Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

.';” Jou ”ugp
*s ScienceDirect %ﬁﬁ‘iﬁ?ﬂfﬁé
APPLICATIONS

J. Math. Anal. Appl. 341 (2008) 689-693

www.elsevier.com/locate/jmaa

The wo(p)—wp(g) mapping problem for factorable matrices II

P. Spanos, B. Thorpe *

The University of Birmingham, Department of Mathematics, Edgbaston, Birmingham B15 2TT, UK
Received 29 November 2006
Available online 7 November 2007
Submitted by D. Waterman

Abstract

We find necessary and sufficient conditions for the class of factorable matrices M (a, b) to map wq(p) into wo(g) for 0 < g <
p<l
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1. Introduction

In this paper we complete our investigation of the wo(p)—wo(g) mapping problem for factorable matrices started
in [5], by examining the remaining case when 0 < g < p < 1, which seems to be the most difficult one. We are
indebted to K. Grosse-Erdmann for his suggestion of the following approach.

2. Preliminaries

We shall use the conventions found in [5]. In particular, we let ¢ denote the space of finitely non-zero sequences
and we define r by the equation 1/r =1/g — 1/p. If a = (ay)s>1 and b = (b,), > are taken to be non-negative
sequences, the factorable matrix M := M (a, b) = (my) is defined as follows:

a,br ifk=1,...,n,
m =
nk 0 ifk > n;
and without loss of generality, we can assume that b has at least one non-zero coordinate.

For 0 < p < oo, w(p) will denote the space of strongly Cesaro summable sequences of order 1 and index p; i.e.
the space of sequences x such that there is a number L depending on x, satisfying

n
Z|xk —L|P=0(n) asn— oo.
k=1
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A partial summation shows that we have the equivalent definition
2n+1_1
Z lxk — LI? =0(2") asn— oo,
k=2n
and this leads to the reasonable interpretation of w(oo) as c, the space of convergent sequences. For L = 0, we get
the space wo(p). Similarly, we take wg(co) = ¢, the space of convergent to zero sequences, equipped with the sup

norm. If p > 1, w(p) is a BK-space (i.e. a Banach sequence space with continuous coordinate mappings x — xi)
when equipped with the norm

1/p
sup(z "y |xu|") :

n=0 veD,

where henceforth we shall write D,, := [2", 2"t NNy. If 0 < p < 1,itis acomplete p-normed K -space with p-norm

”x”wo(p) = sup (Z_n Z |xv|p>'

n=0 veD,

Note that when g < p, we have wo(q) D wo(p), so that wo(p) is also a g-normed space under the g-norm ||. |,y (g)-
We shall denote the positive orthant of w(p) by w(p)+ and now describe how we simplify our problem as per the
discussion of [5, p. 7].
Let 0 < g < p < 1. We can assume without loss of generality that x € wo(p)+, since (x,),>1 € wo(p) if and only
if (|x,)n>1 € wo(p). We need to find necessary and sufficient conditions in order that

21 q
xewy(p)+ = Z al ( Z brxi + Z bkxk) 2”)

nebD, k=2"
This holds if and only if
21 q
xewy(p)y = Z aZ( Z bkxk) =0(2") (1)
weDy k=1
and

" q
xewy(p)+ = Z aZ( Z bkxk> = 0(2”)

nebD, k=2"

both hold. Our problem thus splits into examining each of these cases separately.
Set foreachn € N,

= { Q7Y e, )by ifk=1,2,...,2" 1,
ok =
otherwise.

Since 0 < p < 1, we can apply Theorem 7(a) of Maddox [3, p. 172]. In this case, (1) becomes equivalent to @ € wo(q)
and

1/g n—1
— q k/ L
(2 "y ak) > 2 P;ré:gib, =0(1). )

keDy k=0

To complete the solution, it therefore suffices to find necessary and sufficient conditions for

xewo(p)y = ) af ( > bkxk> 0(2"). 3)

nebD, k=2"

We show in Theorem 1 that
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ontl_ 1/p r
27" a b =01 4
Z[( 2. %) . k} af=0() @

Jj€Dy k=j

is the “truncated” part’s desired condition.
3. Main result

Theorem 1. Let 0 < g < p < 1. Then M(a, b) maps wo(p) into wo(q) if and only a € wo(q) and conditions (2)
and (4) hold.

Proof. We first note that, since all the terms are non-negative, (3) can be re-written as

u q
Z (k_l/”xk)p =o(l) = Z “Z( Z (k_l/qbk)xk) =o(1),

keD, nebD, k=2"

and this is equivalent to

" q
Y oxl=o0() = Z%(Zk‘”’bmk) =o(1). )

keD, nebD, k=2n

If we consider the complete p-normed K -space

co(2",p) = {x = (Xpk>1: Z |x¢|P — O0asn — oo},
keD,

which has p-norm ||x|| = sup, > D ke D, Xk |? (cf. [2]), then we seek necessary and sufficient conditions on the matrix
B = (buk) 1 co(2", p) = co(2", q), where, for n € Ng and . € Dy,
b= {aukl/’bk fork=2",..., 1,
nk = .
otherwise.

Consider the vector-valued sequence space co(£7), where

o0
co(eP) = {X = (X0 Xn = (oui)kz1 € €7 and [[x,ler = Y Jxuk|” — O as n — oo}
k=1
with p-norm [|X|| = sup, >, Z,fil |xnx|?, under which it is complete. We can embed co (2", p) as a linear subspace
of co(£”) by mapping x = (xk)k>1+> X = (Xn)n>0, Where x, = (Xni)k>1 and

{ xx ifke Dy,

Xnk = .

