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Abstract
Canonical matrices are given for

(1) bilinear forms over an algebraically closed or real closed field;
(ii) sesquilinear forms over an algebraically closed field and over real quaternions with any nonidentity
involution; and
(iii) sesquilinear forms over a field F of characteristic different from 2 with involution (possibly, the
identity) up to classification of Hermitian forms over finite extensions of [; the canonical matrices
are based on any given set of canonical matrices for similarity over [F.

A method for reducing the problem of classifying systems of forms and linear mappings to the problem
of classifying systems of linear mappings is used to construct the canonical matrices. This method has its
origins in representation theory and was devised in [V.V. Sergeichuk, Classification problems for systems
of forms and linear mappings, Math. USSR-Izv. 31 (1988) 481-501].
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1. Introduction

We give canonical matrices of bilinear forms over an algebraically closed or real closed field
(familiar examples are C and R), and of sesquilinear forms over an algebraically closed field
and over P-quaternions ([P is a real closed field) with respect to any nonidentity involution.
We also give canonical matrices of sesquilinear forms over a field F of characteristic different
from 2 with involution (possibly, the identity) up to classification of Hermitian forms over finite
extensions of [; the canonical matrices are based on any given set of canonical matrices for
similarity.

Bilinear and sesquilinear forms over a field [ of characteristic different from 2 have been clas-
sified by Gabriel, Riehm, and Shrader-Frechette. Gabriel [7] reduced the problem of classifying
bilinear forms to the nondegenerate case. Riehm [20] assigned to each nondegenerate bilinear
form .«7: ¥~ x ¥~ — [ alinear mapping A: V — V and a finite sequence ¢;”, @57, ... consisting
of ¢;-Hermitian forms <pf/ over finite extensions of [F and proved that two nondegenerate bilinear
forms .o/ and 4 are equivalent if and only if the corresponding mappings A and B are similar
and each form goli‘% is equivalent to (pf’ (results of this kind were earlier obtained by Williamson
[38]). This reduction was studied in [25] and was improved and extended to sesquilinear forms
by Riehm and Shrader-Frechette [21]. But this classification of forms was not expressed in terms
of canonical matrices, so it is difficult to use.

Using Riehm’s reduction, Corbas and Williams [2] obtained canonical forms of nonsingular
matrices under congruence over an algebraically closed field of characteristic different from 2
(their list of nonsingular canonical matrices contains an inaccuracy, which can be easily fixed; see
[12, p. 1013]). Thompson [36] gave canonical pairs of symmetric or skew-symmetric matrices
over C and R under simultaneous congruence. Since any square complex or real matrix can
be expressed uniquely as the sum of a symmetric and a skew-symmetric matrix, Thompson’s
canonical pairs lead to canonical matrices for congruence; they are studied in [17]. We construct
canonical matrices that are much simpler than the ones in [2,17].

We construct canonical matrices of bilinear and sesquilinear forms by using the technique
for reducing the problem of classifying systems of forms and linear mappings to the prob-
lem of classifying systems of linear mappings that was devised by Roiter [24] and the second
author [27,28,31]. A system of forms and linear mappings satisfying some relations is given
as a representation of a partially ordered graph P with relations: each vertex corresponds to
a vector space, each arrow or nonoriented edge corresponds to a linear mapping or a bilin-
ear/sesquilinear form (see Section 3). The problem of classifying such representations over
a field or skew field [ of characteristic different from 2 reduces to the problems of classify-
ing

e representations of some quiver P with relations and involution (in fact, representations of a
finite dimensional algebra with involution) over [F, and
e Hermitian forms over fields or skew fields that are finite extensions of the center of [.

The corresponding reduction theorem was extended in [31] to the problem of classifying
selfadjoint representations of a linear category with involution and in [33] to the problem of clas-
sifying symmetric representations of an algebra with involution. Similar theorems were proved by
Quebbermann, Scharlau, and Schulte [18,26] for additive categories with quadratic or Hermitian
forms on objects, and by Derksen, Shmelkin, and Weyman [3,35] for generalizations of quivers
involving linear groups.
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Canonical matrices of

(i) bilinear and sesquilinear forms,
(ii) pairs of symmetric or skew-symmetric forms, and pairs of Hermitian forms, and
(iii) isometric or selfadjoint operators on a space with scalar product given by a nondegenerate
symmetric, skew-symmetric, or Hermitian form

were constructed in [28,31] by this technique over a field F of characteristic different from 2 up
to classification of Hermitian forms over fields that are finite extensions of . Thus, the canonical
matrices of (i)—(iii) over C and R follow from the construction in [28,31] since classifications of
Hermitian forms over these fields are known.

The canonical matrices of bilinear and sesquilinear forms over an algebraically closed field
of characteristic different from 2 and over a real closed field given in [31, Theorem 3], and the
canonical matrices of bilinear forms over an algebraically closed field of characteristic 2 given
in [30] are based on the Frobenius canonical form for similarity. In this article we simplify
them by using the Jordan canonical form. Such a simplification was given by the authors in
[10] for canonical matrices of bilinear and sesquilinear forms over C; a direct proof that the
matrices from [10] are canonical is given in [11,12]; applications of these canonical matrices
were obtained in [4-6,12,13]. We also construct canonical matrices of sesquilinear forms over
quaternions; they were given in [32] with incorrect signs for the indecomposable direct sum-
mands; see Remark 3.1. Analogous results for canonical matrices of isometric operators have
been obtained in [34].

The paper is organized as follows. In Section 2 we formulate our main results: Theorem 2.1
about canonical matrices of bilinear and sesquilinear forms over an algebraically or real closed
field and over quaternions, and Theorem 2.2 about canonical matrices of bilinear and sesquilinear
forms over any field [ of characteristic not 2 with an involution, up to classification of Hermitian
forms. In Section 3 we give a brief exposition of the technique for reducing the problem of
classifying systems of forms and linear mappings to the problem of classifying systems of linear
mappings. We use it in Sections 4 and 5, in which we prove Theorems 2.1 and 2.2.

2. Canonical matrices for congruence and *congruence

Let [ be a field or skew field with involution a — &, i.e., a bijection F — [ satisfyinga + b =
a+b, ab = ba, and a = a. Thus, the involution may be the identity only if [ is a field.

For any matrix A = [a;;] over [, we write A* := AT = [aj;]. Matrices A, B € """ are said to
be *congruent over [ if there is a nonsingular S € F"*" such that S*AS = B.If STAS = B, then
the matrices A and B are called congruent. The transformations of congruence (A > STAS) and
*congruence (A > S*AS) are associated with the bilinear form xT Ay and the sesquilinear form
x*Ay, respectively.

2.1. Canonical matrices over an algebraically or real closed field and over quaternions
In this section we give canonical matrices for congruence over:
e an algebraically closed field, and

e a real closed field—i.e., a field P whose algebraic closure K has a finite degree # 1 (that is,
1 < dimp K < 00).



196 R.A. Horn, V.V. Sergeichuk / Linear Algebra and its Applications 428 (2008) 193-223
We also give canonical matrices for *congruence over:

e an algebraically closed field with nonidentity involution, and
o the skew field of P-quaternions

H = {a+ bi +cj +dkla, b, c,d € P},
in which P is a real closed field, i> = j> =k*=—1,ij =k = —ji, jk =i = —kj, and
ki = j = —ik.
We consider only two involutions on H: quaternionic conjugation
a+bi+cj+dk+—a—bi —cj—dk, a,b,c,deP, D
and quaternionic semiconjugation
a+bi+cj+dk—a—bi+cj+dk, a,b,c,decP, 2)

because if an involution on H is not quaternionic conjugation, then it becomes quaternionic
semiconjugation after a suitable reselection of the imaginary units i, j, k; see [19].
There is a natural one-to-one correspondence

{algebraically closed fields

with nonidentity involution} {real closed fields}

sending an algebraically closed field with nonidentity involution to its fixed field. This follows
from our next lemma, in which we collect known results about such fields.

Lemma 2.1. (a) Let P be a real closed field and let K be its algebraic closure. Then char P = 0
and

K=P+Pi, i’=-1. 3)
The field P has a unique linear ordering < such that
a>0andb >0 = a+b>0andab > 0.

