

Available online at www.sciencedirect.com

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 341 (2008) 689-693

www.elsevier.com/locate/jmaa

The $w_0(p)-w_0(q)$ mapping problem for factorable matrices II

P. Spanos, B. Thorpe*

The University of Birmingham, Department of Mathematics, Edgbaston, Birmingham B15 2TT, UK

Received 29 November 2006

Available online 7 November 2007

Submitted by D. Waterman

Abstract

We find necessary and sufficient conditions for the class of factorable matrices M(a, b) to map $w_0(p)$ into $w_0(q)$ for $0 < q < p \leq 1$.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Mapping theorem; Sequence spaces

1. Introduction

In this paper we complete our investigation of the $w_0(p)-w_0(q)$ mapping problem for factorable matrices started in [5], by examining the remaining case when $0 < q < p \leq 1$, which seems to be the most difficult one. We are indebted to K. Grosse-Erdmann for his suggestion of the following approach.

2. Preliminaries

We shall use the conventions found in [5]. In particular, we let ϕ denote the space of finitely non-zero sequences and we define *r* by the equation 1/r = 1/q - 1/p. If $\mathbf{a} = (a_n)_{n \ge 1}$ and $\mathbf{b} = (b_n)_{n \ge 1}$ are taken to be non-negative sequences, the factorable matrix $M := M(\mathbf{a}, \mathbf{b}) = (m_{nk})$ is defined as follows:

$$m_{nk} = \begin{cases} a_n b_k & \text{if } k = 1, \dots, n, \\ 0 & \text{if } k > n; \end{cases}$$

and without loss of generality, we can assume that \boldsymbol{b} has at least one non-zero coordinate.

For 0 , <math>w(p) will denote the space of strongly Cesàro summable sequences of order 1 and index p; i.e. the space of sequences x such that there is a number L depending on x, satisfying

$$\sum_{k=1}^{n} |x_k - L|^p = o(n) \quad \text{as } n \to \infty.$$

* Corresponding author.

0022-247X/\$ – see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.10.060

E-mail addresses: pispanos@for.mat.bham.ac.uk (P. Spanos), b.thorpe@bham.ac.uk (B. Thorpe).

A partial summation shows that we have the equivalent definition

$$\sum_{k=2^{n}}^{2^{n+1}-1} |x_k - L|^p = o(2^n) \text{ as } n \to \infty,$$

. .

and this leads to the reasonable interpretation of $w(\infty)$ as c, the space of convergent sequences. For L = 0, we get the space $w_0(p)$. Similarly, we take $w_0(\infty) = c_0$, the space of convergent to zero sequences, equipped with the sup norm. If $p \ge 1$, w(p) is a *BK*-space (i.e. a Banach sequence space with continuous coordinate mappings $\mathbf{x} \mapsto x_k$) when equipped with the norm

$$\sup_{n\geq 0} \left(2^{-n} \sum_{\nu\in D_n} |x_{\nu}|^p \right)^{1/p},$$

where henceforth we shall write $D_n := [2^n, 2^{n+1}) \cap \mathbb{N}_0$. If 0 , it is a complete*p*-normed*K*-space with*p*-norm

$$\|\mathbf{x}\|_{w_0(p)} = \sup_{n \ge 0} \left(2^{-n} \sum_{\nu \in D_n} |x_{\nu}|^p \right).$$

Note that when $q \leq p$, we have $w_0(q) \supset w_0(p)$, so that $w_0(p)$ is also a q-normed space under the q-norm $\|.\|_{w_0(q)}$.

We shall denote the positive orthant of w(p) by $w(p)_+$ and now describe how we simplify our problem as per the discussion of [5, p. 7].

Let $0 < q < p \le 1$. We can assume without loss of generality that $x \in w_0(p)_+$, since $(x_n)_{n \ge 1} \in w_0(p)$ if and only if $(|x_n|)_{n \ge 1} \in w_0(p)$. We need to find necessary and sufficient conditions in order that

$$\boldsymbol{x} \in w_0(p)_+ \quad \Rightarrow \quad \sum_{\mu \in D_n} a_{\mu}^q \left(\sum_{k=1}^{2^n - 1} b_k x_k + \sum_{k=2^n}^{\mu} b_k x_k \right)^q = \mathrm{o}(2^n).$$

This holds if and only if

$$\mathbf{x} \in w_0(p)_+ \quad \Rightarrow \quad \sum_{\mu \in D_n} a_\mu^q \left(\sum_{k=1}^{2^n - 1} b_k x_k \right)^q = \mathrm{o}(2^n) \tag{1}$$

and

$$\mathbf{x} \in w_0(p)_+ \quad \Rightarrow \quad \sum_{\mu \in D_n} a^q_{\mu} \left(\sum_{k=2^n}^{\mu} b_k x_k \right)^q = \mathrm{o}(2^n)$$

both hold. Our problem thus splits into examining each of these cases separately.