0  otherwise.

Since || X|| = |lx||, this embedding is an isometry and if E, denotes the image of co(2", p) in co(¢”), then E, is a
closed linear subspace of co(£7).

Now we consider an infinite diagonal matrix of linear operators A = diag{A,}, where A, = (af:;()) P — p4
(note that if the general infinite matrix of operators is given by A = (A,x), then in this case its diagonal is the
matrix (Ap n+1)). It follows from [4, p. 372] that A : co(€7) — co(£7) if and only if sup, > [|Anllpq < 00, where

1 Aull g = SUPyey =1 Xy 2021 ay xil .
In the special case that A, is defined so that if u ¢ D,,, then afinlg =0, forall k > 1, and if i € D,,, then
o™ = {aukl/rbk fork=2",..., u,
e 0 otherwise,

we see that
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" q " q
—1 -1 /
1Anllpg= sup > lax Y kVbexe| =  sup Y lay > kT bexi| = 1B ller(p,).e0 (0,
Ixlp=1yep,|  k=2n Ixller =1 yep,|  k=2n
where B’ is the restriction of the matrix B above to the finite dimensional subspace {x = (0, ..., xp, ..., Xout1_,

0,...): x; € R}. Moreover, for this choice, A : co(£7) — co(£9) if and only if A : E, — E; and this is equivalent to
the map B : co(2", p) — co(2", q). Thus the necessary and sufficient condition for (5) to hold is
sup || B'[ler(p,),0a(D,) < 00 (6)
n>=0

We note that

DA | r/p b
sup al al max (—”) <00 (7)
is equivalent to (4).

In order to prove the necessity and sufficiency of (4), it is enough to show that, for any factorable matrix M (a, b),
we have

/ 1/
|M(a b)||]/q = OOE ay OOE al v max b ’ ®)
O epga =X n : x (max bl
=n

n=1
where M < N means that there are positive constants k, K independent of a and b such that kM < N < KM; and
then use (6) and (7).
We first prove that (8) holds with the extra assumption that a ¢ ¢. To see this, by Observation 9.1 of [1, p. 50],
[M@.b), o = 1Bl Mer.c@rgy = sup [16x]lc1.9)-
’ x| p=1

where M7, c(a, 1,q)) ={z: zx € c(a, 1,q), Yx € £P} denotes the set of multipliers from £7 to c(a, 1, q); and
since a ¢ ¢,

o] n q
cla,1,9)= {y: 13 llea.1.q) =Za2<2|yk|) < oo}
n=1 k=1

is a complete g-normed K -space (see [1, p. 26]). By Theorem 7.7 of [1]
M(€P,c(a,1,q)) =c(h,o0,r),

where

00 min(1,1/r)
c(h,o00,r)=1y: = h, max r <0
( ) {y 13 lleth.00) {; nlgk@wm} }

and h, = a)l (Z,fin aZ)’/p, so that c(h, oo, r) is an r-normed space if 0 < r < 1 and a normed space if r > 1.
We now use a slight extension of Theorem 15 of [6, p. 64].

Proposition 2. Let X be a complete p-normed K -space with ¢ C X and Y be a complete q-normed K -space.
Let Z=M(X,Y)=1{z: zx €Y, Vx € X}. Then Z is a complete g-normed K -space under the q-norm |z| =
SUp|xx=1 lzx[ly-

Proof. This follows exactly as in [6] making the necessary changes to take into account that we have complete p-
normed and g-normed spaces instead of Banach spaces. For example, the set of continuous linear maps from X
to Y, B(X,Y) is a complete g-normed space under the g-norm ||7'|| = SUP|| x| x=1 ITx|y and since X is a p-normed

K -space, for each n € N the mapping x — x,, is continuous, so there exists K,, € R such that |x,| < K, ||x||;(/p. O

By the remarks before Proposition 2 we see that c(h, 0o, r) has two topologies defined on it: one topology generated
by the g-norm on the multiplier space and the other generated by the r-norm or norm on c(k, oo, r). Under each of
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these topologies, c(h, 0o, r) is a complete metrisable K-space. Since the topology on such spaces is unique (see
Corollary 4 of [6, p. 56] noting that the Closed Graph Theorem also holds between complete metrisable spaces) these
topologies must be the same. Hence, the identity map [ : M(¢”,c(a, 1, q)) — c(h, o0, r) and its inverse are both
continuous, so that
in(1/a.
1B llcih.o0.r) = 1Bllcan.con < MBI g on ) and
-1 _ -1 g/ min(1,r)
”I b”,/\/((él’,c(a,l,q)) = ||b||./\/l(ll’,c(a,1,q)) < ”I H ”b”c(h,oo,r)

Hence (8) holds in the case that a ¢ ¢, since minl,1/r) _ 1/r.

min(1,r)
In the case that a € ¢, although we can prove éirectly that (8) holds, since we have already shown on [5, p. 4]
that M (a, b) maps wo(p) into wy(q) for arbitrary sequences b, and it is clear that the conditions (2) and (4) hold for
arbitrary b, the result is proved. O

In conclusion we add that the methods used in this paper can also be used for the cases covered in [5] and so give
an alternative approach to the main results proved there.
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