The positive elements of P with respect to this ordering are the squares of nonzero elements.
(b) Let K be an algebraically closed field with nonidentity involution. Then char K = 0,

P:={k € K|k = k} 4)
is a real closed field,

K=P+Pi, i’=-1, (5)
and the involution is “complex conjugation”:

a+bi=a—bi, abebP. (6)

(c) Every algebraically closed field F of characteristic 0 contains at least one real closed
subfield. Hence, [ can be represented in the form (5) and possesses the involution (6).

Proof. (a) Let K be the algebraic closure of [ and suppose 1 < dimp KK < co. By Corollary 2 in
[16, Chapter VIII, §9], we have char P = 0 and (3). The other statements of part (a) follow from
Proposition 3 and Theorem 1 in [16, Chapter XI, §2].
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(b) If K is an algebraically closed field with nonidentity involution a — a, then this involution
is an automorphism of order 2. Hence K has degree 2 over its fixed field P defined in (4). Thus,
P is a real closed field. Let i € IK be such that i = —1. By (a), every element of K is uniquely
represented in the form k = a + bi with a, b € P. The involution is an automorphism of [, so
i2 = —1. Thus, i = —i and the involution has the form (6).

(c) This statement is proved in [37, §82, Theorem 7c]. [

For notational convenience, write
ATT.=A™HT and A*:=Aa"H*

The cosquare of a nonsingular matrix A is A~T A. If two nonsingular matrices are congruent
then their cosquares are similar because

(STAS)"T(sTAS) =51A7TAsS.

If @ is a cosquare, every matrix C such that C~TC = @ is called a cosquare root of ®; we
choose any cosquare root and denote it by /®.

Analogously, A™*A is the *cosquare of A. If two nonsingular matrices are *congruent then
their *cosquares are similar. If @ is a *cosquare, every matrix C such that C™*C = @ is called a
*cosquare root of ®; we choose any *cosquare root and denote it by ~/®.

For each real closed field, we denote by < the ordering from Lemma2.1(a). Let K = P + Pi be
an algebraically closed field with nonidentity involution represented in the form (5). By the abso-
lute value of k = a + bi € K (a, b € P) we mean a unique nonnegative “real”” root of a? + b2,
which we write as

k| :=+va? + b2 )

(this definition is unambiguous since K is represented in the form (5) uniquely up to replacement
of i by —i). For each M € K™*"_its realification M® € P?"*?" is obtained by replacing every
entry a + bi of M by the 2 x 2 block

a —b
b a 3

Define the n-by-n matrices

0 N R
g A .
An(X):= 2 , In(A)i= . ) >
A d 0 0 A
0
1
-1 -1
= 1 1 )
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and

if n =2m,

(=)
—

EI 0]

1
I = 1 0 ]1 if n = 2m,

The skew sum of two matrices A and B is

[A\B]:= [2 g] .

The main result of this article is the following theorem, which is proved in Section 5. It was
obtained for complex matrices in [10,12].

Theorem 2.1. (a) Over an algebraically closed field of characteristic different from 2, every
square matrix is congruent to a direct sum, determined uniquely up to permutation of summands,
of matrices of the form:

(1) Jx(0);
(1) [Jn(M\Ln], in which . # (—1)"t1 X £ 0, and X is determined up to replacement by A~

(i) v/ Ju((=1)"+1).

Instead of the matrix (iii), one may use I'y, or I',, or any other nonsingular matrix whose
cosquare is similar to J,((—1)"t1); these matrices are congruent to (iii).

(b) Over an algebraically closed field of characteristic 2, every square matrix is congruent to
a direct sum, determined uniquely up to permutation of summands, of matrices of the form:

1) Jn(0);
(i) [J, M\ 1,1, in which A is nonzero and is determined up to replacement by 1™
(iii) i/J, (1) with odd n; no blocks of the form [ J,(1)\1,] are permitted for any odd n for which
a block /T, (1) occurs in the direct sum.2

Instead of the matrix (iii), one may use I, or any other nonsingular matrix whose cosquare
is similar to J, (1), these matrices are congruent to (iii).

2 If the direct sum would otherwise contain both /7,0 and [Jy (1)\ 1] for the same odd n, then this pair of blocks
must be replaced by three blocks 1/, (1). This restriction is imposed to ensure uniqueness of the canonical direct sum
because /7, (1) & [Jn (1)\ 1] is congruent to I/Jn(l) ® (/Jn(l) (&) Z/J,,(l); see [30] and Remark 2.1.
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(c) Over an algebraically closed field with nonidentity involution, every square matrix is
*congruent to a direct sum, determined uniquely up to permutation of summands, of matrices of
the form:

1) Jx(0);
(i) [J (A)\I , in which |A| # 1 (see (7)), A £ 0, and X is determined up to replacement by
U (alternatively, in which |x| > 1);

(iii) j:«/J,,()L), in which |A| = 1.

Instead of the matrices (iii), one may use any of the matrices

N I, ulp ply, pd,(1),  pA ®)

with || = 1, where A is any n X n matrix whose *cosquare is similar to a Jordan block.

(d) Over a real closed field P whose algebraic closure is represented in the form (3), every
square matrix is congruent to a direct sum, determined uniquely up to permutation of summands,
of matrices of the form:

(1) Jn(0);
(i) [Jn(@)\I,], in which0 #a € P, a # (=", and a is determined up to replacement by
a! (alternatively, a € P and |a| > 1 ora = (—1)");
(iil) £ v/ J, ((—D)n+1y;

Gi") [Jn (A) \12,, inwhich A € (P + Pi) \ P, || # 1, and X is determined up to replacement
byk 1~1 or A1 (alternatively, . = a + bi witha,b € P, b > 0, and a* + b* > 1);
it £, (A)P in which .. € (P + Pi) \ P, |A| = 1, and A is determined up to replacement

by X (alternatively, > = a + bi witha,b € P, b > 0, and a*> + b* = 1).

Instead of (iii), one may use =1y, or :I:F;l.
Instead of (iii), one may use =(/J, )T with the same A, or any of the matrices
(c+DI)",  (c+DIYT, Auc+D)" (10)
with 0 # c € P.

(e) Over a skew field of P-quaternions (P is real closed) with quaternionic conjugation (1) or
quaternionic semiconjugation (2), every square matrix is *congruent to a direct sum, determined
uniquely up to permutation of summands, of matrices of the form:

1) Jx(0);
(i) [Jn (A)\I , inwhich0 # A € P4 Pi, |A| # 1, and A is determined up to replacement by
x, A~L or A1 (alternatively, & = a + bi witha, b € P, b > 0, and a* + b > 1);
(iii) EM in which & € P+ Pi, |A| = 1, A is determined up to replacement by X, and
1, if the involution is (1), A = (—1)",
&= and if the involution is (2), » = (=t (11D
+1, otherwise.

Instead of (iii), one may use
(a+bi)l, or (a+bil, (12)
inwhicha,b e P, a*>+b* =1, and
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b >0 ifthe involution is (1),
a >0 ifthe involution is (2).

Instead of (iii), one may also use
(a 4+ bi)4,(1), (13)
inwhicha,b € P, a®>+b*=1, and
a >0, ifthe involution is (1), n is even,

and if the involution is (2), n is odd,
b >0, otherwise.

In this theorem “determined up to replacement by” means that a block is congruent or *con-
gruent to the block obtained by making the indicated replacements.

Remark 2.1. Theorem 3.2 in Section 3 ensures that each system of linear mappings and bilinear
forms on vector spaces over an algebraically closed field of characteristic not two or real closed
field as well as each system of linear mappings and sesquilinear forms on vector spaces over an
algebraically closed field with nonidentity involution, or real quaternions with nonidentity involu-
tion decomposes into a direct sum of indecomposable systems that is unique up to isomorphisms of
summands. Over any field of characteristic not 2, two decompositions into indecomposables may
have nonisomorphic direct summands, but Theorem 3.1 tells us that the number of indecomposable
direct summands does not depend on the decomposition.

However, over an algebraically closed field F of characteristic 2, not even the number of
indecomposable direct summands is invariant. For example, the matrices

Melell, [(1) e (14)

are congruent over [ since
1 0 1 1 0 o]t 1 1 0 1 0
1 1 0|0 1 O]0 1 1|=(1 0 O],
I 1 1][0 0 1][1l 0 1 0 0 1

but each of the direct summands in (14) is indecomposable by Theorem 2.1(b). The cancellation
theorem does not hold for bilinear forms over [: the matrices (14) are congruent but the matrices

mem. |7 g

are not congruent because they are canonical.

