
Journal of Computational and Applied Mathematics 46 (1993) 65-75 
North-Holland 

65 

CAM 1328 

Local behaviour of the error in the Bergman 
kernel method for numerical 
conformal mapping * 

N. Papamichael 
Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex, United Kingdom 

E.B. Saff ** 
Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, FL, 
United States 

Received 28 July 1991 
Revised 30 March 1992 

Abstract 

Papamichael, N. and E.B. Saff, Local behaviour of the error in the Bergman kernel method for numerical 
conformal mapping, Journal of Computational and Applied Mathematics 46 (1993) 65-75. 

Let D be a simply-connected domain in the complex plane, let 5 E 0 and let K(z, 0 denote the Bergman 
kernel function of fi with respect to 5. Also, let K,( z, 5) denote the nth-degree polynomial approximation to 
K(.z, i), given by the classical Bergman kernel method, and let x,, denote the corresponding nth-degree 
Bieberbach polynomial approximation to the conformal map f of 0 onto a disc. Finally, let B be any 
subdomain of 0. In this paper we investigate the two local errors 11 Kc., l>- K,(., 6) 1) LQ), 11 fi - r; 11 
and compare their rates of convergence with those of the corresponding global errors with respect to L’$!): 
Our results show that if aB contains a subarc of &Q, then the rates of convergence of the local errors are not 
substantially different from those of the global errors. 
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1. Introduction 

Let 0 be a simply-connected domain of the complex plane C, whose boundary r is a closed 
Jordan curve, and let b E 0. Then, by the Riemann mapping theorem, there exists a unique 
conformal mapping w =f& z> of 0 onto a disc {w: ( w I < I-{}, such that 

f&) = 0, f;(L) = 1. 

The radius rg of this disc is called the conformal radius of R with respect ot 5. (To avoid the 
study of uninteresting cases we shall assume throughout this paper that f&z) is not a 
polynomial function.) 

For the inner product 

(g, h) := ljnR(z)h(z) dm, 

where dm is the two-dimensional Lebesgue measure, we consider the Hilbert space 

P(&C?) := (g: g analytic in 0, II g II &2) = (8, g) < + 

Let K(z, 6) denote the Bergman kernel function of 0 which has the reproducing property 

g(l) = (g, K(*, C>>> V’gEL2(fi), (1.1) 

(cf. [l-3,6]). Then it is known (cf. [3, p.341) that r5 = (-rrK(l, (>>-1/2 and that for z E 0, 

Next let Q,(z) = y,z” + *. . , yn > 0, be the sequence of orthonormal polynomials for the 
inner product (*, . >, i.e., 

// Q,(z)e,(z> dm = %,I- 
R 

Since fi is a Jordan region, it is known (cf. [3, p.171) that {Q,& forms a complete orthonormal 
system for L2(fl) and, from the reproducing property (l.l), it follows that (with respect to this 
system) the Fourier coefficients of K(. , 5) are given by Q,(c), n = 0, 1,. . . . Thus, for the 
partial sums 

K,(z, S) := 2 Qj(l>Qj(z> (1.3) 
j=O 

we have 

E,(K, fl):= IIK(*, J)-K,(*, ~)ll~~~~~--)O, as n+w. 

From the least-squares property of the Fourier sections, we also have that 

E,(K 0) G I] K(*, C) -P, I] =2(n), VP, ~17,, 

where II,, denotes the collection of all polynomials having degree at most II. 

(1.4) 

(1.5) 
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In the classical Bergman kernel method (BKM) for numerically computing the conformal 
mapping fi, we replace K by K,_, in (1.2) and obtain the polynomial approximations 

and ~~(2) := K (1.6) 

to fi and fL, respectively. The polynomials T,, are the Bieberbach polynomials for 0, and it is 
easily seen from (1.4) that they satisfy 

cA( f’6, 0) := 11 f; - T; (jLzcnj --j) 0, as n + ~0, (1.7) 

and 

e,(fi, a):= IIfi-~Tll~~~O~+O, as n-,~. (1.8) 

Roughly speaking, the rates of convergence in (1.41, (1.7) and (1.8) are governed by the 
smoothness properties of the boundary r or, equivalently, by the nature and location of the 
singularities of fL in @\a. For example, if r is an analytic Jordan curve, then these rates are 
geometric, i.e., 

lim sup [E,(K, L?)]“” < 1 
n-m 

(and similarly for l A(fi, 0) and l ,(fi, 011, while for piecewise analytic boundaries these rates 
are typically of the form l/nY, for some constant y > 0 (cf. [3,4,9,10]). 

