The $w_{0}(p)-w_{0}(q)$ mapping problem for factorable matrices II

P. Spanos, B. Thorpe *
The University of Birmingham, Department of Mathematics, Edgbaston, Birmingham B15 2TT, UK
Received 29 November 2006
Available online 7 November 2007
Submitted by D. Waterman

Abstract

We find necessary and sufficient conditions for the class of factorable matrices $M(\boldsymbol{a}, \boldsymbol{b})$ to map $w_{0}(p)$ into $w_{0}(q)$ for $0<q<$ $p \leqslant 1$. © 2007 Elsevier Inc. All rights reserved.

Keywords: Mapping theorem; Sequence spaces

1. Introduction

In this paper we complete our investigation of the $w_{0}(p)-w_{0}(q)$ mapping problem for factorable matrices started in [5], by examining the remaining case when $0<q<p \leqslant 1$, which seems to be the most difficult one. We are indebted to K. Grosse-Erdmann for his suggestion of the following approach.

2. Preliminaries

We shall use the conventions found in [5]. In particular, we let ϕ denote the space of finitely non-zero sequences and we define r by the equation $1 / r=1 / q-1 / p$. If $\boldsymbol{a}=\left(a_{n}\right)_{n \geqslant 1}$ and $\boldsymbol{b}=\left(b_{n}\right)_{n \geqslant 1}$ are taken to be non-negative sequences, the factorable matrix $M:=M(\boldsymbol{a}, \boldsymbol{b})=\left(m_{n k}\right)$ is defined as follows:

$$
m_{n k}= \begin{cases}a_{n} b_{k} & \text { if } k=1, \ldots, n, \\ 0 & \text { if } k>n ;\end{cases}
$$

and without loss of generality, we can assume that \boldsymbol{b} has at least one non-zero coordinate.
For $0<p<\infty, w(p)$ will denote the space of strongly Cesàro summable sequences of order 1 and index p; i.e. the space of sequences \boldsymbol{x} such that there is a number L depending on \boldsymbol{x}, satisfying

$$
\sum_{k=1}^{n}\left|x_{k}-L\right|^{p}=\mathrm{o}(n) \quad \text { as } n \rightarrow \infty .
$$

[^0]A partial summation shows that we have the equivalent definition

$$
\sum_{k=2^{n}}^{2^{n+1}-1}\left|x_{k}-L\right|^{p}=\mathrm{o}\left(2^{n}\right) \quad \text { as } n \rightarrow \infty
$$

and this leads to the reasonable interpretation of $w(\infty)$ as c, the space of convergent sequences. For $L=0$, we get the space $w_{0}(p)$. Similarly, we take $w_{0}(\infty)=c_{0}$, the space of convergent to zero sequences, equipped with the sup norm. If $p \geqslant 1, w(p)$ is a $B K$-space (i.e. a Banach sequence space with continuous coordinate mappings $\boldsymbol{x} \mapsto x_{k}$) when equipped with the norm

$$
\sup _{n \geqslant 0}\left(2^{-n} \sum_{\nu \in D_{n}}\left|x_{v}\right|^{p}\right)^{1 / p}
$$

where henceforth we shall write $D_{n}:=\left[2^{n}, 2^{n+1}\right) \cap \mathbb{N}_{0}$. If $0<p<1$, it is a complete p-normed K-space with p-norm

$$
\|\boldsymbol{x}\|_{w_{0}(p)}=\sup _{n \geqslant 0}\left(2^{-n} \sum_{\nu \in D_{n}}\left|x_{v}\right|^{p}\right)
$$

Note that when $q \leqslant p$, we have $w_{0}(q) \supset w_{0}(p)$, so that $w_{0}(p)$ is also a q-normed space under the q-norm $\|\cdot\|_{w_{0}(q)}$.
We shall denote the positive orthant of $w(p)$ by $w(p)_{+}$and now describe how we simplify our problem as per the discussion of [5, p. 7].