2.2. Canonical matrices for *congruence over a field of characteristic different from 2

Canonical matrices for congruence and *congruence over a field of characteristic different from
2 were obtained in [31, Theorem 3] up to classification of Hermitian forms. They were based on
the Frobenius canonical matrices for similarity. In this section we rephrase [31, Theorem 3] in
terms of an arbitrary set of canonical matrices for similarity. This flexibility is used in the proof
of Theorem 2.1. The same flexibility is used in [10] to construct simple canonical matrices for
congruence or *congruence over C, and in [34] to construct simple canonical matrices of pairs
(A, B) in which B is a nondegenerate Hermitian or skew-Hermitian form and A is an isometric
operator over an algebraically or real closed field or over real quaternions.
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In this section [ denotes a field of characteristic different from 2 with involution a — a, which
can be the identity. Thus, congruence is a special case of *congruence.
For each polynomial

fx) = apx" + ajx""!

++ + ay € Flx],
we define the polynomials
f@y=aox" +ax"~ 4+ an,

Y =a; @ + -+ arx +ao)  if ay # 0.
The following lemma was proved in [31, Lemma 6] (or see [34, Lemma 2.3]).

Lemma 2.2. Let T be a field with involution a — a, let p(x) = p" (x) be an irreducible polyno-
mial over [, and let r be the integer part of (deg p(x))/2. Consider the field

F(e) = FIx1/p(0)FIx], «:=x+ p(x)Fx], (15)
with involution
f)° = fe™). (16)

Then each element of F(k) on which the involution acts identically is uniquely representable in
the form q (), in which

qx) =arx" 4+ dax+ag+ax + -+ ax",  ay = ao, (17)
ao, ...ar € F; ifdeg p(x) = 2r is even, then

0 if the involution on [ is the identity,
ar = 1a if the involution on [ is not the identity and p(0) # 1,
—a, if the involution on [ is not the identity and p(0) = 1.

We say that a square matrix is indecomposable for similarity if it is not similar to a direct sum of
square matrices of smaller sizes. Denote by (’f any maximal set of nonsingular indecomposable
canonical matrices for similarity; this means that each nonsingular indecomposable matrix is
similar to exactly one matrix from Of.

For example, (r may consist of all nonsingular Frobenius blocks, i.e., the matrices

0 0 —cu

o= |1 : (18)
E 0 —c
0 1 —c

whose characteristic polynomials x¢(x) are powers of irreducible monic polynomials pg(x) # x:
Xo@) = pa(x)’ = x" +e1x" "+ o (19)

If [ is an algebraically closed field, then we may take ( to be all nonsingular Jordan blocks.
It suffices to construct *cosquare roots +/® (see page 197) only for @ € Or: then we can take

JW = S*JDS if ¥ =S ®S and VP exists (20)
since @ = A7*A implies ST! PS5 = (S*AS) *(S*AS).
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Existence conditions and an explicit form of ~/@ for Frobenius blocks @ over a field of
characteristic not 2 were established in [31, Theorem 7]; this result is presented in Lemma 2.3.
In the proof of Theorem 2.1, we take another set (/r and construct simpler *cosquare roots over
an algebraically or real closed field F.

The version of the following theorem given in [31, Theorem 3] considers the case in which O
consists of all nonsingular Frobenius blocks.

Theorem 2.2. (a) Let [ be a field of characteristic different from 2 with involution (which can
be the identity). Let Of be a maximal set of nonsingular indecomposable canonical matrices for
similarity over F. Every square matrix A over [ is *congruent to a direct sum of matrices of the
following types:

(1) Jn(0);
(ii) [®\1,,], in which ® € O is an n x n matrix such that @ does not exist (see Lemma 2.3);
and

(iii) f/aq (D), inwhich @ € O is such that J® exists and q(x) # 0 has the form (17) inwhichr
is the integer part of (deg po(x)) /2 and pg(x) is the irreducible divisor of the characteristic
polynomial of .

The summands are determined to the following extent:

Type (i) uniquely.

Type (ii) up to replacement of ® by the matrix ¥ € U that is similar to ®~* (i.e., whose
characteristic polynomial is x g (x)).

Type (iii) up to replacement of the whole group of summands

Vg1 (@) & - & VPgy(P)
with the same ® by a direct sum
V| (@) & - & g} (®)
such that each q(x) is a nonzero function of the form (17) and the Hermitian forms
q1()x7x1 + -+ g ()X X5,
q10)x7x1 + - -+ g ()X x;

are equivalent over the field (15) with involution (16).

(b) In particular, if F is an algebraically closed field of characteristic different from 2 with
the identity involution, then the summands of type (iii) can be taken equal to Jo. If Fis an
algebraically closed field with nonidentity involution, or a real closed field, then the summands
of type (iii) can be taken equal to £~/®. In these cases the summands are uniquely determined
by the matrix A.

Let
) =yox" +yx" by € FIxl, 10 # 0 # Y.
A vector (ay, ay, ..., ay) over [Fis said to be f-recurrent if n < m, or if

voar +viai41 + -+ Ymaiem =0, [=1,2,...,n—m

(by definition, it is not f-recurrent if m = 0). Thus, this vector is completely determined by any
fragment of length m.
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The following lemma was proved in [31, Theorem 7]; we give a more detailed proof.

Lemma 2.3. Let F be a field of characteristic not 2 with involution a — a (possibly, the iden-
tity). Let @ € F"*" be nonsingular and indecomposable for similarity; thus, its characteristic
polynomial is a power of some irreducible polynomial pg(x).
(a) /@ exists if and only if
pao(x) = pg(x), and 2D
if the involution on [ is the identity, also pp(x) # x + (—1)"'“. 22)
(b) If (21) and (22) are satisfied and ® is a nonsingular Frobenius block (18) with characteristic
polynomial
Xo () = pap()° = 2" + 1" e, (23)
then for </® one can take the Toeplitz matrix

ag a—i al—n
N aj a
Vo=laij1=| " T : (24)
. . . a_i
an—1 a ap
whose vector of entries (a1—p, Aa—p, . .., An—1) IS the xg-recurrent extension of the vector
Uz(alfm""ram)=(a709""07a) (25)
of length
n if nis even,
2m = {n +1 ifnisodd, (26)
in which

1 if n is even, except for the case
po(x) =x +cwithc" ' = —1,

xo(—=1) ifnisoddand pge(x) #+#x + 1,

e—e otherwise, with any fixed e #+ e € F.

@7

Proof. (a) Let @ € F"*" be nonsingular and indecomposable for similarity. We prove here that if
J/@ exists then the conditions (21) and (22) are satisfied; we prove the converse statement in (b).
Suppose A :=+/® exists. Since

A=A*D = P*AD, (28)
we have AGA~! = &~* and
Yo (x) = det(x] — &%) = det(x] — ® ') = det(—® (I — xd))
= det(—@ ) - x" - det(x ' — &) = x ) (x).

In the notation (19), ps(x)* = pj(x)*, which verifies (21).
It remains to prove (22). Because of (20), we may assume that @ is a nonsingular Frobenius
block (18) with characteristic polynomial (23). If a;; are the entries of A, then we define a; ,41 by
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AD =[a;j1P = [a; j1+1], any1,j by P*AP = &*[a; ;1] = [ai+1,j+1]; and we then use (28) to
obtain [a;;j] = [a;+1,j+1]. Hence the matrix entries depend only on the difference of the indices

and A has the form (24) with a;_; :=a;;. That (a1, a2y, ..., ay—1) is xg-recurrent follows
from:
[ai—j]1® = [a;—j1]. (29)
In view of

Xo(x) = x"+ex" o mix o

= Xg (x) =&, @nx" + Ea1x" T 4 F Ex + 1), (30)
the vector (dn—1, ..., a1—-p) is xe-recurrent, so [a;—;] = A = A*® = [a;_;41], and we have
@i—n,...,ay—1) = (@i=pn, ..., a0, 00, ..., a2—p). (31)

Since this vector is xg-recurrent, it is completely determined by the fragment

(al_m, ...,ao,é_l(),...,c_ll_m) (32)
of length 2m defined in (26).
Write
no(x)=pe(x)* ' =x'+bx'" b, boi=1. (33)

Suppose that (22) is not satisfied; i.e., the involution is the identity and pg(x) = x + (— nr-t
Let us prove that

the vector (32) is g (x)-recurrent. (34)

If n = 2m then po(x) = (x — )"~ 1 and (34) is obvious.
Let n = 2m — 1. Then the coefficients of x4(x) = (x + 1)" in (23) and pe(x) = (x + 1)*~!
in (33) are binomial coefficients:

() »=(1)

Standard identities for binomial coefficients ensure that
ci=bj+bi_1=bj+b,—;, 0<i<n.
Thus (34) follows since

2[boai—m + braz—m + -+ - + bp—2a3_m + bp_1a2—11
= (bo + O)ai—m + (b1 + by—1)az—m + (b2 + bp-2)az—nm
+-o+ (bp—1 +b1)az—pm + (04 bo)ai_p,
= Coa1—m + C1A2—m + -+ + Cpadi—py =0
in view of the yg-recurrence of (32). But then the ug-recurrent extension of (32) coincides with
(31) and we have
©,...,0,b9,...,b,))A=0

(see (33)), which contradicts our assumption that A is nonsingular.
(b) Let @ be a nonsingular Frobenius block (18) with characteristic polynomial (23) satisfying
(21) and (22).
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We first prove the nonsingularity of every Toeplitz matrix A :=[a;_ ;] whose vector of entries

(al—I’h az—ns ML) an—l) (35)
is yxg-recurrent (and so (29) holds) but is not wg-recurrent. If w:=(a,—1, ..., ag) is the last row
of A, then

w@" " wd L w (36)

are all the rows of A by (29). If they are linearly dependent, then wf (®) = 0 for some nonzero
polynomial f(x) of degree less than n. If pg(x)” is the greatest common divisor of f(x) and
Xo(x) = pe(x)*, then r < s and

po(x)" = f(x)g(x) + xa(x)h(x) for some g(x), h(x) € Flx].

Since wf (®) = 0 and wx¢(P) = 0, we have wpe(P)” = 0. Thus, wue(P) = 0. Because (36)
are the rows of A,

©,...,0,bp,...,b:,0,...,00A
:
l

=bow® ' + bywd T L bwd = wd (D) =0

foreachi =0,1,...,n —1t — 1. Hence, (35) is ug-recurrent, a contradiction.

Finally, we must show that (25) is xg-recurrent but not ug-recurrent (and so in view of (30) its
Xo-recurrent extension has the form (31), which ensures that A = [a; ;] = A*@ is nonsingular
and can be taken for v/®).

Suppose first thatn = 2m. Since (25) has length n, it suffices to verify thatitis not ug-recurrent.
This is obvious if deg uep(x) <n — 1. Let degug(x) =n — 1. Then ug(x) = (x + )" for
some ¢ and we need to show only that

a+by_1a=a+c""'a+o. (37)

If "1 2 —1 then by (27) a = 1 and so (37) holds. Let ¢"~! = —1.If the involution on F is the
identity then by (21) ¢ = %1 and so ¢ = —1, contrary to (22). Hence the involution is not the
identity, a = e — e, and (37) is satisfied.

Now suppose that n = 2m — 1. Since (25) has length n + 1, it suffices to verify that it is
Xo-recurrent, i.e., that

a+cpa =0. (38)
By (30), ¢y = ¢, . Because xa(x) = x4 (x) = &, 'x"xa(x 1), we have
Xo(—=1) = —cpxo(—1).

If pe(x) # x + 1 thena = xg(—1) # 0 and (38) holds. If pg(x) = x + 1 then the involution on
[ is not the identity by (22). Hence @ = e — e and (38) is satisfied. [

3. Reduction theorems for systems of forms and linear mappings
Classification problems for systems of forms and linear mappings can be formulated in terms

of representations of graphs with nonoriented, oriented, and doubly oriented («—) edges; the
notion of quiver representations was extended to such representations in [27]. In this section
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we give a brief summary of definitions and theorems about such representations; for the proofs
and a more detailed exposition we refer the reader to [31] and [34]. For simplicity, we consider
representations of graphs without doubly oriented edges. All vector spaces that we consider are
right vector spaces.

Let [ be a field or skew field with involution a + a (possibly, the identity). A sesquilinear
form on vector spaces U and V over [ is a mapping B: U x V — [ satisfying

B(ua + u'a’,v) = aB(u,v) + a’' B, v)
and
B(u,va +v'a") = B(u, v)a + B(u, v)d'

forall u,u’ € U, v,v € V, and a, a’ € F. This form is bilinear if the involution a — a is the
identity. If e1, ..., e, and fi, ..., f, are bases of U and V, then B(u, v) = [ul} B.s[v] s for all
u € Uandv € V,in which [u], and [v] s are the coordinate vectors and B,y :=[B(e;, f;)]is the
matrix of B. Its matrix in other bases is R* B, rS,1in which R and § are the transition matrices.

A pograph (partially ordered graph) is a graph in which every edge is nonoriented or oriented;
for example,

1
A o
B -~
Iz 2 3 Y
We suppose that the vertices are 1, 2, ..., n, and that there can be any number of edges between

any two vertices.

A representation .o/ of a pograph P over [ is given by assigning to each vertex i a vector space
o/ over I, to each arrow «o:i — j a linear mapping /,:.¢/; — ./ j, and to each nonoriented
edge A:i—j (i < j) asesquilinear form .«7;:.o/; x o/ ; — F.

For example, each representation of the pograph (39) is a system

Ay

A: Ax Ao
Ag

AMOAQ//’\AE}/_\A’Y
Au

of vector spaces .o/, .«/2, .2/3 over I, linear mappings .«7, ./ g, .o/ ,,, and forms .oZ : o/ 1 X o/ —
[F,VQ/M:%Q X &/2 g [F,&fv:ézfz X ,Qf3 — [F.

A morphism f = (f1, ..., fu): o — o/’ of representations .o7 and .7’ of P is a set of linear
mappings fi:.o/; — o/ that transform .o/ to .</’; this means that

fida =y fi, A5 (x, y) = A (fix, fiy)
for all arrows «:i —> j and nonoriented edges A:i —j (i < j). The composition of two mor-
phisms is a morphism. A morphism f:.«/ — ./’ is called an isomorphism and is denoted by
f:of S o/ if all f; are bijections. We write <7 ~ o7 if .o/ and .7’ are isomorphic. If ./ = 7',
then a morphism or isomorphism f:.o/ — ./’ is called an endomorphism or automorphism,
respectively.

The direct sum o/ ® .o/’ of representations .o/ and .o/’ of P is the representation consisting of the
vector spaces ./; @ ./}, the linear mappings ./, @ .o/,,, and the forms .o/, & <7} for all vertices
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i, arrows o, and nonoriented edges A. A representation .o/ is indecomposable if .of ~ % ® €
implies # = 0 or ¥ = 0, where 0 is the representation in which all vector spaces are 0.

The *dual space to a vector space V is the vector space V* of all mappings ¢ : V — [ that
are semilinear, this means that

pa +v'd) =a(pv) +ad'(pv), v,v eV,a,d eF.
We identify V with V** by identifying v € V with ¢ + @uv. For every linear mapping A :
U — V, we define the *adjoint mapping A*: V* — U™ setting
A*p:=@A for allp € V*.
For every pograph P, we construct the quiver P with an involution on the set of vertices and
an involution on the set of arrows as follows: we replace

e each vertex i of P by two vertices i and i*,
e each oriented edge «:i — j by two arrows «:i — j and o™: j* — i*,

e each nonoriented edge A: k—I (k < [) by two arrows «:] — k™ and a*: k — [*,

and set ™ :=u and o™ :=« for all vertices and arrows of the quiver P. For example,

| P o > e
/ W
1 u 1= 1*
w* (40)

Respectively, for each representation .# of P over [, we define the representation .# of P by
replacing

e cach vector space V in .# by the pair of spaces V and V*,
e cach linear mapping A: U — V by the pair of mutually *adjoint mappings A: U — V and
A*:V* - U*,
e each sesquilinear form B: V x U — [ by the pair of mutually *adjoint mappings
BiueUwr BueV* B“veVwr B(?eU*

For example, the following are representations of (40):

U U_p 5 U
A: AUB A: A TA*
C
v )e .
v o =7 (41)

For each representation .# of P we define an adjoint representation #/° of P consisting of
the vector spaces ./ := ./}, and the linear mappings ./, := ./}, for all vertices v and arrows
a of P. For example, the following are representations of the quiver P defined in (40):

Ui B B_Us Uy By By Ut

R T -
C1 3

‘/’1—>‘/2 ‘/2* V*l*

Co
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The second representation in (41) is selfadjoint: o/° = of.
In a similar way, for each morphism f:.# — " of representations of P we construct the
adjoint morphism

fo N — °, inwhich f°:= fi (42)

for all vertices i of P. An isomorphism f:.# S N of selfadjoint representations .# and A" is
called a congruence if f° = 1.