The purpose of this paper is to investigate local rates of convergence in the BKM. To be 
more precise, let B be any (arbitrarily small) Jordan subdomain of R and consider the norm 

Then our goal is to investigate the rates of convergence of the following two errors: 

E,(K B):= llK(., 6) -K,(*, Y)IIL~(B), (1.10) 

eL( fi’, B) := 1) f; - 4 I(LzcBj. (1.11) 

If the closure B is contained in L?, then it is indeed possible for the local errors (1.101, (1.11) to 
tend to zero geometrically faster than the corresponding global errors with respect to L2(LZ) 
(see Example 3.1). If, h owever, the boundary dB of B contains a subarc of r (and r satisfies 
certain smoothness conditions), then we shall show that the rates of convergence of the local 
errors are not “substantially” different from those of the corresponding global errors. This fact 
is somewhat surprising, because it implies that the BKM errors in small subregions of R that 
are near to the singularities of fi are “essentially” the same as those in small subregions that 
are far from these singularities. This behaviour is, however, consistent with the second author’s 
principle of contamination in best approximation (cf. [8]). 

2. Statements of results 

Our results will be established by assuming that the boundary curve r satisfies certain 
smoothness conditions. In particular, we shall assume that r belongs to a class C(p, (~1. This 
class is defined as follows (cf. [lo, p.51). 
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Definition 2.1. A rectifiable Jordan curve y is said to belong to the class C(p, (.u), where p is a 
positive integer and 0 < (Y G 1, if y has a parametrization z = z(s), where s is arc length, and 
the function z(s) is p times continuously differentiable with Z(~)(S) E Lip a. 

Our principal result is as follows. 

Theorem 2.2. With the notations of Section 1, suppose that r E C( p + 1, (Y), p >, 0, 0 < a < 1. If 
B c R is any Jordan domain such that its boundary dB contains a subarc of r, then 

(2.1) 

An immediate consequence of Theorem 2.2 is the following. 

Corollary 2.3. Let r and B co be as in Theorem 2.2. Then, given E > 0, there exists a 
subsequence A c N such that 

II K(. , 5) - K,(. , 5) II LZ(f3) 2 n EA, (2.2) 

where c is a positive constant. 

The following two results are also relatively simple consequences of Theorem 2.2 and its 
proof. 

Theorem 2.4. Suppose that r E C (p + 1, a) with p + (Y > i and let B c R be as in Theorem 2.2. 
Then, given E > 0, there exists a subsequence A c N such that 

Ilf;-%IlLZ(B)~ g&-;-~&y n EAT (2.3) 
where c is a positive constant. 

Theorem 2.5. Suppose that r is an analytic Jordan curve and let B c Cl be as in Theorem 2.2. 
Then there exists a subsequence A c N and a positive constant c such that 

IM(., L>-K,(., ~)lL~~~)~cll~(*, 6)-K& C)IL*(f+ nE& (24 
and 

II f; - r; l(Lz(B) 2 41 fi’ - 4 lip(n)’ n E A* (2.5) 
We expect that the corresponding errors for the mapping function fs satisfy similar results 

but, so far, we have not been able to prove this. 

3. Examples 

Example 3.1. Consider the case where R = {z: ( z I < l} and l E 0 is different than zero. Then 

Q,(Z) = zn, n = 0, l,..., 
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and hence 

69 

K(Z, 6) = ; c (j+ l,(Cz)j= 1 l_ 
J=o Tr (1 - 6z)2 ’ 

so that the mapping function fi has 
analytic in the extended plane. 

Equations (3.1) and (3.2) imply that 

(3.1) 

(3 4 

a simple pole at the point z = l/c but is otherwise 

and from this it follows that 

limsupIIK(*, s)-K,-,(a, s)IIi$hj= Ill. 
n+m 

It also follows that if B := {z: I z ( <Y < l}, then 

This illustrates the fact that if B cfl, then the local error (1.10) can tend to zero geometrically 
faster than the global error with respect to L2(0). 