Let $0<q<p \leqslant 1$. We can assume without loss of generality that $x \in w_{0}(p)_{+}$, since $\left(x_{n}\right)_{n \geqslant 1} \in w_{0}(p)$ if and only if $\left(\left|x_{n}\right|\right)_{n \geqslant 1} \in w_{0}(p)$. We need to find necessary and sufficient conditions in order that

$$
\boldsymbol{x} \in w_{0}(p)_{+} \Rightarrow \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=1}^{2^{n}-1} b_{k} x_{k}+\sum_{k=2^{n}}^{\mu} b_{k} x_{k}\right)^{q}=\mathrm{o}\left(2^{n}\right)
$$

This holds if and only if

$$
\begin{equation*}
\boldsymbol{x} \in w_{0}(p)_{+} \Rightarrow \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=1}^{2^{n}-1} b_{k} x_{k}\right)^{q}=\mathrm{o}\left(2^{n}\right) \tag{1}
\end{equation*}
$$

and

$$
\boldsymbol{x} \in w_{0}(p)_{+} \Rightarrow \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=2^{n}}^{\mu} b_{k} x_{k}\right)^{q}=\mathrm{o}\left(2^{n}\right)
$$

both hold. Our problem thus splits into examining each of these cases separately.
Set for each $n \in \mathbb{N}$,

$$
a_{n k}= \begin{cases}\left(2^{-n} \sum_{\mu \in D_{n}} a_{\mu}^{q}\right)^{1 / q} b_{k} & \text { if } k=1,2, \ldots, 2^{n}-1 \\ 0 & \text { otherwise }\end{cases}
$$

Since $0<p<1$, we can apply Theorem 7(a) of Maddox [3, p. 172]. In this case, (1) becomes equivalent to $\boldsymbol{a} \in w_{0}(q)$ and

$$
\begin{equation*}
\left(2^{-n} \sum_{k \in D_{n}} a_{k}^{q}\right)^{1 / q} \sum_{k=0}^{n-1} 2^{k / p} \max _{j \in D_{k}} b_{j}=\mathrm{O}(1) \tag{2}
\end{equation*}
$$

To complete the solution, it therefore suffices to find necessary and sufficient conditions for

$$
\begin{equation*}
\boldsymbol{x} \in w_{0}(p)_{+} \Rightarrow \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=2^{n}}^{\mu} b_{k} x_{k}\right)^{q}=\mathrm{o}\left(2^{n}\right) \tag{3}
\end{equation*}
$$

We show in Theorem 1 that

$$
\begin{equation*}
2^{-n} \sum_{j \in D_{n}}\left[\left(\sum_{k=j}^{2^{n+1}-1} a_{k}^{q}\right)^{1 / p} \max _{2^{n} \leqslant k \leqslant j} b_{k}\right]^{r} a_{j}^{q}=\mathrm{O}(1) \tag{4}
\end{equation*}
$$

is the "truncated" part's desired condition.

3. Main result

Theorem 1. Let $0<q<p \leqslant 1$. Then $M(\boldsymbol{a}, \boldsymbol{b})$ maps $w_{0}(p)$ into $w_{0}(q)$ if and only $\boldsymbol{a} \in w_{0}(q)$ and conditions (2) and (4) hold.

Proof. We first note that, since all the terms are non-negative, (3) can be re-written as

$$
\sum_{k \in D_{n}}\left(k^{-1 / p} x_{k}\right)^{p}=\mathrm{o}(1) \Rightarrow \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=2^{n}}^{\mu}\left(k^{-1 / q} b_{k}\right) x_{k}\right)^{q}=\mathrm{o}(1)
$$

and this is equivalent to

$$
\begin{equation*}
\sum_{k \in D_{n}} x_{k}^{p}=\mathrm{o}(1) \Rightarrow \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=2^{n}}^{\mu} k^{-1 / r} b_{k} x_{k}\right)^{q}=\mathrm{o}(1) \tag{5}
\end{equation*}
$$

If we consider the complete p-normed K-space

$$
c_{0}\left(2^{n}, p\right)=\left\{x=\left(x_{k}\right)_{k} \geqslant 1: \sum_{k \in D_{n}}\left|x_{k}\right|^{p} \rightarrow 0 \text { as } n \rightarrow \infty\right\},
$$

which has p-norm $\|\boldsymbol{x}\|=\sup _{n \geqslant 0} \sum_{k \in D_{n}}\left|x_{k}\right|^{p}$ (cf. [2]), then we seek necessary and sufficient conditions on the matrix $B=\left(b_{\mu k}\right): c_{0}\left(2^{n}, p\right) \rightarrow c_{0}\left(2^{n}, q\right)$, where, for $n \in \mathbb{N}_{0}$ and $\mu \in D_{n}$,

$$
b_{\mu k}= \begin{cases}a_{\mu} k^{-1 / r} b_{k} & \text { for } k=2^{n}, \ldots, \mu, \\ 0 & \text { otherwise }\end{cases}
$$

