowney’s geometric approach to global stability.

The well-known Lyapunov direct method is undoubtedly one of the most powerful tools for nonlinear stability analy-
sis, [27]. The main advantage of Lyapunov direct method is that it is directly applicable to nonlinear systems. However, the
method requires an auxiliary function, the Lyapunov function, which usually is hard to construct. In 2004, Korobeinikov
used the Volterra-type Lyapunov function to prove the global stability of the equilibrium states of a basic viral dynamic
model, [18]. This function has been extensively used to prove the global stability of the equilibrium of infectious disease
models, [19,20,31]. Vargas-De-León used the combinations of common quadratic, composite quadratic and Volterra-type
functions to prove the global stability of equilibrium states of several epidemic models, [41], and for a hepatitis B model,
with noncytolytic loss of infected cells, [42].

Another powerful tool to address the problem is the geometric method due to Li and Muldowney, which emerged from
some papers in the middle of the nineties, [23–25]. Their approach is a generalization of Bendixson’s criterion to systems of
any finite dimensions and uses compound matrices. This method is nowadays classic, due to the wide range of applications,
especially to mathematical models of biological interest. The majority of applications refer to epidemic models (see, e.g., [4,
7,10,21,24,26,39,43]) although applications to other population dynamics context may be also found, [6,8]. In [9] it has been
shown that the mathematical structure of SEIR-like systems, whose analysis may generally be reduced to three-dimensional
systems, appears to be particularly suitable for the applications of the method. On the other hand, applications to four-
dimensional systems are not very common in the literature, because the procedure becomes particularly involved when
n � 4. Examples are given by Ballyk and coworkers, [5], who applied the compound matrix techniques to a four-dimensional
population model with peculiar symmetries, and Gumel and coworkers, [16], who studied a SVEIR (susceptible, vaccinated,
exposed, infectious and recovered) model of severe acute respiratory syndrome (SARS) epidemic spread.

In this paper we will use both, the Lyapunov direct method and the geometric approach, to deal with the nonlinear
stability of the infected equilibrium (i.e. equilibrium with all positive components) of the model for the viral dynamics of
HIV-1 introduced in [37]. In particular, as it was recently shown for a tuberculosis model, [11], the geometric method will
be applied by following the procedure given in [16]. We obtain sufficient conditions for the global stability, written in terms
of the parameter of the system. Moreover, Lyapunov function will also be used to prove that the virus-free equilibrium is
globally asymptotically stable when the basic reproduction number is less than one. Some numerical simulations are also
performed to give a more complete representation of the system dynamics.

The paper is organized as follows: in Section 2 the model is introduced and some basic properties presented. The global
asymptotic stability of the virus-free equilibrium is described in Section 3. In Section 4, the Lyapunov method is applied
to study the global stability of the infected equilibrium. In Section 5, the global dynamics is studied by means of the
Li–Muldowney geometric approach. Conclusions are given in Section 6.

2. The model and its basic properties

In 2007, Rong and coworkers, [37], introduced a stage-structured model for HIV-1 infection. The model includes a class
of infected cells that are not yet producing virus, i.e. cells in the eclipse phase. This aspect makes the model an extension of
basic HIV models, where the state variables are uninfected CD4+T cells, productively infected T cells, and free virus [33,34].
As a result, the model under consideration is a four-dimensional system of nonlinear ordinary differential equations. The
rates of change of the state variables in each stage are represented by the following equations:

ẋ = λ − βx(t)v(t) − μx(t) + δw(t),

ẏ = φw(t) − αy(t),

ẇ = βx(t)v(t) − (δ + η + φ)w(t),

v̇ = σ y(t) − γ v(t), (1)

where the upperdot denotes the time derivative, d · /dt . In (1), the state variables x(t), y(t), w(t) and v(t) represent the
concentration of uninfected CD4+T cells, productively infected cells, infected cells in the eclipse stage and free virus, at
time t , respectively. To explain the parameters, we note that λ is the recruitment rate of uninfected CD4+T cells, and μ
is the natural death rate of CD4+T cells. The term βx(t)v(t) describes the incidence of HIV infection of health CD4+T
cells, where β is the infection rate. Parameter φ is the rate at which infected cells in the eclipse stage become productively
infected cells and these cells die at a rate η. The cells in the eclipse stage are already infected and may be killed by immune
cells or cytopathic effects [2]. Then it is reasonable to assume that the average life span of uninfected cells (1/μ) should be
greater than, or equal to, the lifespan of cells in the eclipse stage (1/η). Productively infected cells die at a rate α. Parameter
σ is the rate of production of virions by infected cells and γ is the clearance rate of virus particles.
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Parameter δ needs some comments. As well explained in [37], a proportion of infected cells in the eclipse stage can
revert to the uninfected state before the viral genome is integrated into the genome of the lymphocyte. In model (1) δ is
the rate at which the cells in the eclipse phase may revert to the uninfected class.