Let zi, z2 denote, respectively, the two boundary points nearest and furthest away from the 
singularity of f( at z = l/c, i.e., zi := eia and z2 := -e’*, where (Y := arg 6. Then, 

K(ZI, 6)-K,_I(zI, ii)= A_ I”” 
Tr (1- ISI) 

2{-nl~l+n+l}=:e,(z,), 

1 (-1)“151” 
KG27 s> -K,4(z2, 5) = - 

T (I+ 14q2 
{n I J I +n + 1) =:en(z2), 

and hence 

1 enh) I 

f% ( en(z2) I = 

1+ Ifl 

l- I51 * 

This supports (in a pointwise sense) the remark made at the end of Section 1 concerning the 
BKM errors in small subregions close to and far away from the singularities of fi. 
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Example 3.2. Let 0 be bounded by r = r, U KZ, where r, and r, 
circle 

r,:={z=x+iy: Izl =l, x<O} 

and the half ellipse 

rz:={z=x+iy: +x2+y2=l, x>O), 

and set b = 0. 

are respectively the half 

In this case r E Ccl, 1) and the mapping function fa has a branch point singularity at each 
of the points zi = i and z2 = -i where the two curves ri and r2 meet, in the sense that 

f&z) --fO(zj) - (z -zj)’ log(z -zj), as 2 +zj, j = 1, 2, 

(cf. [7, p.6511). 
Let B, and B, denote the two subdomains of 0 whose boundaries i3B, and tlB, are as 

follows: (i) dB, consists of the subarc 

z = eis 7 $i<o+T, 

of ri and the two straight lines that join the point 0.5 respectively to the boundary points i and 
e1(7r/12); (ii) aB, consists of the subarc 

z = eie, rr<o&T, 

of r1 and the two straight lines that join the point -0.5 respectively to the boundary points - 1 
and ei(i3~/iz). (Ob serve that aB, contains the point zi = i, where f0 has a branch point 
singularity, while aB, does not involve any singular points of f,.) 

In Table 1 we have listed (for various values of n) estimates of the errors 

4l(fdY fl) := II fo’ - 4 IIPKW 

and also of the ratios 

,(j) := ‘A(fdy Bj) . 
n qf& q ’ J=l,2, 

r(1,2):= W& Bl) 
n 

5xf& B2) * 

Table 1 

n E;(f;, 0) c;Cf;> 4) e$f;, B,) r(l) n rc2) n ru22) n 
5 7.7.10-z 
6 5.7.10-2 
7 3.6. lo-’ 
8 2.7.10-’ 
9 2.0.10-2 

10 1.3.10-2 
11 1.2.10-2 
12 7.5.10-3 
13 7.4.10-3 
14 5.0.10w3 
15 4.8.10F3 

1.6*10-’ 
1.6. 1O-2 
9.1’ 10-3 
8.6.10_” 
5.7.10p3 
4.8.10-3 
3.9.10-3 
2.9.10-” 
2.8.1OF” 
1.9.10-3 
1.9.10-3 

7.2.10-4 0.209 0.009 22.2 
8.8.10-3 0.287 0.154 1.86 
6.7. 10m4 0.252 0.019 13.5 
4.1. low” 0.324 0.153 2.12 
7.3.10-4 0.292 0.037 7.84 
2.0. lop3 0.361 0.150 2.41 
8.2.10p4 0.333 0.070 4.74 
8.9. lop4 0.382 0.120 3.20 
7.3.10-4 0.374 0.099 3.78 
3.0.10-4 0.384 0.060 6.41 
5.6. lop4 0.409 0.116 3.51 
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Table 2 

R qJf”, 0) 4fOT Bl) 4fO~ BJ r(u 

OY182 

rA2) rw) 

5 1..5~10-~ 23.10-3 1.2.10-4 0.008 2i.l 
6 9.7.10-Z 
7 5.5.10-” 
8 3.5. 1v3 
9 2.4.10-3 

10 1.4.10-3 
11 1.2.10-3 
12 6.4.10-4 
13 6.4. 1O-4 
14 3.9. 1v4 
15 3.5. 1o-4 

2.6.10-” 
1.2.10-3 
1.0.10p3 
6.0.10-4 
4.4. 1o-4 
3.4.10p4 
2.1. lop4 
2.1.10-4 
1.3.10-4 
1.3.10-4 