There is a natural one-to-one correspondence between isomorphisms of representations of a
pograph P and congruences of the corresponding selfadjoint representations of P: each isomor-

phism f: .o/ = B of representations of P corresponds to the congruence f: .o/ = 2, in which
fo=Ff [ :=f;* for each vertex i of P.

Thus, the problem of classifying representations of a pograph P up to isomorphism reduces to
the problem of classifying selfadjoint representations of the quiver P up to congruence.

Let us show how to solve the latter problem if we know a maximal set ind(P) of noniso-
morphic indecomposable representations of the quiver P (this means that every indecomposable
representation of P is isomorphic to exactly one representation from ind(P)). We first replace
each representation in ind(P) that is isomorphic to a selfadjoint representation by one that is
actually selfadjoint—i.e., has the form .o7, and denote the set of these .« by indo(P). Then in the
set ind(P)~\indo(P) we delete one representation from each pair {.#, L}, M° ~ ¥ + M, and
denote the set of remaining representations by ind; (P).

We obtain a new set ind(P) that we partition into 3 subsets:

. [ 4G E A A € ind; (P),
ind(P) = 7 " o/ €indo(P).

(43)

For each representation .7 of P, we define a representation .# " of P by setting ./ l+ =M ®
M} for all vertices i in P and

M 0 0 M
+ . a + . p*
My = |: 0 %Z*:|, M g = |:=/%;3 0 :| (44)

foralledgesa:i —> jand B:i—j (i < j).Notethatthe corresponding selfadjoint representation
M of P isisomorphic to .4 @ ./°.

For every representation .o/ of P and for every selfadjoint automorphism f = f°: .o/ S o,
we denote by .o/ ! the representation of P that is obtained from .o by replacing each form .o/ g
(Bii—j.i < j)by d}=clpf;.

Let ind(P) be partitioned as in (43), and let .7 € indp(P). By [31, Lemma 1], the set R of
noninvertible elements of the endomorphism ring End(.¢/) is an ideal, which coincides with the
radical of End(=/). Clearly, each nonzero element of the quotient ring T (o) :=End(2/)/R is
invertible; that is, T (.e7) is a field or skew field. We define the involution

(f+R):=f"+R (45)
on T(/).
For each nonzero a = a° € T(7), we fix a selfadjoint automorphism
fa=f° €a, anddefine /" =o' “6)

(we can take f, :=(f + f°)/2 forany f € a).
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For each Hermitian form
() =xja1x1 +---+x2a,x,, 0#a; =a € T(A),
we write
A =N DAY

The following two theorems are special cases of [31, Theorem 1] (or [34, Theorem 3.1]) and
[34, Theorem 3.2].

Theorem 3.1. Over afield or skew field F of characteristic different from 2 with involution a — a
(possibly, the identity), every representation of a pograph P is isomorphic to a direct sum

M- DM @ @AY

in which
Mi €indi(P), ;€ indy(P),

and o/ j # of jo if j # j'. This sum is determined by the original representation uniquely up to

permutation of summands and replacement of of 0 by of 1jp,- (x), in which ¢ j(x) and j(x) are
equivalent Hermitian forms over T (</ ;) with involution (45).

Theorem 3.1 implies the following generalization of the law of inertia for quadratic forms; its
proof is the same as the proof of [34, Theorem 3.2].

Theorem 3.2. Let | be either

(1) an algebraically closed field of characteristic different from 2 with the identity involution,
or
(ii) an algebraically closed field with nonidentity involution, or
(iii) a real closed field, or the skew field of quaternions over a real closed field.

Then every representation of a pograph P over T is isomorphic to a direct sum, uniquely deter-
mined up to permutation of summands, of representations of the types:

o if ol =~ o
+ 9
A {&/, A~ il o, @7

in which A/ € ind|(P) and </ € indy(P). In the respective cases (1)—(iii), the representations
(47) have the form

() .u*, o,
Gi) AT, o, oA,
o, if T(/) is an algebraically closed field with the identity
(i) 4+, involution or a skew field of quaternions with

involution different from quaternionic conjugation,
of, ", otherwise.

Remark 3.1. Theorem 3.2 is a special case of Theorem 2 in [31], which was formulated incor-
rectly in the case of quaternions. To correct it, remove “or the algebra of quaternions ...” in (a)
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and (b) and add “or the algebra of quaternions over a maximal ordered field” in c¢). The paper [32]
is based on the incorrect Theorem 2 in [31] and so the signs =+ of the sesquilinear forms in the
indecomposable direct summands in [32, Theorems 1-4] are incorrect. Correct canonical forms
are given for bilinear/sesquilinear forms in Theorem 2.1, for pairs of symmetric/skew-symmetric
matrices in [22,23], for selfadjoint operators in [15], and for isometries in [34].

4. Proof of Theorem 2.2

Each sesquilinear form defines a representation of the pograph

. M
P . 1 - & (48)
Its quiver is
[0
P: 1 =1
a*

We prove Theorem 2.2 using Theorem 3.1; to do this, we first identify in Lemma 4.1 the sets
ind; (P) and indo(P), and the orbit of .o/ for each o7 € indy(P).

Every representation of P or P over F is isomorphic to a representation in which all vector
spaces are [ @ - - - @ . From now on, we consider only such representations of P and P; they
can be given by a square matrix A:

o 'Q A (we write of = A) (49)
and, respectively, by rectangular matrices A and B of the same size:
A
AT = (wewrite .Z = (A, B)),
B

we omit the spaces F @ - - - @ F since they are completely determined by the sizes of the matrices.
The adjoint representation
B
MO Q .
e

is given by the matrix pair

(A, B)® = (B*, A"). (50)
A morphism of representations
A
M : o e
B
f Py 1
A/
M =
B/

is given by the matrix pair f = [Fy, F»]: .# — /' (for morphisms we use square brackets)
satisfying
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A =A'Fy, F>,B = B'Fj. on
Denote by 0,,,0 and Op,, the m x 0 and 0 x n matrices representing the linear mappings 0 — [F”

and " — 0. Thus, 0,,0 ® Ogy, is the m x n zero matrix.

Lemma 4.1. Let [ be a field or skew field of characteristic different from 2. Let Oy be a maximal
set of nonsingular indecomposable canonical matrices over [ for similarity. Let P be the pograph
(48). Then:

(a) The set ind(P) can be taken to be the set of all representations

(D, In), (Ju(0). In), (In, Jn(0)), (My. Ny). (N}, M) (52)
in which ® € Or is n-by-n and

1 0 0 0 1 0
M, = s Nypi= S

0 1 0 0 0 1

are (n — 1)-by-n for each natural number n.
(b) The set ind (P) can be taken to be the set of all representations

(@, 1), (Jn(0), 1),  (Mpu, Ny)

in which ® € Of is an n x n matrix such that ~® does not exist, and

@ is determined up to replacement by

the unique W € O that is similar to ®*. (53)
The corresponding representations of P are

(@, )" =[P\L], (54)
(My, N)T = D2y-1(0), (Jn(0), 1) ™ == J2,(0). (55)

(c) The set indy(P) can be taken to be the set of all representations

A =D, (V)" (56)
in which @ € O is such that ~/® exists. The corresponding representations of P are
Ay =0, A5 =-Jb, I =IF, (57)

in which f = [F, F*]: o/, S o 5 is a selfadjoint automorphism.

(d) Let T be a field and let o ;= (@, (Y ®)*) € indy (P), inwhich ® is a nonsingular matrix
over [ that is indecomposable for similarity (thus, its characteristic polynomial is a power
of some irreducible polynomial pg).

(i) The ring End(/ ) of endomorphisms of o/ 4 consists of the matrix pairs

(D), (@], fx) € Flx], (58)

and the involution on End(s/ ;) is

[£(®), f(@H° =[F(@7), f(@")].
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(1) T(Z¢) can be identified with the field

F(k) = Fx1/pe(0)F[x], «:=x + pa(x)Flx], (59)
with involution
f)° = f™h. (60)

Each element of T (.o/ $) on which this involution acts identically is uniquely represented
in the form q(x) for some nonzero function (17). The representations

/4 'Q%q@) ©61)

(see (46)) constitute the orbit of o7 ¢.