All the parameters described above are assumed to be positive and non-negative initial values are associated to sys-
tem (1).

We remark that a model for viral infection similar to (1) in which the reversion of cells from infected in the eclipse
stage to the uninfected state is neglected, has been proposed by Korobeinikov, [18], who analyzed the global stability of
equilibrium states.

We begin the analysis of the basic properties by observing that the non-negative octant

R
4+ = {

(x, y, w, v) ∈ R
4: x � 0, y � 0, w � 0, v � 0

}
is positively invariant with respect to (1). The following theorem provides the boundedness of the solutions of system (1).

Theorem 2.1. All the solutions of system (1) are uniformly bounded in the compact subset Θ ⊆ R
4+ .

Proof. Let (x(t), y(t), w(t), v(t)) be any solution with positive initial conditions. Adding the first three equations and using
C(t) = x(t) + y(t) + w(t), we obtain for the total cells population: Ċ � λ − ψC , where ψ = min{α,η,μ}. It follows that
lim supt→∞ C � λ

ψ
. The last equation of (1) then leads to

v̇(t) = σ y − γ v � λσ

ψ
− γ v,

by a standard comparison theorem, we can conclude that

lim sup
t→∞

v � λσ

γ ψ
.

Hence all the solutions of (1) which initiate in R
4+ are eventually confined in the region:

Θ =
{
(x, y, w, v) ∈ R

4: 0 � x, y, w � λ

ψ
, 0 � v � λσ

γ ψ

}
.

This completes the proof. �
As a corollary, the region Θ will attract all solutions of (1) starting in Θ and it is also positively invariant with respect

to system (1).
We begin the analysis of the equilibria by observing that system (1) admits the virus-free equilibrium E◦ = (λ/μ,0,0,0).

Define now the basic reproduction number for the viral infection as

R0 = βλσφ

αγμ(δ + η + φ)
.

The basic reproduction number is formally defined as the average number of secondary infectious individuals (in our
case, cells) resulting from an average infectious individual following their introduction into a totally susceptible population,
[3,13,40]. For a viral infection, R0 is defined as the average number of secondary infected cells that are produced by any
one productively infected cell when placed into an environment of otherwise uninfected cells, [15].

Usually, a sufficient condition for the persistence of the infection in the host population is that R0 > 1, and this condition
is also necessary for a large number of epidemic models (the ones that does not exhibit the phenomenon of backward
bifurcation, for which there may be an epidemic spread also for values of R0 below the unity, see e.g. [4]). Hence, R0 = 1
is often a threshold value between epidemic and disease eradication. This is the case of system (1), as we will show. For
now, observe that if R0 > 1, then there exists a unique infected equilibrium, i.e. an equilibrium with positive components:
E∗(x∗, y∗, w∗, v∗), where

x∗ = λ

μR0
, y∗ = φ

α
w∗, w∗ = λ

η + φ

(
1 − 1

R0

)
, v∗ = σφ

αγ
w∗. (2)

3. Global dynamic of the virus-free equilibrium

In this section we show that if R0 � 1, then the virus-free equilibrium is globally stable. Hence, all solutions initiating in
R

4+ approach E◦ .

Theorem 3.1. If R0 � 1, then the virus-free equilibrium E◦ is globally asymptotically stable in R
4+ .
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Proof. Define the global Lyapunov function W : {(x, y, w, v) ∈ R
4+: x > 0} → R by

W (x, y, w, v) =
(

x − x◦ − x◦ ln
x

x◦

)
+ δ

2(μ + η + φ)x◦
[(

x − x◦) + w
]2

+ (δ + η + φ)

φ
y + w + α(δ + η + φ)

σφ
v. (3)

Then W is C1 on the interior of R
4+ , E◦ is the global minimum of W on R

4+ , and W (x◦,0,0,0) = 0, where x◦ = λ/μ. The
derivative of (3) along the solution curves of (1) is given by the equation:

dW

dt
= (x − x◦)

x
ẋ + δ

(μ + η + φ)x◦
[(

x − x◦) + w
]
(ẋ + ẇ) + (δ + η + φ)

φ
ẏ + ẇ + α(δ + η + φ)

σφ
v̇,

that is,

dW

dt
= (x − x◦)

x
(λ − μx − βxv + δw) + δ

(μ + η + φ)x◦
[(

x − x◦) + w
](

λ − μx − (η + φ)w
)

+ (δ + η + φ)

φ
(φw − αy) + (

βxv − (δ + η + φ)w
) + α(δ + η + φ)

σφ
(σ y − γ v).