1.5.10-3 0.265 0.151 1.76 
1.6.10p4 0.217 0.029 7.41 
4.8. 1O-4 0.294 0.138 2.13 
8.8.10-5 0.248 0.036 6.80 
2.O.lOP 0.324 0.146 2.22 
8.3. 1O-5 0.283 0.069 4.11 
7.3.10-5 0.335 0.114 2.93 
6.0.10-’ 0.322 0.093 3.47 
2.1.10-5 0.324 0.053 6.09 
4.0.10p5 0.360 0.113 3.20 

Table 2 contains the corresponding estimates for the mapping function fO, i.e., 

%(flI, 0) := II f” - r?I II LZ(Q)> l ,(f”, Bj)'= IIf~-~nlILz~B,)~ j= 172, 

,{j) := ‘n(fOy Bj> . 
n 

En(fo, 0) ’ J = l, 27 

r(1,2) := Ea-oy 4) 

n %(fo, B2) * 

All these estimates were computed by using the FORTRAN conformal mapping package 
BKMPACK [ 111. 

As might be expected, the results of the two tables show that the local errors l ,$fd, B2) and 
e,(fO, B2), for the subregion B,, are smaller than the errors ~;Cfd, I?,) and l ,(fO, II,) for the 
subregion B, whose boundary contains the singular point z1 = i. However, the numerical 
results also show that the rates of decrease of eA<fd, B,) and e,(fO, B,) are not substantially 
different than those of l ,!jfd, B2) and en(fo, B,). The numerics for l L<fd, B2) are therefore 
consistent with the result of Theorem 2.4, while those for l ,(f0, B2) support our statement at 
the end of Section 2. 

4. Proofs 

To establish Theorems 2.2, 2.4 and 2.5 we shall make use of several lemmas. The first two of 
these are due to Suetin [lo]. 

Lemma 4.1 (Suetin [lo, p.201). Suppose r E C( p + 1, cr>, p > 0, 0 < (Y < 1. Then the orthonormal 
polynomials Q, of Section 1 satisfy 

(44 

where w = 41(z) is the conformal mapping of C/L! onto {w : I w 1 > l] normalized by qt4w) = * 
and 4’(m) > 0. 
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Lemma 4.2 (Suetin [lo, p.381). Let A be a simply-connected domain bounded by a Jordan curve 
y E C(l, CY), 0 < (Y 6 1. Then for every polynomial P,, E II,, we have 

/ I P,(z) I* ldz I < c(n + I)//,1 Pn(z) I2 dm, (4.2) 
Y 

where the constant c depends only on y. 

Lemma 4.3. Suppose r E C(p + 1, a), p 2 0, 0 < cy G 1, and let B CR be as in Theorem 2.2. 
Then there exists a positive constant r = r(B) such that 

IlQ,llL2(~)2.7>0, n=O, I,..., P-3) 
where the Q, are the orthonormal polynomials of Section 1. 

Proof. Since aB contains a subarc of r, it is always possible to choose a subarc y0 C r n aB and 
construct a Jordan domain A c B such that y := aA E C(l, a> and y. c y. Then from (4.1) it 
follows that 

/IQ,(z)l*ldzl a/ IQn(z)121dzl ac,(n+l), n=O, I,..., 
Y Yll 

(recall that I 4(z) ( = 1 on y. c T’). On the other hand, from (4.2) we get 

(4.4) 

/ I Q,(Z) I 2 ldz I <c(n + I)//,1 Q,(Z) I * dm < c(n + I)//,1 Q,(Z) I * dm. (4.5) 
Y 

Thus combining (4.4) and (4.5), we obtain 

o < ; < //,I Q,(Z) l* dm, 

and this gives the desired inequality (4.3). 0 

Lemma 4.4. With the notations and assumptions of Section 1, there exist positive constants c1 and 
c2 such that 

cJK,_1(*, C)-K(*, 5)ll~~~R)~/(f;--~IIL*~~)~c211~,-~(~~ 5)-W, S)llLWh 

(4.6) 

forn=O, l,... . 

Thus the Z,*(0) norms of f; - T; and K,_,( ., J) - K(. , 5) are equivaknt. 