Proof. (a) Each representation of P can be decomposed into a direct sum of representations of
the form (52) using the reduction from [8, Section 1.8]. The uniqueness of this decomposition
follows from the Krull-Schmidt theorem [1, Chapter I, Theorcm 3.6]. A detailed proof is given
in [29], in which an analogous canonical form was constructed for a pair consisting of a linear
mapping and a pseudolinear mapping over a field or skew field with an automorphism ¢ and a
@-differentiation § (¢ = 1 and § = 0 in our case). A canonical form of matrix pencils over the
skew field of real quaternions is given in [22].

(b) and (¢) Let @, ¥ € O be n-by-n. In view of (50), (®, I,)° = (I,, ®*) ~ (&~ *, I,,) and so

(P, I,) ~(D,1,)° <= Wissimilar to §~*, (62)
Suppose (P, 1,) is isomorphic to a selfadjoint representation:
[Fi, F2): (@, 1,) > (B, B*). (63)
Define a selfadjoint representation (A, A*) by the congruence
[F !, F{1: (B, B*) = (A, A"). (64)
The composition of (63) and (64) is the isomorphism
<]
o T,
S~ N 7
In
I, F:=F}I»
A
o/\o
S~ 7
A*

By (51), A= F®and A* = F. Thus A = A*®. Taking A = +/®, we obtain
[y, (V)1 (D, 1) > (V @, (V)*).

This means that if (®, I,;) € ind(P) is isomorphic to a selfadjoint representation, then (@, I,)
is isomorphic to (56). Hence, the representations (56) comprise indg(P). Due to (62), we can
identify isomorphic representations in the set of remaining representations (@, /,) € ind(P) by
imposing the condition (53); we then obtain ind (P) from Lemma 4.1(b).

To verify (55), we prove that J,, (0) is permutationally similar to

(My, Nt =[M,\NT1  ifm=2n-1,
(Jn(0), In)+ = [Jn(o)\ln] if m=2n
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(see (44)). The units of J,,(0) are at the positions (1, 2), (2, 3), ...,(m — 1, m); so it suffices to
prove that there is a permutation f on {1, 2, ..., m} such that

(S, fF2), (f2), fB) ... (f(m = 1), f(m))

are the positions of the unit entries in [M,,\N,;r ] or [J,(0)\Z,]. This becomes clear if we arrange
the positions of the unit entries in the (2n — 1) x (2rn — 1) matrix

) . o
0 1
-
[M,\N,] = 0 1
1 0 0
0
0 1 0 |

as follows:
n,2n—-1),2n—1,n—1),n—1,2n-2),2n—-2,n—-2),....,2,n+1),(n+1, 1),

and the positions of the unit entries in the 2n x 2n matrix [J, (0)\ 1] as follows:
I,n+1),n+1,2),2,n+2),(n+2,3),..., 2n — 1,n), (n, 2n).

(d) Let F be a field. If @ is a square matrix over [ that is indecomposable for similarity, then
each matrix over [ that commutes with @ is a polynomial in @. To verify this, we may assume
that @ is an n x n Frobenius block (18). Then the vectors

e:=(1,0,...,00T, @e, ..., " e (65)
form a basis of . Let S € F"*" commute with @, let

Se =ape +a1Pe+ - +an_ 19" e, ag,...,an_1 €F,
andlet f(x):=ap+ajx +---+ ay—1x"! € F[x]. Then Se = f(®)e and

SPe = Se = G f(Pe = f(D)De, ..., SP" e = F(P)P" e

Since (65) is a basis, § = f (D).
(i) Let o7 5 :=(A, A*) € indg(P), in which @ is a nonsingular matrix over [F that is indecom-
posable for similarity and A := J@. Let g = [G1, G2] € End(+/ ;). Then (51) ensures that

GrA = AGq, GLA* = A*Gy, (66)
and so
PG| =A"FAG| = A *GrA =G1AT"A = G 9. (67)

Since G| commutes with @, we have G| = f(®) for some f(x) € F[x], and
Gy =AGIA™ = fF(APA™Y) = F(AAT*AA™Y = f(P7). (68)

Consequently, the ring End(2/ ;) of endomorphisms of .27 ; consists of the matrix pairs (58),
and the involution (42) has the form

[£(D), F(@ ] =[£(@H* f(@)*]=[F(@h), f(@")].
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(ii) The first equality in (68) ensures that each endomorphism [ (@), f (P~ *)] is completely
determined by f(®). Thus, the ring End(. ;) can be identified with

FI®] = {f(®)|f € Flx]} with involution f(®) — f(P 1),

which is isomorphic to F[x]/pe(x)*F[x], in which pg(x)* is the characteristic polynomial (19)
of @. Thus, the radical of the ring [F[®] is generated by pg(P) and T (.e7 ¢) can be identified with
the field (59) with involution f(x)° = f(x~").

According to Lemma 2.2, each element of the field (59) on which the involution acts identically
is uniquely representable in the form ¢ (x) for some nonzero function g (x) of the form (17). The
pair [¢(®), Ag (®)A~isan endomorphism of o7 5 due to (66). This endomorphism is selfadjoint
since the function (17) satisfies q(x_l) = g(x), and so

Ag(@)A™! = q(d7*) = G(*) = q(D)*.
Since distinct functions g (x) give distinct g (k) and
q(®P) € q(k) = q(P) + po(P)F[P],

in (46) we may take f, ) :=[q(®P), g(®)*] € End( ). By (57), the corresponding representa-
tions .o/ Z;(K) = ./ ‘g’(“ have the form (61) and constitute the orbit of .o«7. [

Proof of Theorem 2.2. (a) Each square matrix A gives the representation (49) of the pograph (48).
Theorem 3.1 ensures that each representation of (48) over a field F of characteristic different from
2 is isomorphic to a direct sum of representations of the form .#* and .«/%, where .4 € ind;(P),
o/ €indp(P),and0 # a = a° € T (/). Thisdirect sumis determined uniquely up to permutation
of summands and replacement of the whole group of summands /' & --- @ o/% with the
same .o/ by N R WA provided that the Hermitian forms ajx{x; + - - - + asxJxs and
bix7xy + -+ + bgxxs are equivalent over T(.</), which is a field by (59).

This proves (a) since we can use the sets ind; (P) and indg(P) from Lemma 4.1; the field
T (/) is isomorphic to (59), and the representations .# " and .o/¢ have the form (54), (55), and
61).

(b) Let [F be a real closed field and let @ € O be such that J/® exists. Let us identify T (</¢)
with the field (59). Then T (<7 ¢) is either [ or its algebraic closure. In the latter case, the involution
(60) on T (.7 ) is not the identity; otherwise k = k!, k> — 1 = 0, i.e., pg(x) = x> — 1, which
contradicts the irreducibility of pg(x).

Applying Theorem 3.2, we complete the proof of (b). [

5. Proof of Theorem 2.1
5.1. Proof of Theorem 2.1(a)

Let F be an algebraically closed field of characteristic different from 2 with the identity invo-
lution. Take O to be all nonsingular Jordan blocks.

The summands (i)—(iii) of Theorem 2.1(a) can be obtained from the summands (i)—(iii) of
Theorem 2.2 because for nonzero A, u € [

Jo () is similar to J, (n) "7 <= A =pu"!,

YI(h) exists < A = (—1)"+1,
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The first of these two equivalences is obvious.
Let us prove the second. By (21) and (22), if %/J, () exists then A = (=Dt Conversely,
let A = (—1)"*1. It suffices to prove the following useful statement:

the cosquares of I', and I', are similar to J, ((—1)"), (69)

which implies that +/J, ((—1)"+1) exists by (20) with </® = I', and ¥ = J,((—1)"t1).
To verify the first similarity in (69), compute

~1 |0 2D~
r,” =D 111

-1 -1
1 0
and
1 2 *
_ ) B
r;'r, = (=t : (70)
SO
0 1
To verify the second similarity in (69), there are two cases to consider: If n is even then
-1 1
1 | | 1 '
-1 -1 -1 -1 1
1 1 1 1
/N—1
() = -1 -1 -1
: 0
-1 -1
__] -
and
-1 £2 *
/=T 7/ -1
ry I, =
+2
0 -1
If n is odd then
[ +1 ... —1 1]
0 :
o -1 1
I, = 1 (71)
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and
1+l *
_ J R
rH='r, = . . (72)
S|
0 1

We have proved that all direct sums of matrices of the form (i)—(iii) are canonical matrices for
congruence. Let us prove the last statement of Theorem 2.1(a). If two nonsingular matrices over
[ are congruent then their cosquares are similar. The converse statement is correct too because
the cosquares of distinct canonical matrices for congruence have distinct Jordan canonical forms.