Using λ = μx◦ , we obtain:

dW

dt
= (x − x◦)

x

(−μ
(
x − x◦) − βxv + δw

) + δ

(μ + η + φ)x◦
[(

x − x◦) + w
](−μ

(
x − x◦) − (η + φ)w

)

+ βxv − αγ (δ + η + φ)

σφ
v.

Notice that:

δw
(x − x◦)

x
= −δw

(x − x◦)2

xx◦ + δ

x◦
(
x − x◦). (4)

Substituting (4) and simplifying, we get:

dW

dt
= −

(
μx◦ + δμ

(η + μ + φ)
x + δw

)
(x − x◦)2

xx◦ − δ(η + φ)w2

(η + μ + φ)x◦ − αγ (δ + η + φ)

σφ

(
1 − βσφx◦

αγ (δ + η + φ)

)
v.

By rewriting dW /dt in terms of basic reproduction number, we have

dW

dt
= −

(
μx◦ + δμ

(η + μ + φ)
x + δw

)
(x − x◦)2

xx◦ − δ(η + φ)w2

(η + μ + φ)x◦ − αγ (δ + η + φ)

σφ
(1 − R0)v.

Clearly, if R0 � 1, we have that dW /dt � 0 for all x, y, w, v > 0. Thus, the virus-free equilibrium E◦ is stable. Further-
more, dW /dt = 0, when x = x◦ and w = v = 0. Let M be the largest invariant set in the set

E = {
(x, y, w, v) ∈ R

4+: dW (x, y, w, v)/dt = 0
} = {

(x, y, w, v) ∈ R
4+: x = x◦, y � 0, w = 0, v = 0

}
.

We have from the fourth equation of (1) that M = {E◦}. It follows from LaSalle’s invariance principle that the virus-free
equilibrium E◦ is globally asymptotically stable. �

An immediate consequence is the following:

Corollary 1. If R0 � 1, then the virus-free equilibrium E◦ of (1) is globally asymptotically stable in Θ .

4. Global stability of the infected equilibrium by means of Lyapunov functions

In this section, we use the Lyapunov direct method to establish sufficient conditions for the global asymptotic stability
of the unique infected equilibrium E∗ in int(R4+) when R0 > 1.

Theorem 4.1. Let R0 > 1. If

1 < R0 � 1 + η + φ

δ
, (5)

then the unique infected equilibrium, E∗ , of (1) is globally asymptotically stable in the interior of R
4+ .
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Proof. Define the global Lyapunov function: L : {(x, y, w, v) ∈ R
4+: x, y, w, v > 0} → R, such that:

L(x, w, y, v) =
(

x − x∗ − x∗ ln
x

x∗

)
+ βx∗v∗

φw∗

(
y − y∗ − y∗ ln

y

y∗

)
+ δ

2(μ + η + φ)x∗
[(

x − x∗) + (
w − w∗)]2

+
(

w − w∗ − w∗ ln
w

w∗

)
+ βx∗v∗

σ y∗

(
v − v∗ − v∗ ln

v

v∗

)
. (6)

Then L is C1 on the interior of R
4+ , E∗ is the global minimum of L on R

4+ , and L(x∗, y∗, w∗, v∗) = 0. At infected equilibrium,
we have:

λ = μx∗ + βx∗v∗ − δw∗, (7)

α = φ
w∗

y∗ , (8)

λ = μx∗ + αy∗, (9)

(δ + η + φ) = βx∗v∗

w∗ , (10)

γ = σ
y∗

v∗ . (11)

The derivative of (6) along the solution curves of (1) in R
4+ is given by the expression:

dL

dt
=

(
1 − x∗

x

)
ẋ + βx∗v∗

φw∗

(
1 − y∗

y

)
ẏ + δ

(μ + η + φ)x∗
[(

x − x∗) + (
w − w∗)](ẋ + ẇ)