Proof. Recall that K(l, {>f,l<z> =K(z, 0 and that K,_,({, J)ri(z) =K,_r(z, L). Thus 

II fL - 4 IILW 

/I 

KC.7 6) Ld.7 a> 

= J&5 l) - K&L 5) /I ,_*(a) 

II K(., Y)[K,-l(L, 6) -K(L S)] +K(L C)[W, C) -K-k, S)] ll~~(fi) 
= 

K(L Wn-_,(L 6) 

(4.7) 
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Since K(J, 6) is finite and positive and K,,_,(l, 6) -+ K(l, l) as n + a, the estimates (4.6) will 
follow from (4.7) and the triangle inequality, provided we show that 

IK,_r(J, [)-K(C, l)I =o(II&r(*, s>-K(., 5)111_2~2~)~ as n--. (4.8) 
But 

and 

Thus 

and this yields (4.8), since the right-hand side of (4.9) clearly tends to zero as II -+ ~0. 0 

Proof of Theorem 2.2. We shall follow closely the argument of [51. Let 

E, := II K(. , 5) - K,(. > 0 ll ~*(a) = 
i 

f lQ&)l” “* 
k=n+l I 

and 

II q *, J) - K,(* > s> II LZ(E) 
m := 

En 
G IIK,(., 6) -q., 5)II LZ(E) + II K-1( * 7 S) - K(* 7 5) II LZ(B) 
= r,E,, + rn-lEn-l, 

that is, 

II Q,,(l)Q,(*) II L2~8)~(E,+E,_1)max(r,, r,_,>, n=l,%... . 
On the other hand, by Lemma 4.3, we have that 

II Q,(OQ,C> II Lo> IQ,(~)17=(E,2-~-EnZ)1’27, n=l,T..., 

for some G- > 0. Thus, from (4.10) and (4.111, we get 

(E,“_l -E;)l’* 7 G (E,_, +E,J max(r,, r,-l), 

and this implies that 

5-*( 21:;:) <max(r,2, r,2_,), n=1,2 ,... . 

(4.10) 

(4.11) 

(4.12) 

Next we note that E, decreases to zero as rz + 00 (E,, 5 0, as IZ + a). Hence it follows from 
elementary properties of series that 

E 

E 
00. 
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(This divergence can be seen from the comparison 

E 

E 

and the observation that nz= 1 En/E,_, diverges to zero.) Therefore, from (4.12), we get that 
Cz=l max(r,2, ~,2_,> = M and this implies the desired result CzZOrz = ~0. 0 

Proof of Theorem 2.4. From (4.7) (with 0 replaced by B) and (4.9) we get 

-c2 
i 

c lQ&)l” 1’2 
I 

IIK(., i>-&,(*, S)IILW,> 
k=n 

where cl, c2 are positive constants. Thus, by Corollary 2.3, there exists a subsequence A C N 

such that 

Also, from [lo, p.351, we have 

It= 1, 2,... . (4.14) 

We now assume, without loss of generality, that 0 < E <p + (Y - i. Then, from (4.13) and 
(4.14), we have that 

(4.15) 

Finally, by using Lemma 4.4, we get from this last inequality that (2.3) holds for all II E A. 0 

Proof of Theorem 2.5. Let E, and Y, have the same meanings as in the proof of Theorem 2.2. 
Since r is an analytic curve, it is well known that 

1 
lim sup EA/” = - , 

n-m P 

for some p > 1 (cf. [3, p.351). Furthermore, since 

&I 
lim inf - G lim sup EA”‘, 

n+m E n-1 n-m 
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there exists a subsequence A, c N such that 

lim 
E,, 1 1 

-=-<--<I. 
n+cc E 
n=A, n-l PO P 

For this subsequence we have 

E 
lim 

n-l -En 1 -pi1 

n+m 
n at” 

E n-l+E, = 1 +p(yl ’ 

and so from (4.12) we get 

75 

Po- 1 
O-CT2 ~ I I PO+1 

< lim inf max( r,2, Y,2_l). 
n-m 
rzE!l, 

It follows that there exists a subsequence A c N such that 

rn 2 c > 0, II Eli, 

and this yields the desired result (2.4). The second result (2.5) follows by modifying in an 
obvious manner the proof of Theorem 2.4. q 
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