Consider the vector-valued sequence space $c_{0}\left(\ell^{p}\right)$, where

$$
c_{0}\left(\ell^{p}\right)=\left\{\boldsymbol{X}=\left(\boldsymbol{x}_{n}\right)_{n \geqslant 0}: \boldsymbol{x}_{n}=\left(x_{n k}\right)_{k \geqslant 1} \in \ell^{p} \text { and }\left\|\boldsymbol{x}_{n}\right\|_{\ell p}=\sum_{k=1}^{\infty}\left|x_{n k}\right|^{p} \rightarrow 0 \text { as } n \rightarrow \infty\right\}
$$

with p-norm $\|\boldsymbol{X}\|=\sup _{n \geqslant 0} \sum_{k=1}^{\infty}\left|x_{n k}\right|^{p}$, under which it is complete. We can embed $c_{0}\left(2^{n}, p\right)$ as a linear subspace of $c_{0}\left(\ell^{p}\right)$ by mapping $\boldsymbol{x}=\left(x_{k}\right)_{k \geqslant 1} \mapsto \boldsymbol{X}=\left(\boldsymbol{x}_{n}\right)_{n \geqslant 0}$, where $\boldsymbol{x}_{n}=\left(x_{n k}\right)_{k \geqslant 1}$ and

$$
x_{n k}= \begin{cases}x_{k} & \text { if } k \in D_{n}, \\ 0 & \text { otherwise }\end{cases}
$$

Since $\|\boldsymbol{X}\|=\|\boldsymbol{x}\|$, this embedding is an isometry and if E_{p} denotes the image of $c_{0}\left(2^{n}, p\right)$ in $c_{0}\left(\ell^{p}\right)$, then E_{p} is a closed linear subspace of $c_{0}\left(\ell^{p}\right)$.

Now we consider an infinite diagonal matrix of linear operators $A=\operatorname{diag}\left\{A_{n}\right\}$, where $A_{n}=\left(a_{\mu k}^{(n)}\right): \ell^{p} \rightarrow \ell^{q}$ (note that if the general infinite matrix of operators is given by $A=\left(A_{n k}\right)$, then in this case its diagonal is the matrix $\left(A_{n, n+1}\right)$). It follows from [4, p. 372] that $A: c_{0}\left(\ell^{p}\right) \rightarrow c_{0}\left(\ell^{q}\right)$ if and only if $\sup _{n \geqslant 0}\left\|A_{n}\right\|_{p, q}<\infty$, where $\left\|A_{n}\right\|_{p, q}=\sup _{\|x\|_{p}=1} \sum_{\mu=1}^{\infty}\left|\sum_{k=1}^{\infty} a_{\mu k}^{(n)} x_{k}\right|^{q}$.

In the special case that A_{n} is defined so that if $\mu \notin D_{n}$, then $a_{\mu k}^{(n)}=0$, for all $k \geqslant 1$, and if $\mu \in D_{n}$, then

$$
a_{\mu k}^{(n)}= \begin{cases}a_{\mu} k^{-1 / r} b_{k} & \text { for } k=2^{n}, \ldots, \mu, \\ 0 & \text { otherwise },\end{cases}
$$

we see that

$$
\left\|A_{n}\right\|_{p, q}=\sup _{\|\boldsymbol{x}\|_{p}=1} \sum_{\mu \in D_{n}}\left|a_{\mu} \sum_{k=2^{n}}^{\mu} k^{-1 / r} b_{k} x_{k}\right|^{q}=\sup _{\|\boldsymbol{x}\| \ell p\left(D_{n}\right)=1} \sum_{\mu \in D_{n}}\left|a_{\mu} \sum_{k=2^{n}}^{\mu} k^{-1 / r} b_{k} x_{k}\right|^{q}=\left\|B^{\prime}\right\|_{\ell}\left(D_{n}\right), \ell^{q}\left(D_{n}\right),
$$