Set for each $n \in \mathbb{N}$,

$$a_{nk} = \begin{cases} (2^{-n} \sum_{\mu \in D_n} a_{\mu}^q)^{1/q} b_k & \text{if } k = 1, 2, \dots, 2^n - 1, \\ 0 & \text{otherwise.} \end{cases}$$

Since $0 , we can apply Theorem 7(a) of Maddox [3, p. 172]. In this case, (1) becomes equivalent to <math>a \in w_0(q)$ and

$$\left(2^{-n}\sum_{k\in D_n}a_k^q\right)^{1/q}\sum_{k=0}^{n-1}2^{k/p}\max_{j\in D_k}b_j = O(1).$$
(2)

To complete the solution, it therefore suffices to find necessary and sufficient conditions for

$$\boldsymbol{x} \in w_0(p)_+ \quad \Rightarrow \quad \sum_{\mu \in D_n} a_{\mu}^q \left(\sum_{k=2^n}^{\mu} b_k x_k \right)^q = \mathrm{o}(2^n). \tag{3}$$

We show in Theorem 1 that

$$2^{-n} \sum_{j \in D_n} \left[\left(\sum_{k=j}^{2^{n+1}-1} a_k^q \right)^{1/p} \max_{2^n \leqslant k \leqslant j} b_k \right]^r a_j^q = \mathcal{O}(1)$$
(4)

is the "truncated" part's desired condition.

3. Main result

Theorem 1. Let $0 < q < p \leq 1$. Then M(a, b) maps $w_0(p)$ into $w_0(q)$ if and only $a \in w_0(q)$ and conditions (2) and (4) hold.

Proof. We first note that, since all the terms are non-negative, (3) can be re-written as

$$\sum_{k \in D_n} (k^{-1/p} x_k)^p = o(1) \quad \Rightarrow \quad \sum_{\mu \in D_n} a_{\mu}^q \left(\sum_{k=2^n}^{\mu} (k^{-1/q} b_k) x_k \right)^q = o(1),$$

and this is equivalent to

$$\sum_{k \in D_n} x_k^p = \mathrm{o}(1) \quad \Rightarrow \quad \sum_{\mu \in D_n} a_\mu^q \left(\sum_{k=2^n}^{\mu} k^{-1/r} b_k x_k \right)^q = \mathrm{o}(1). \tag{5}$$

If we consider the complete *p*-normed *K*-space

$$c_0(2^n, p) = \left\{ \mathbf{x} = (x_k)_{k \ge 1} \colon \sum_{k \in D_n} |x_k|^p \to 0 \text{ as } n \to \infty \right\},$$

which has *p*-norm $||\mathbf{x}|| = \sup_{n \ge 0} \sum_{k \in D_n} |x_k|^p$ (cf. [2]), then we seek necessary and sufficient conditions on the matrix $B = (b_{\mu k}) : c_0(2^n, p) \to c_0(2^n, q)$, where, for $n \in \mathbb{N}_0$ and $\mu \in D_n$,

$$b_{\mu k} = \begin{cases} a_{\mu} k^{-1/r} b_k & \text{for } k = 2^n, \dots, \mu, \\ 0 & \text{otherwise.} \end{cases}$$

Consider the vector-valued sequence space $c_0(\ell^p)$, where

$$c_0(\ell^p) = \left\{ X = (\mathbf{x}_n)_{n \ge 0} : \, \mathbf{x}_n = (x_{nk})_{k \ge 1} \in \ell^p \text{ and } \|\mathbf{x}_n\|_{\ell^p} = \sum_{k=1}^{\infty} |x_{nk}|^p \to 0 \text{ as } n \to \infty \right\}$$

with *p*-norm $||X|| = \sup_{n \ge 0} \sum_{k=1}^{\infty} |x_{nk}|^p$, under which it is complete. We can embed $c_0(2^n, p)$ as a linear subspace of $c_0(\ell^p)$ by mapping $\mathbf{x} = (x_k)_{k \ge 1} \mapsto \mathbf{X} = (\mathbf{x}_n)_{n \ge 0}$, where $\mathbf{x}_n = (x_{nk})_{k \ge 1}$ and

$$x_{nk} = \begin{cases} x_k & \text{if } k \in D_n, \\ 0 & \text{otherwise.} \end{cases}$$

Since ||X|| = ||x||, this embedding is an isometry and if E_p denotes the image of $c_0(2^n, p)$ in $c_0(\ell^p)$, then E_p is a closed linear subspace of $c_0(\ell^p)$.

