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1. INTRODUCTION

In theory, the bar construction suffices to calculate the homology groups
of an augmented algebra. In practice, the bar construction is generally too
large (has too many generators) to allow computation of higher dimensional
homology groups. In this paper, we develop a procedure which simplifies
the calculation of the homology and cohomology of Hopf algebras.

Let A be a (graded) Hopf algebra over a field K of characteristic p. Filter 4
by F,d =Aif ¢ = 0and F 4 = I(4) " if ¢ < 0, where I{4) is the augmen-
tation ideal. The associated bigraded algebra E°A, E) A = (F,A[F, 1A)r
is clearly a primitively generated Hopf algebra over K. By a theorem due to
Milnor and Moore [10], this implies that £°4 is isomorphic to the universal
enveloping algebra of its restricted Lie algebra of primitive elements if
p > 0, and to the universal enveloping algebra of its Lie algebra of primitive
elements if p = 0.

We will develop machinery which takes advantage of this structural
theorem to facilitate the computation of the cohomology of 4. In order to
use the structural theorem, we require first a procedure for calculating the
cohomology of A, knowing that of £°4. This is obtained by the construction
of a spectral sequence passing from the cohomology of £°4 to that of A.
Second, we require a method of calculating the cohomology of E°A. This
is obtained by the construction of a reasonably small canonical E%4-free
resolution of K.

The plan of the paper is as follows. After developing the properties of the
bar and cobar constructions in Section III, we construct the desired spectral
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scquence in Section IV, This 1s done by filtering the bar construction of 4
in such a manner that the resulting £' is the bar construction of E°{. We
thereby obtain a spectral sequence passing from the homology of L. to that
of A, and the dual spectral sequence passes from the cohomology of [£°.4
to that of A. In sections V and VI, which are completely independent of ITI
and IV, we construct the E°A-free resolution of K. We first construct a
U(L)-free resolution of K, where U(L) is the universal enveloping algebra
of a Lie algebra L over K. If 1, is restricted, we then show how to extend the
resulting I(L)-complex to obtain a ['(L)-free resolution of A, where (L)
is the universal enveloping algebra of the restricted Lic algebra L. Tinally, in
section VII we describe embeddings of these resolutions in the bar construc-
tions of U(L) and F(L), respectively.

Now if 4 is a Hopf algebra over a field of characteristic p, then
RO = UPEYA) if p =0 and E0A = V(PEA) if p 0. We can calculate
the homology of £°.4 using the resolutions developed in Sections Voand VI
The embeddings of these resolutions in the bar construction of £%4 give
representative cycles there for clements of the homology of £°A. Therefore
these embeddings allow explicit computation of the differentials in the homo-
logy spectral sequence. Dualization then gives the structure of the cohomo-
logy spectral sequence.

The main results of this paper have been announced in [8]. The methods
developed here have been used by the author to compute part of the cohomo-
logy of the Steenrod algebra. Due to the existence of the Adams’ spectral
sequence, this knowledge gives immediate corollaries on the stable homotopy
groups of spheres. A partial summary of these results may be found in [9].
Details and complete results will appear in a Memoir of the Am. Math. Soc.

The author would like to express his deep gratitude t» J. C. Moore, who
suggested this approach to the problem of calculating the cohomology of
Hopf algebras.

2. PRELIMINARIES

Throughout this paper, K will denote a fixed commutative ring. For
simplicity, we assume that all K-modules which arise, in any context what-
ever, are free of finite type. The symbols () and Hom without subscripts
will mean the corresponding functors taken over K. All K-modules will be
graded on the nonnegative integers, and if M and N are K-modules, then
M & N is graded by (M X N), = @pjy M; ® N; and M* is graded by
M*? = Hom (M, , K).

Whenever two objects a and b are permuted, the sign (— [)degedesd will
be introduced, the degree involved being the total degree if a or b belong
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to bigraded or trigraded K-modules. For example, if M and /N are K-modules,
we define isomorphisms:

[ M— M**, flm) () = (— 1)desmaetn () (2.1)
and
g M* & N*— (M N)*,

glp @) (m @ m) (1Y ) (), (2.2)

If X is a complex over K with boundary d, the boundary § in X* is defined
by
8(€) (x) = (— 1)derert £d(x), xe X, Ee X* (2.3)

H(X*) = H(X)* and H(X*)* = H(X). If X and Y are complexes, then
HX)QHY)=HX®Y).