where B^{\prime} is the restriction of the matrix B above to the finite dimensional subspace $\left\{\boldsymbol{x}=\left(0, \ldots, x_{2^{n}}, \ldots, x_{2^{n+1}-1}\right.\right.$, $\left.0, \ldots): x_{i} \in \mathbb{R}\right\}$. Moreover, for this choice, $A: c_{0}\left(\ell^{p}\right) \rightarrow c_{0}\left(\ell^{q}\right)$ if and only if $A: E_{p} \rightarrow E_{q}$ and this is equivalent to the map $B: c_{0}\left(2^{n}, p\right) \rightarrow c_{0}\left(2^{n}, q\right)$. Thus the necessary and sufficient condition for (5) to hold is

$$
\begin{equation*}
\sup _{n \geqslant 0}\left\|B^{\prime}\right\|_{\ell p}^{\left(D_{n}\right), \ell^{q}\left(D_{n}\right)}<. \tag{6}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\sup _{n \geqslant 0} \sum_{\mu \in D_{n}} a_{\mu}^{q}\left(\sum_{k=\mu}^{2^{n+1}-1} a_{k}^{q}\right)^{r / p} \max _{2^{n} \leqslant v \leqslant \mu}\left(\frac{b_{v}^{r}}{v}\right)<\infty \tag{7}
\end{equation*}
$$

is equivalent to (4).
In order to prove the necessity and sufficiency of (4), it is enough to show that, for any factorable matrix $M(\boldsymbol{a}, \boldsymbol{b})$, we have

$$
\begin{equation*}
\|M(\boldsymbol{a}, \boldsymbol{b})\|_{\ell^{p}, \ell q}^{1 / q} \asymp\left[\sum_{n=1}^{\infty} a_{n}^{q}\left(\sum_{k=n}^{\infty} a_{k}^{q}\right)^{r / p} \max _{1 \leqslant k \leqslant n} b_{k}^{r}\right]^{1 / r}, \tag{8}
\end{equation*}
$$

where $M \asymp N$ means that there are positive constants k, K independent of \boldsymbol{a} and \boldsymbol{b} such that $k M \leqslant N \leqslant K M$; and then use (6) and (7).

We first prove that (8) holds with the extra assumption that $\boldsymbol{a} \notin \phi$. To see this, by Observation 9.1 of [1, p. 50],

$$
\|M(\boldsymbol{a}, \boldsymbol{b})\|_{\ell^{p}, \ell}=\|\boldsymbol{b}\|_{\mathcal{M}\left(\ell^{p}, c(\boldsymbol{a}, 1, q)\right)}=\sup _{\|\boldsymbol{x}\|_{p}=1}\|\boldsymbol{b} \boldsymbol{x}\|_{c(\boldsymbol{a}, 1, q)},
$$

where $\mathcal{M}\left(\ell^{p}, c(\boldsymbol{a}, 1, q)\right)=\left\{z: \boldsymbol{z} \boldsymbol{x} \in c(\boldsymbol{a}, 1, q), \forall \boldsymbol{x} \in \ell^{p}\right\}$ denotes the set of multipliers from ℓ^{p} to $c(\boldsymbol{a}, 1, q)$; and since $\boldsymbol{a} \notin \phi$,

$$
c(\boldsymbol{a}, 1, q)=\left\{\boldsymbol{y}:\|\boldsymbol{y}\|_{c(\boldsymbol{a}, 1, q)}=\sum_{n=1}^{\infty} a_{n}^{q}\left(\sum_{k=1}^{n}\left|y_{k}\right|\right)^{q}<\infty\right\}
$$

is a complete q-normed K-space (see [1, p. 26]). By Theorem 7.7 of [1]

$$
\mathcal{M}\left(\ell^{p}, c(\boldsymbol{a}, 1, q)\right)=c(\boldsymbol{h}, \infty, r),
$$

where

$$
c(\boldsymbol{h}, \infty, r)=\left\{\boldsymbol{y}:\|\boldsymbol{y}\|_{c(\boldsymbol{h}, \infty, r)}=\left[\sum_{n=1}^{\infty} h_{n} \max _{1 \leqslant k \leqslant n}\left|y_{k}\right|^{r}\right]^{\min (1,1 / r)}<\infty\right\}
$$

and $h_{n}=a_{n}^{q}\left(\sum_{k=n}^{\infty} a_{k}^{q}\right)^{r / p}$, so that $c(\boldsymbol{h}, \infty, r)$ is an r-normed space if $0<r<1$ and a normed space if $r \geqslant 1$.
We now use a slight extension of Theorem 15 of [6, p. 64].
Proposition 2. Let X be a complete p-normed K-space with $\phi \subset X$ and Y be a complete q-normed K-space. Let $Z=\mathcal{M}(X, Y)=\{z: z x \in Y, \forall x \in X\}$. Then Z is a complete q-normed K-space under the q-norm $\|z\|=$ $\sup _{\|x\|_{X}=1}\|z \boldsymbol{x}\|_{Y}$.