Now we consider an infinite diagonal matrix of linear operators $A = \text{diag}\{A_n\}$, where $A_n = (a_{\mu k}^{(n)}) : \ell^p \to \ell^q$ (note that if the general infinite matrix of operators is given by $A = (A_{nk})$, then in this case its diagonal is the matrix $(A_{n,n+1})$). It follows from [4, p. 372] that $A : c_0(\ell^p) \to c_0(\ell^q)$ if and only if $\sup_{n \ge 0} ||A_n||_{p,q} < \infty$, where $||A_n||_{p,q} = \sup_{\|\mathbf{x}\|_p = 1} \sum_{\mu=1}^{\infty} |\sum_{k=1}^{\infty} a_{\mu k}^{(n)} x_k|^q$.

In the special case that A_n is defined so that if $\mu \notin D_n$, then $a_{\mu k}^{(n)} = 0$, for all $k \ge 1$, and if $\mu \in D_n$, then

$$a_{\mu k}^{(n)} = \begin{cases} a_{\mu} k^{-1/r} b_k & \text{for } k = 2^n, \dots, \mu, \\ 0 & \text{otherwise,} \end{cases}$$

we see that

$$\|A_n\|_{p,q} = \sup_{\|\mathbf{x}\|_p = 1} \sum_{\mu \in D_n} \left| a_\mu \sum_{k=2^n}^{\mu} k^{-1/r} b_k x_k \right|^q = \sup_{\|\mathbf{x}\|_{\ell^p(D_n)} = 1} \sum_{\mu \in D_n} \left| a_\mu \sum_{k=2^n}^{\mu} k^{-1/r} b_k x_k \right|^q = \|B'\|_{\ell^p(D_n),\ell^q(D_n)}$$

where B' is the restriction of the matrix B above to the finite dimensional subspace $\{x = (0, ..., x_{2^n}, ..., x_{2^{n+1}-1}, 0, ...\}$: $x_i \in \mathbb{R}\}$. Moreover, for this choice, $A : c_0(\ell^p) \to c_0(\ell^q)$ if and only if $A : E_p \to E_q$ and this is equivalent to the map $B : c_0(2^n, p) \to c_0(2^n, q)$. Thus the necessary and sufficient condition for (5) to hold is

$$\sup_{n \ge 0} \|B'\|_{\ell^p(D_n),\ell^q(D_n)} < \infty.$$
(6)

We note that

$$\sup_{n \ge 0} \sum_{\mu \in D_n} a_{\mu}^q \left(\sum_{k=\mu}^{2^{n+1}-1} a_k^q \right)^{r/p} \max_{2^n \leqslant \nu \leqslant \mu} \left(\frac{b_{\nu}^r}{\nu} \right) < \infty$$
(7)

is equivalent to (4).

In order to prove the necessity and sufficiency of (4), it is enough to show that, for any factorable matrix M(a, b), we have

$$\|M(\boldsymbol{a},\boldsymbol{b})\|_{\ell^{p},\ell^{q}}^{1/q} \asymp \left[\sum_{n=1}^{\infty} a_{n}^{q} \left(\sum_{k=n}^{\infty} a_{k}^{q}\right)^{r/p} \max_{1 \leqslant k \leqslant n} b_{k}^{r}\right]^{1/r},\tag{8}$$

where $M \simeq N$ means that there are positive constants k, K independent of a and b such that $kM \leq N \leq KM$; and then use (6) and (7).

We first prove that (8) holds with the extra assumption that $a \notin \phi$. To see this, by Observation 9.1 of [1, p. 50],

$$\|M(a, b)\|_{\ell^{p}, \ell^{q}} = \|b\|_{\mathcal{M}(\ell^{p}, c(a, 1, q))} = \sup_{\|x\|_{p}=1} \|bx\|_{c(a, 1, q)},$$

where $\mathcal{M}(\ell^p, c(a, 1, q)) = \{z: zx \in c(a, 1, q), \forall x \in \ell^p\}$ denotes the set of multipliers from ℓ^p to c(a, 1, q); and since $a \notin \phi$,

$$c(a, 1, q) = \left\{ \mathbf{y}: \|\mathbf{y}\|_{c(a, 1, q)} = \sum_{n=1}^{\infty} a_n^q \left(\sum_{k=1}^n |y_k| \right)^q < \infty \right\}$$