Due to (69), I', and I'), are congruent to VI, (=D,
5.2. Proof of Theorem 2.1(b)

Let [ be an algebraically closed field of characteristic 2.
According to [30], each square matrix over [ is congruent to a matrix of the form

B G\ 1 & €D I/ Jn; (1) & @D 1, (0), (73)
i j k

in which A; # 0, n; is odd, and J;;; (A;) # J,,j (1) for all i and j. This direct sum is determined
uniquely up to permutation of summands and replacement of any J; (A;) by Jp; (A h.

The matrix i/J,, (1) was constructed in [30, Lemma 1] for any odd n, but it is cumbersome.
Let us prove that I}, is congruent to /J,(1). Due to (71) and (72) (with —1 = 1), the cosquare of
I, is similar to J,(1). Let 2 be the canonical matrix of the form (73) for I'),. Then the cosquares
of X and I}, are similar, and so X = /J,(1).

5.3. Proof of Theorem 2.1(c)

Let F = P + Pi be an algebraically closed field with nonidentity involution represented in the
form (5). Take f to be all nonsingular Jordan blocks.

The summands (i)—(iii) of Theorem 2.1(c) can be obtained from the summands (i)—(iii) of
Theorem 2.2 because for nonzero A, u € F

Jo() is similar to J, (u) ™ &= A=p"",
JIn(X) exists <= |A| =1 (see (7). (74)

Let us prove (74) By (21), if «/J (1) exists for A =a + bi(a,b € P) thenx —A =x — A~ L.
Thus, . = A~ and 1 = Ak = a® 4+ b* = |A|%. Conversely, let |A| = 1. It suffices to show that the
*cosquare of i"t1/AT, is similar to J, (1) since then ~/J, (1) exists by (20) with ¥ = J,(1). To
verify this similarity, observe that for each unimodular A € F,

(i""‘l«/XFn)_*(i"H\/XFn) — )\.(—1)"+1F;1_Trn’ (75)

by (70), A(—l)"'HF;TF,, is similar to AJ, (1), which is similar to J,, (A).

It remains to prove that each of the matrices (9) can be used instead of (iii) in Theorem 2.1(c).
Let us show that if A € F is unimodular, then J, (1) is similar to the *cosquare of each of the
matrices
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VAL (D, WA, iTWATL, Vad,(). (76)

The first similarity is obvious. The second was proved in (75). The third can be proved analogously
since (I" ;)_TF ;l is similar to I} Tr » by (69). The fourth similarity holds since J,, (1) is similar to
the *cosquare of 4,,(1) as a consequence of the following useful property: for each u € F with

Jn ([L’lu) is similar to the * cosquare of 4, (u). )

To verify this assertion, compute

[ x in? Q
A () A () = a2 ﬁ-;] - An ()

ot 0
-1 -1
joan W u *

_ pi!

in"u

L 0 i~

withu:=g"'u+10.

Therefore, the *cosquare of each of the matrices (76) can replace J, (1) in Or, and so each of
the matrices (76) may be used as /@ in (iii) of Theorem 2.2(a). Thus, instead of & /J, (1) in (iii)
of Theorem 2.1(c) we may use any of the matrices (76) multiplied by £1; and hence any of the
matrices (9) except for A since each +/A can be represented in the form a + bi with a, b € P,
b > 0, and a + bi # —1. Let A be any nonsingular n x n matrix whose *cosquare is similar to
a Jordan block. Then A is *congruent to some matrix of type (iii), and hence A is *congruent
to uol’, for some unimodular pg. Thus, A is *congruent to uuol,, and so we may use nA

instead of =/ J, (1) in (iii).
5.4. Proof of Theorem 2.1(d)

Let PP be a real closed field. Let IK:=[P 4 Pi be the algebraic closure of P represented in the
form (3) with involution a + bi +— a — bi. By [9, Theorem 3.4.5], we may take (p to be all J,, (a)
with a € P, and all J,(1)” with A € K\ [P determined up to replacement by A.

Let a € PP. Reasoning as in the proof of Theorem 2.1(a), we conclude that

e J,(a) is similar to J,,(b)~T with b € P if and only if a = b1
e !/J,(a) exists if and only if a = (—1)"+1.

Thus, the summands (i)—(iii) of Theorem 2.2 give the summands (i)—(iii) in Theorem 2.1(d).
Due to (69), we may take (I',) """, or (I,)~TT", instead of J,((—1)"*!) in Op. Thus, we may
use &1, or 1", instead of £+/J,((—1)"*1) in Theorem 2.1(d).

Let i, s € (P 4+ Pi)~P. Then

Jo(W)¥ is similar to (J,()*) T < re{n ' a7,

VI ()P exists <= [A| = 1. (78)
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Let us prove (78). For @:=J, (M)P, we have
po(x) = (x —A)(x —2) = x> — (A + 1) + [A[%.

If /@ exists then |A| = 1 by (21) and (30).
Conversely, let [A| = 1. We can take

P
Va0F = (Vhm) (79)
Indeed, M := </ J,, (L) exists by (74); it suffices to prove
MHTM® = 1,007, (80)

If M is represented in the form M = A + Bi with A and B over P, then its realification M P (see
(8)) is permutationally similar to

A -—-B
woee[2 1]

Applying the same transformation of permutation similarity to the matrices of (80) gives

(Mp)™"Mp = J,(\)p. (81)
Since
|:A+Bi 0 Hl il}_[l ilHA —B]
0 A—Bil||I —il I —il||B A |
we have

Mp=S""M®dMS=SMoM)S
with

1 .
Si=—= [5 —1111] =57
Thus, (81) is represented in the form
(S*(M @& M)S)™*S*(M & M)S = §~" (J,(3) @ J,()S.
This equality is equivalent to the pair of equalities
MM =J,(x), MM = J,(0),

which are valid since M = </ J,;(A). This proves (79), which completes the proof of (78).
Thus, the summands (ii) and (iii) of Theorem 2.2 give the summands (ii’) and (iii’) in Theorem
2.1(d).
It remains to prove that each of the matrices (10) can be used instead of (iii’). Every unimodular
A =a+ bi € P+ Pi with b > 0 can be expressed in the form
e+1i

A= -, e€P, e>0. (82)
e—i

Due to (69), the *cosquares

e+ D)) e+i) Ty =M Ty, ((e+D) e+, =1T,)""T,
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are similar to AJ, ((—1)"*1), which is similar to (—1)"*!J, (). Theorem 2.2 ensures that the
matrix & +/J, (A)¥ in (iii’) can be replaced

by =+ ((e +i)I,)" and also by + ((e +i)I",)" with e > 0. (83)
For each square matrix A over P 4+ Pi we have

STAPSzzp, S:=diag(l, —-1,1,—1,...), (84)
and so —((e + i)', is congruent to

—e DT, =—(te=DIW)" = (—e+ D"

Therefore, the matrices (83) are congruent to ((¢ + i)I",)" and ((c + z’)l";1)[FD with 0 # ¢ € P and
lc] = e.

Let us show that the summands (iii") can be also replaced by 4, (c + i) with 0 # ¢ € P. By
(77), the *cosquare of 4, (e + i) with e > 0 is similar to J, (1), in which A is defined by (82).
Reasoning as in the proof of (80), we find that the cosquare of 4, (e + )" is similar to J, (A)".
Hence, +4,,(e + i)¥ with e > 0 can be used instead of (iii’). Due to (84), the matrix — A4, (e + i)
is congruent to

—QP .
—A,(e+i) = A,(—e+ Z)P.

5.5. Proof of Theorem 2.1(e)

Lemma 5.1. Let H be the skew field of quaternions over a real closed field P. Let Oy be a
maximal set of nonsingular indecomposable canonical matrices over H for similarity.

(a) Each square matrix over H is *congruent to a direct sum, determined uniquely up to
permutation of summands, of matrices of the form:
(1) Jx(0).
(i) (@, I,)* = [®\1,,], in which ® € Oy is an n x n matrix such that J® does not exist,
@ is determined up to replacement by the unique W € Og that is similar to ®*.