+
(

1 − w∗

w

)
ẇ + βx∗v∗

σ y∗

(
1 − v∗

v

)
v̇

=
(

1 − x∗

x

)
(λ − μx − βxv + δw) + βx∗v∗

φw∗

(
1 − y∗

y

)
(φw − αy)

+ δ

(μ + η + φ)x∗
[(

x − x∗) + (
w − w∗)](λ − μx − (η + φ)w

)

+
(

1 − w∗

w

)(
βxv − (δ + η + φ)w

) + βx∗v∗

σ y∗

(
1 − v∗

v

)
(σ y − γ v).

Using (7)–(11), we obtain:

dL

dt
=

(
1 − x∗

x

)(−μ
(
x − x∗) − βxv + βx∗v∗ + δ

(
w − w∗)) + βx∗v∗

φw∗

(
1 − y∗

y

)(
φw − φw∗ y

y∗

)

+ δ

(μ + η + φ)x∗
[(

x − x∗) + (
w − w∗)](−μ

(
x − x∗) − (η + φ)

(
w − w∗))

+
(

1 − w∗

w

)(
βxv − βx∗v∗ w

w∗

)
+ βx∗v∗

σ y∗

(
1 − v∗

v

)(
σ y − σ y∗ v

v∗

)
.

Notice that:

δ

(
1 − x

x∗

)(
w − w∗) = −δ

(
w − w∗) (x − x∗)2

xx∗ + δ

x∗
(
x − x∗)(w − w∗).

Thus,

dL

dt
= −(

μx∗ + δ
(

w − w∗)) (x − x∗)2

xx∗ + δ

x∗
(
x − x∗)(w − w∗)

+ βx∗v∗
(

1 − xv

x∗v∗ − x∗

x
+ v

v∗

)
+ βx∗v∗

(
w

w∗ − y

y∗ − y∗w

yw∗ + 1

)

− δ

x∗

(
μ

μ + η + φ

(
x − x∗)2 + (

x − x∗)(w − w∗) + (η + φ)

μ + η + φ

(
w − w∗)2

)

+ βx∗v∗
(

xv

x∗v∗ − w

w∗ − xw∗v

x∗w v∗ + 1

)
+ βx∗v∗

(
y

y∗ − v

v∗ − yv∗

y∗v
+ 1

)
.

After some algebraic manipulations, we obtain:
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dL

dt
= −

(
μx∗ − δw∗ + δw + μδx

μ + η + φ

)
(x − x∗)2

xx∗ − δ(η + φ)

(μ + η + φ)x∗
(

w − w∗)2

− βx∗v∗
(

x∗

x
+ yv∗

y∗v
+ wy∗

w∗ y
+ xw∗v

x∗w v∗ − 4

)
.

Since the arithmetic mean is greater than or equal to the geometric mean, it follows that:

x∗

x
+ yv∗

y∗v
+ wy∗

w∗ y
+ xw∗v

x∗w v∗ − 4 � 0,

and the equality holds only for x = x∗ , y = y∗ , w = w∗ and v = v∗ .
Therefore, if μx∗ − δw∗ � 0 then dL/dt � 0 holds for all x, y, w, v > 0. Thus, the infected equilibrium state E∗ is stable

and we have dL/dt = 0 if and only if x = x∗ , y = y∗ , w = w∗ and v = v∗ holds. The largest compact invariant set in
{(x, y, w, v) ∈ R

4+: dL/dt = 0} is the singleton {E∗}. Therefore, the infected equilibrium E∗ is globally asymptotically stable
in the interior of R

4+ by LaSalle’s invariance principle when R0 > 1.
Finally, we show that the condition μx∗ − δw∗ � 0 is equivalent to the condition (5). Using x∗ and w∗ of (2), the

inequality μx∗ − δw∗ � 0 may be written

λ

[
1

R0

(
1 + δ

η + φ

)
− δ

η + φ

]
� 0,

so that

δλ

(η + φ)R0

[(
1 + η + φ

δ

)
− R0

]
� 0,

and

R0 � 1 + η + φ

δ
.

Hence the sufficient conditions, in terms of R0, can be written

1 < R0 � 1 + η + φ

δ
,

and the proof is completed. �
Remark 4.1. When δ = 0, the model is simplified to the basic viral dynamics model with exposed period, [18].