is a complete q-normed K-space (see [1, p. 26]). By Theorem 7.7 of [1]

$$\mathcal{M}(\ell^p, c(\boldsymbol{a}, 1, q)) = c(\boldsymbol{h}, \infty, r),$$

where

$$c(\boldsymbol{h}, \infty, r) = \left\{ \boldsymbol{y}: \|\boldsymbol{y}\|_{c(\boldsymbol{h}, \infty, r)} = \left[\sum_{n=1}^{\infty} h_n \max_{1 \leq k \leq n} |y_k|^r \right]^{\min(1, 1/r)} < \infty \right\}$$

and $h_n = a_n^q (\sum_{k=n}^{\infty} a_k^q)^{r/p}$, so that $c(\mathbf{h}, \infty, r)$ is an *r*-normed space if 0 < r < 1 and a normed space if $r \ge 1$. We now use a slight extension of Theorem 15 of [6, p. 64].

Proposition 2. Let X be a complete p-normed K-space with $\phi \subset X$ and Y be a complete q-normed K-space. Let $Z = \mathcal{M}(X, Y) = \{z: zx \in Y, \forall x \in X\}$. Then Z is a complete q-normed K-space under the q-norm $||z|| = \sup_{\|x\|_X = 1} ||zx\|_Y$.

Proof. This follows exactly as in [6] making the necessary changes to take into account that we have complete *p*-normed and *q*-normed spaces instead of Banach spaces. For example, the set of continuous linear maps from *X* to *Y*, B(X, Y) is a complete *q*-normed space under the *q*-norm $||T|| = \sup_{||x||_X=1} ||Tx||_Y$ and since *X* is a *p*-normed *K*-space, for each $n \in \mathbb{N}$ the mapping $x \mapsto x_n$ is continuous, so there exists $K_n \in \mathbb{R}$ such that $|x_n| \leq K_n ||x||_X^{1/p}$. \Box

By the remarks before Proposition 2 we see that $c(h, \infty, r)$ has two topologies defined on it: one topology generated by the *q*-norm on the multiplier space and the other generated by the *r*-norm or norm on $c(h, \infty, r)$. Under each of

692

these topologies, $c(\mathbf{h}, \infty, r)$ is a complete metrisable *K*-space. Since the topology on such spaces is unique (see Corollary 4 of [6, p. 56] noting that the Closed Graph Theorem also holds between complete metrisable spaces) these topologies must be the same. Hence, the identity map $I : \mathcal{M}(\ell^p, c(\mathbf{a}, 1, q)) \to c(\mathbf{h}, \infty, r)$ and its inverse are both continuous, so that

$$\|Ib\|_{c(h,\infty,r)} = \|b\|_{c(h,\infty,r)} \leqslant \|I\| \|b\|_{\mathcal{M}(\ell^{p},c(a,1,q))}^{\min(1/q,r/q)} \text{ and} \\ \|I^{-1}b\|_{\mathcal{M}(\ell^{p},c(a,1,q))} = \|b\|_{\mathcal{M}(\ell^{p},c(a,1,q))} \leqslant \|I^{-1}\| \|b\|_{c(h,\infty,r)}^{q/\min(1,r)}.$$

Hence (8) holds in the case that $\mathbf{a} \notin \phi$, since $\frac{\min(1,1/r)}{\min(1,r)} = 1/r$.

In the case that $a \in \phi$, although we can prove directly that (8) holds, since we have already shown on [5, p. 4] that M(a, b) maps $w_0(p)$ into $w_0(q)$ for arbitrary sequences b, and it is clear that the conditions (2) and (4) hold for arbitrary b, the result is proved. \Box

In conclusion we add that the methods used in this paper can also be used for the cases covered in [5] and so give an alternative approach to the main results proved there.

References

- K. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Math., vol. 1679, Springer-Verlag, 1998.
- [2] K. Grosse-Erdmann, Strong weighted mean summability and Kuttner's theorem, J. London Math. Soc. (2) 59 (3) (1999) 987–1002.
- [3] I.J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
- [4] M.S. Ramanujan, Generalised Kojima-Toeplitz matrices in certain linear topological spaces, Math. Ann. 159 (1965) 365-373.
- [5] P. Spanos, B. Thorpe, The $w_0(p)-w_0(q)$ mapping problem for factorable matrices I, J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007. 10.061.
- [6] A. Wilansky, Summability through Functional Analysis, Math. Stud., vol. 85, North-Holland, 1984.