(iii) eq><‘/5, in which @ € Oy is such that J® exists; ep =1 zfﬁ is *congruent to —J®
and ey = £1 otherwise. This means thatep = 1 ifand only if T(of ¢) is an algebraically
closed field with the identity involution or T(.</¢) is a skew field of quaternions with
involution different from quaternionic conjugation (1).

(b) Ifep = 1 and P is similar to 'V, then ey = 1.

Proof. (a) Theorem 3.2 ensures that any given representation of any pograph P over H decom-
poses uniquely, up to isomorphism of summands, into a direct sum of indecomposable representa-
tions. Hence the problem of classifying representations of P reduces to the problem of classifying
indecomposable representations. By Theorem 3.2 and Lemma 4.1, the matrices (i)—(iii) form a
maximal set of nonisomorphic indecomposable representations of the pograph (48).

(b) On the contrary, assume that ey = £1. Then ¥ and — /¥ have the same canonical form
J/®, a contradiction. [J

Let P be a real closed field and let H be the skew field of P-quaternions with quaternionic
conjugation (1) or quaternionic semiconjugation (2). These involutions act as complex conjugation
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on the algebraically closed subfield IK:=P + Pi. By [14, Section 3, _§12], we can take (O to be
all J,(A), in which A € K and A is determined up to replacement by A. For any nonzero u € K,

the matrix J;, (u) ™™ is similar to J,, ([Fl). Since ,11_1 is determined up to replacement by u_l,
1

Ju(3) is similar to J, (u) " <=1 e (! i)
Let us prove that for a nonzero A € K
C/T()»)exists — A =1.
If &/J,(A) exists then by (21) x —A =x — A~ ! and so |A| = 1. Conversely, let |A| = 1. In
view of (70), the *cosquare of A:=/A(—1)"*+1T, is

1 2 *
_ _ 1
@:=A"*A = AF, F=()"rTr, = , (85)
S
0 1

and so @ is similar to J;,,(1). Thus, </ J, (1) exists by (20) with Jo = A.

Lemma 5.1(a) ensures the summands (i)—(iii) in Theorem 2.1(e); the coefficient ¢ in (iii) is
defined in Lemma 5.1(a). Let us prove that ¢ can be calculated by (11). By Lemma 5.1(b) and
since @ in (85) is similar to J,, (1), we have ¢ = ¢4, so it suffices to prove (11) for 4.

Two matrices G1, G2 € H"*" give an endomorphism [G1, G2] of o7, = (A, A¥) if and only
if they satisfy (66). By (67), the equalities (66) imply

G 1P = &G. (86)
Case A #+ *1. Represent G in the form U + Vj with U, V € IK"*". Then (86) implies two
equalities
Ud = U, Voj=dVj. (87)
By the second equality and (85), A\VF = AFV,
(A—=MNV =MF =1V —XV(F = 1I).

Thus V = 0 since A # A and F — I is nilpotent upper triangular. By the first equality in (87)
(which is over the field K), G| = U = f(AF) = f(®) for some f € K[x]; see the beginning of
the proof of Lemma 4.1(d). Since A is over [, the identities (66) imply (68).

Because G, = AG A~ the homomorphism [G1, G2] € End(+ ) is completely determined
by G| = f(®). The matrix @ = AF is upper triangular, so the mapping f(®) — f (1) on K[P]
defines an endomorphism of rings End(«/ ;) — [K; its kernel is the radical of End(=/ ;). Hence
T (7 ¢) can be identified with IK. Using (50), we see that the involution on T (.7 ¢) is induced by
the mapping G| — G of the form

FOF) > f(AF)™* = f(AF)7h.
Therefore, the involution is
fW— foH=FfR) =70

and coincides with the involution a + bi +— a — bi on K. The statement (iii) in Lemma 5.1(a)
now implies ¢¢ = %1; this proves (11) in the case A # =+1.
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Case A = £1. Then

A=Ay, = {.F” if 2 = (=", (88)

ir, ifx=(D"
Define

v

h:=a+bi —cj—dk foreachh=a+bi+cj+dkeH,
f(x) = Zlvzlxl for each f(x) = Zhlxl € Hix].
] I

Because A = %1 and by (86), G has the form

a a2 an

G = ai , ai,...,ap € H.
az
0 al

Thus, G| = f(®) for some polynomial f(x) € H[x]. 5

Using the first equality in (66), the identity i f (x) = f(ix), and (88), we obtain
[APA™H) = f(@7) if = (D",

FAPA™Y = F(@ %) if A= (=1)".

Since the homomorphism [G1, G3] is completely determined by G| = f(®) and @ has the
upper triangular form (85) with A = £1, we conclude that the mapping f(®) — f () defines an
endomorphism of rings End(./ ;) — H}; its kernel is the radical of End(.27 ;). Hence T (.27 ¢) can
be identified with H. The involution on T (.« ) is induced by the mapping G| > G7; i.e., by
f@7h ifa= (=D
f@™h ifa= (=D,

Gy =AG1A™ = Af(@)A~! = {

f(@)l—>{

in which the involution 4 — & on F is either quaternionic conjugation (1) or quaternionic semi-
conjugation (2), and i +— h denotes the other involution (2) or (1). Thus the involution on T (.«7 ¢)
ish> hifx=(=1)"""andis h — hifx= (=D". Due to (iii) in Lemma 5.1(a), this proves
(11) in the case A = %1.

It remains to prove that the matrices (12) and (13) can be used instead of (iii) in Theorem
2.1(e).

Let us prove this statement for the first matrix in (12). For each unimodular A € [, the *cosquare
(85) of A = \/A(—1)"t1I, is similar to J, (L), so we can replace J,(A) by @ in () and conclude
by Lemma 5.1(a) that ¢ A can be used instead of (iii) in Theorem 2.1(e).

First, let the involution on H be quaternionic conjugation. By (11) the matrix €A is

either il',, or = ul’,  with pw:=vA(=1)"+! £, (89)
Since A is determined up to replacement by A and /A(—1)"+! % i, we can take A(—1)"T! =
u + vi # —1withv > 0, and obtain i = /A(—=1)"*+! = g + bi witha > Oand b > 0.Replacing
the matrices —ul', = (—a — bi)I', in (89) by the *congruent matrices jo(—a—bi)l,-j=
(—a + bi)I',, we get the first matrix in (12).

Now let the involution be quaternionic semiconjugation. By (11) the matrix €A is

either I',, or & ul’, with p:=vA(=1)"+ £ 1. (90)
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In (90) we can take A(—1)"T! = u + vi # 1 with v > 0. Then u = /A(—1)"*+! = g + bi with
a > 0and b > 0. Replacing the matrices —ulI', = (—a — bi)I', in (90) by the *congruent matri-
ces ]_ (—a—b))Iy-j=(a—bi)l, (f = j since the involution is quaternionic semiconjuga-
tion), we get the first matrix in (12).

The same reasoning applies to the second matrix in (12).

Let us prove that the matrix (13) can be used instead of (iii) in Theorem 2.1(e). By (77),
Ju (A) with aunimodular A € K is similar to the *cosquare of VA4, with 4, := 4, (1). Therefore,
e~/ Jn (1) in (iii) can be replaced by /A,

Suppose that either the involution is quaternionic conjugation and n is odd, or that the involution
is quaternionic semiconjugation and 7 is even. Then j = (—1)"j. By (11),e = 1 if A = —1 and
e ==£1if A # —1. So each £+/A4, is either i 4,, or =114, in which p:=~/A and A = u + vi #
—1. We can suppose that v > 0 since A is determined up to replacement by A. Because u is
represented in the form a + bi with a > 0 and b > 0, the equality

SndnSp = (=1)" 4y, Sp=diag(j, —Jj, j, —J,-- ),
shows that we can replace —u4, = (—a — bi)4, by the *congruent matrix
Si(—a —bi)4,Sy = (=1)"S,(—a — bi) 4,8, = (—a + bi)4,

and obtain the matrix (13).

Now suppose that the involution is quaternionic conjugation and n be even, or that the involution
is quaternionic semiconjugation and 7 is odd. Then j = (—1)"*!j. By (11), each e+/A 4,, is either
A, or £u4,, in which p:=+/A and A = u + vi # 1 with v > 0. Since u is represented in the
form a + bi with a > 0 and b > 0, we can replace —u 4, = (—a — bi)4, by the *congruent
matrix

S*(—a — bi) A, Sy = (=1)" S, (—a — bi) 4, S, = (a — bi) A,

and obtain the matrix (13).
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