5. Global stability of the infected equilibrium by means of the geometric approach

In this section, we will use the geometric approach to global stability, [22,23,25], in order to study the global stability of
the infected equilibrium. We follow the approach used in [16] for a SVEIR model of SARS epidemic spread and employed
also in [11] for a tuberculosis model.

Consider the autonomous dynamical system:

ẋ = f (x), (12)

where f : D → Rn , D ⊂ Rn open set and simply connected and f ∈ C1(D). Let x∗ be an equilibrium of (12), i.e. f (x∗) = 0.
We recall that x∗ is said to be globally stable in D if it is locally stable and all trajectories in D converge to x∗ .

Let Q (x) be an
(n

2

) × (n
2

)
matrix-valued function that is C1 on D and consider

A = Q f Q −1 + Q M Q −1,

where the matrix Q f is

(
qij(x)

)
f = (

∂qij(x)/∂x
)T · f (x) = ∇qij · f (x),

and the matrix M is the second additive compound matrix of the Jacobian matrix J . Consider the Lozinskiı̆ measure μ of A
with respect to a vector norm ‖ · ‖ in R(n

2) , that is:

μ(A) = lim
h→0+

‖I + h A‖
h

.

We will apply the following [23]:



B. Buonomo, C. Vargas-De-León / J. Math. Anal. Appl. 385 (2012) 709–720 715
Theorem 5.1. (See [23].) If D1 is a compact absorbing subset in the interior of D, and there exist ζ > 0 and the Lozinskiı̆ measure
μ(A) � −ζ for all x ∈ D1 , then every omega limit point of system (1) in the interior of D is an equilibrium in D1 .

In Section 2 the existence of equilibria has been discussed. If R0 > 1, then there exists a unique infected equilibrium E∗ .
Furthermore, we know that R0 > 1 implies that the virus-free equilibrium E◦ is unstable. The instability of E◦ , together
with E◦ ∈ ∂Θ , imply the uniform persistence of the state variables, [14], i.e. there exists a constant ε > 0 such that:

lim inf
t→∞ xi > ε, for xi = x, y, w, v,

where the xi ’s indicate the state variables of system (1). The uniform persistence, together with boundedness of Θ , is
equivalent to the existence of a compact set in the interior of Θ which is absorbing for (1), see [17]. Hence Theorem 5.1
may be applied, with D = Θ .

We remark that the uniform persistence may be accomplished in a different way, using the Lyapunov-based approach
proposed in [28]. A result similar to Corollary 1 in [28] may be obtained using the auxiliary function:

ζ(t) = φ(1 − ρ∗)
(δ + η + φ)

w + y + α

σ
v,

where ρ∗ > 0 is a sufficiently small constant.
According to [29], the Lozinskiı̆ measure in Theorem 5.1 can be evaluated as:

μ(A) = inf
{

c: D+‖z‖ � c‖z‖, for all solutions of z′ = Az
}
,

where D+ is the right-hand derivative. When R0 > 1 the infected equilibrium is locally stable. Hence, in order to apply
Theorem 5.1 and get the global asymptotic stability, it is necessary to find a norm ‖ · ‖ such that μ(A) < 0 for all x in the
interior of D .

The Jacobian matrix J of (1) is given by:

J =

⎛
⎜⎜⎝

−βv − μ 0 δ −βx

0 −α φ 0

βv 0 −(δ + η + φ) βx

0 σ 0 −γ

⎞
⎟⎟⎠ .

For a general 4 × 4 matrix,⎛
⎜⎜⎝

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞
⎟⎟⎠ ,

the second additive compound matrix is given by:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, the second additive compound matrix of J is given by:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M11 φ 0 −δ βx 0

0 M22 βx 0 0 βx

σ 0 M33 0 0 δ

−βv 0 0 M44 βx 0

0 0 0 0 M55 φ

0 0 βv −σ 0 M66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

M11 = −βv − μ − α; M22 = −βv − μ − (δ + η + φ);
M33 = −βv − μ − γ ; M44 = −α − (δ + η + φ);
M55 = −α − γ ; M66 = −(δ + η + φ) − γ .
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Consider now the matrix Q , where:

q11 = q22 = q34 = 1/w; q43 = q55 = q66 = 1/v

and all the other entries qij are zero.
Then we obtain the matrix A = Q f Q −1 + Q M Q −1, where Q f is the derivative of Q in the direction of the vector

field f . More precisely, we have:

Q f Q −1 = −diag(ẇ/w, ẇ/w, ẇ/w, v̇/v, v̇/v, v̇/v),

Q M Q −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M11 φ −δ 0 β xv
w 0

0 M22 0 β xv
w 0 β xv

w

−βv 0 M44 0 β xv
w 0

σ w
v 0 0 M33 0 δ

0 0 0 0 M55 φ

0 0 −σ w
v βv 0 M66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Hence, taking into account that,

ẇ

w
= β

xv

w
− (δ + η + φ); v̇

v
= σ

y

v
− γ ,

we obtain the matrix A, where:

A11 = −βv − μ − α − β
xv

w
+ (δ + η + φ); A22 = −βv − μ − β

xv

w
;

A33 = −α − β
xv

w
; A44 = −βv − μ − σ

y

v
;

A55 = −α − σ
y

v
; A66 = −(δ + η + φ) − σ

y

v
,

and all the other entries are as in the matrix (13).
Following [16], we consider the following norm on R6:

‖z‖ = max{U1, U2}, (14)

where z ∈ R6, with components zi , i = 1, . . . ,6, and U1(z1, z2, z2) is defined as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{|z1|, |z2| + |z3|

}
if sgn(z1) = sgn(z2) = sgn(z3),

max
{|z2|, |z1| + |z3|

}
if sgn(z1) = sgn(z2) = − sgn(z3),

max
{|z1|, |z2|, |z3|

}
if sgn(z1) = − sgn(z2) = sgn(z3),

max
{|z1| + |z3|, |z2| + |z3|

}
if − sgn(z1) = sgn(z2) = sgn(z3)

and U2(z4, z5, z6) is defined as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|z4| + |z5| + |z6| if sgn(z4) = sgn(z5) = sgn(z6),

max
{|z4| + |z5|, |z4| + |z6|

}
if sgn(z4) = sgn(z5) = − sgn(z6),

max
{|z5|, |z4| + |z6|

}
if sgn(z4) = − sgn(z5) = sgn(z6),

max
{|z4| + |z6|, |z5| + |z6|

}
if − sgn(z4) = sgn(z5) = sgn(z6).

We will use the following inequalities:

|z1|, |z2|, |z3|, |z2 + z3| � U1,

and

|zi |, |zi + z j|, |z4 + z5 + z6| � U2(z); i = 4,5,6; i �= j.

Set:

θ = λ

ψε

where ε is the constant of uniform persistence. We state the following theorem:
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Theorem 5.2. For R0 > 1, system (1) admits a unique infected equilibrium. It is globally asymptotically stable provided that

η + 2φ + 2δ < μ < α, (15)

and

2σθ + ν < η, (16)

for some positive constant ν .

Proof. The proof is based on the estimate of the right derivative D+‖z‖ of the norm (14). This involves sixteen different
cases according to the different orthants and the definition of the norm (14) within each orthant.

Case 1: U1 > U2, z1, z2, z3 > 0, and |z1| > |z2| + |z3|. Then:

‖z‖ = |z1|, (17)

so that

D+‖z‖ = z′
1

= A11z1 + A12z2 + A13z3 + A15z5

�
[
−βv − μ − α − β

xv

w
+ (δ + η + φ)

]
|z1| + φ|z2| − δ|z3| + β

xv

w
|z5|.

Using |z2| < |z1|, −δ|z3| < 0, |z5| < U2 < |z1|, and (17), it follows:

D+‖z‖ �
[−(μ + α) + (η + δ + 2φ)

]‖z‖.
Taking into account of (15), we get

D+‖z‖ � −α‖z‖.
Case 2: U1 > U2, z1, z2, z3 > 0, and |z1| < |z2| + |z3|. Then:

‖z‖ = |z2| + |z3|, (18)

so that

D+‖z‖ = z′
2 + z′

3

= A31z1 + A22z2 + A23z3 + A24z4 + A35z5 + A26z6

� −βv|z1| +
(

−βv − μ − β
xv

w

)
|z2| −

(
α + β

xv

w

)
|z3| + β

xv

w
|z4 + z5 + z6|.

Using now |z4 + z5 + z6| < U2 < |z2| + |z3|, −βv(|z1| + |z2|) < 0, and taking into account of and (18), we get:

D+‖z‖ � −min(α,μ)‖z‖.
From (15):

D+‖z‖ � −μ‖z‖.
The remaining fourteen cases are omitted for brevity (a complete analysis for a similar problem may be found in [12]).