Proof. This follows exactly as in [6] making the necessary changes to take into account that we have complete p normed and q-normed spaces instead of Banach spaces. For example, the set of continuous linear maps from X to $Y, B(X, Y)$ is a complete q-normed space under the q-norm $\|T\|=\sup _{\|x\|_{X}=1}\|T x\|_{Y}$ and since X is a p-normed K-space, for each $n \in \mathbb{N}$ the mapping $\boldsymbol{x} \mapsto x_{n}$ is continuous, so there exists $K_{n} \in \mathbb{R}$ such that $\left|x_{n}\right| \leqslant K_{n}\|\boldsymbol{x}\|_{X}^{1 / p}$.

By the remarks before Proposition 2 we see that $c(\boldsymbol{h}, \infty, r)$ has two topologies defined on it: one topology generated by the q-norm on the multiplier space and the other generated by the r-norm or norm on $c(\boldsymbol{h}, \infty, r)$. Under each of
these topologies, $c(\boldsymbol{h}, \infty, r)$ is a complete metrisable K-space. Since the topology on such spaces is unique (see Corollary 4 of [6, p. 56] noting that the Closed Graph Theorem also holds between complete metrisable spaces) these topologies must be the same. Hence, the identity map $I: \mathcal{M}\left(\ell^{p}, c(\boldsymbol{a}, 1, q)\right) \rightarrow c(\boldsymbol{h}, \infty, r)$ and its inverse are both continuous, so that

$$
\begin{aligned}
& \|I \boldsymbol{b}\|_{c(\boldsymbol{h}, \infty, r)}=\|\boldsymbol{b}\|_{c(\boldsymbol{h}, \infty, r)} \leqslant\|I\|\|\boldsymbol{b}\|_{\mathcal{M}\left(\ell^{p}, c(\boldsymbol{a}, 1, q)\right)}^{\min (1 / q)} \quad \text { and } \\
& \left\|I^{-1} \boldsymbol{b}\right\|_{\mathcal{M}\left(\ell^{p}, c(\boldsymbol{a}, 1, q)\right)}=\|\boldsymbol{b}\|_{\mathcal{M}(\ell p, c(\boldsymbol{a}, 1, q))} \leqslant\left\|I^{-1}\right\|\|\boldsymbol{b}\|_{c(\boldsymbol{h}, \infty, r)}^{q / \min (1, r)} .
\end{aligned}
$$

Hence (8) holds in the case that $\boldsymbol{a} \notin \phi$, since $\frac{\min (1,1 / r)}{\min (1, r)}=1 / r$.
In the case that $\boldsymbol{a} \in \phi$, although we can prove directly that (8) holds, since we have already shown on [5, p. 4] that $M(\boldsymbol{a}, \boldsymbol{b})$ maps $w_{0}(p)$ into $w_{0}(q)$ for arbitrary sequences \boldsymbol{b}, and it is clear that the conditions (2) and (4) hold for arbitrary \boldsymbol{b}, the result is proved.

In conclusion we add that the methods used in this paper can also be used for the cases covered in [5] and so give an alternative approach to the main results proved there.

References

[1] K. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Math., vol. 1679, SpringerVerlag, 1998.
[2] K. Grosse-Erdmann, Strong weighted mean summability and Kuttner's theorem, J. London Math. Soc. (2) 59 (3) (1999) $987-1002$.
[3] I.J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.
[4] M.S. Ramanujan, Generalised Kojima-Toeplitz matrices in certain linear topological spaces, Math. Ann. 159 (1965) 365-373.
[5] P. Spanos, B. Thorpe, The $w_{0}(p)-w_{0}(q)$ mapping problem for factorable matrices I, J. Math. Anal. Appl. (2008), doi:10.1016/j.jmaa.2007. 10.061.
[6] A. Wilansky, Summability through Functional Analysis, Math. Stud., vol. 85, North-Holland, 1984.

[^0]: * Corresponding author.

 E-mail addresses: pispanos@for.mat.bham.ac.uk (P. Spanos), b.thorpe@bham.ac.uk (B. Thorpe).