Their combination allow to obtain the following estimate:

D+‖z‖ � −ν‖z‖ (19)

so that the global stability follows according to Theorem 5.1. �
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Fig. 1. Time plots for the virus dynamics of model (1) for different δ, and with φ = 1.1 d−1 and η = 0.7 d−1. The other parameter values and initial
conditions are as in [37]. That is: λ = 104 ml−1 d−1; 1/μ = 100 d; β = 2.4 · 10−8 ml d−1; 1/α = 1 d; σ = 4000 d−1; γ = 23 d−1; x(0) = 106 ml−1,
y(0) = 0, w(0) = 0, v(0) = 102 ml−1. In this case R0 > 1 and (5) is satisfied.

6. Conclusions

In this paper we have obtained two main results. Firstly, we have studied the global stability analysis for the model
of HIV-1 infection recently introduced by Rong and coworkers, [37]. We have obtained sufficient conditions for the global
asymptotic stability of both the virus-free and the infected equilibrium. Such aspect is worth to be carefully investigated
because it is biologically relevant. For example, the global stability of the infected equilibrium gives the conditions, written
in terms of the parameters of the system, under which the virus cannot be eliminated. We obtain our result in two different
ways: using the Lyapunov direct method and the geometric method for global stability introduced by Li and Muldowney.

Secondly, our result is in some sense a test for the application of the two adopted methods. In fact, the four-dimensional
nature of the model makes the use of the two nonlinear stability methods nontrivial. In particular, the applications of the
geometric method becomes quite involved, and this explains why there are only few examples of such application in the
literature for n-dimensional models, with n � 4.

Following the strategy of constructing a suitable norm on R
6, described into details in [30] and developed in [16] for

a SVEIR model of SARS epidemic spread, we have obtained the sufficient conditions for the global stability of the infected
equilibrium (Theorem 5.2). Such conditions involve the constant of uniform persistence, which may be not easily estimated.

More quantitative conditions, which are entirely written in terms of the parameters of the system, may be obtained by
employing the Lyapunov direct method. We have built a Lyapunov function by combining linear, composite quadratic and
Volterra-type functionals. In this way we are able to prove that the virus free-equilibrium is globally asymptotically stable
when R0 � 1 (Theorem 3.1) and that the infected equilibrium is globally asymptotically stable provided that the inequality
(5) holds.

We are sure that the range of parameter values ensuring the global stability of the infected equilibria is larger than
that indicated by our conditions. Indeed we have performed some numerical simulations which suggest that the infected
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Fig. 2. Time plots for the virus dynamics of model (1) for different δ, and with φ = 1.81 d−1 and η = 0.011 d−1. The other parameter values and initial
conditions are as in [37]. That is: λ = 104 ml−1 d−1; 1/μ = 100 d; β = 2.4 ·10−8 ml d−1; 1/α = 1 d; σ = 4000 d−1; γ = 23 d−1; x(0) = 106 ml−1, y(0) = 0,
w(0) = 0, v(0) = 102 ml−1. In this case R0 > 1 and (5) are not satisfied.

equilibrium for the HIV-1 infection model, when exists, might always be globally asymptotically stable. Some of these
simulations are shown in Figs. 1 and 2.

As a consequence, the inequality (5) could be relaxed to R0 > 1. However, under some biological circumstances the right-
hand side of inequality (5) may be very large. In particular, when the rate of reversion to the uninfected state δ is sufficiently
small compared to the reciprocal of the average residence time in the infected stage in the eclipse state, 1/(δ + η + φ).

As for the sufficient conditions (15) and (16), we note that (15) is satisfied if the average life span of productively
infected cells, 1/α, is less than the average life span of uninfected cells, 1/μ; and the average life span of uninfected cells
is less than the average residence time in the infected stage in the eclipse state, 1/(δ + η + φ).

For η sufficiently large (i.e., a sufficiently short average life span of cells in the eclipse state), inequality (16) holds and
the conclusion of Theorem 5.2 holds.

As a final remark, we underline that the sufficient conditions here obtained may be, in principle, improved. For example,
the geometric approach to stability is based on two crucial choices: the entries of the matrix Q and the vector norm (14).
Different choices of the matrix Q and of the vector norm could lead to better sufficient conditions than those found here,
in the sense that the restrictions on the parameters may be weakened.
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