By an algebra will be meant an augmented associative K-algebra, the term
quasi-algebra being used for a not necessarily associative algebra. Similarly,
coalgebra will mean augmented coassociative K-coalgebra, and quasi-
coalgebra will mean not necessarily coassociative coalgebra. If .4 is an algebra,
a K-module M may be given a structure of left /I-module either by K-mor-
phisms ¢ : 4, & M, — M,,, or by K-morphisms ¢ : 4, M,—M,_,.
We must allow the second type of .d-module structure for the dual of a left
A-module to have a natural structure of right -J-module. We note that the

following are functorial equivalences on right 4-modules NV and left 4-modu-
les M:

n:(NX, M)* = Hom, (N, M*), n(f) (n) (m) = f(n & m), (2.4)

and

7 (N ®,4 My* > Homy, (M, N¥),  5(f) (m) (n) =
(— lytesmdesn f(n @y m).  (2.5)

If A is both a complex and an algebra, then A4 is a differential algebra if
d(xy) =d(x) y + (— 1)%8= xd(y). If M is both a complex and a left 4-module,
then M is a differential 4-module if d(xm) = d(x) m - (— 1)9¢8% xd(sm).
Differential coalgebras and comodules are defined dually.

The reader is referred to Milnor and Moore [/2] for the definitions and
properties of (graded) Hopf algebras, Lie algebras, and restricted Lie algcebras.
We state here a version of the Poincaré-Birkhoff-Witt theorem which will be
needed in section VI,

THeOREM 1. Let L be a Lie algebra or a restricted Lie algebra over K.
Let Z(L) denote the universal enveloping algebra U(L) or V(L). Filter Z(L) by
FZ(L) =041 <0, FZ(L)y = K, F,.Z(L) = K + L, and F,Z(L) = (F\Z(L))
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if i = 1. Let L7 denote the underlying K-module of L regarded as an Abelian
Lie algebra, restricted with restriction zero if L is restricted. Since U(L¥) is the
free commutative algebra generated by L and

2 EALY) L 3 B L),

there is a natural map E°Z(L#) - E°Z(L). This map is an isomorphism of
Hopf algebras, and it follows that Z(L) and Z(L*) are isomorphic as K-modules.
A proof of the theorem may be found in [/0].

3. Tue Bar anD CoBAR CONSTRUCTIONS
In this section, A will denote a fixed algebra over K. e : 4 — K will denote

We recall the definition of the two-sided bar construction. Let
B(4, 4) = A ® T(sl(4)) ® A, where sI(A) denotes a copy of I(A) with all
elements being given a second degree, the (homological) dimension, of one.
We write elements of B(A, 4) in the form afa, | - | a,] b Define
€:B(A,4)—~>A by e@a[ ]b) =ab and e(ale, ] --]a,]b) =0. Define
s:B(A, A)— B(A4, 4) and o : A — B(4, 4) by

s(ala, " la)b) =[a a | |a)b;  ola) =[]a (3.1
Define ¢ : B(4, 4) ~— B(A, 4) and 7 : 4 — B(A4, A) by

aalay | @) B) = (— 1) aofay | = @, 5],
p=Dldega, + 1) (@) =al ] (32)

Now define d:B(A4, A)— B(A, A) by either ds +sd =1 —oe or
dt +td =1 — e, and by requiring d to be an A-A-bimodule morphism,
d(axb) — (— 1)%e2e qd(x) b, x € T(sIA). Explicit calculation shows that the
same differential is obtained by either definition, namely:

1
dlay | | @] = afas| - | a,} — A (— DM [ay | -l ag@q | a,]

. (77 1)/\(71—1) [al ! % an—l] a, , (33\

n

||
—

where

Ai) =i+ Y dega, =degfa |l a].
j=1
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Let M be a left, N a right A-module. Since s is a morphism of right
A-modules, B(A4, M) = B(4, 4) ®,M is an A-free resolution of M.
Similarly, since ¢ is a morphism of left 4-modules, B(N, 4) = N ®, B(4, A)
is an A-free resolution of N. Let B(N, M) =N &, B(4, 4) ®, M. We
define the homology and cohomology of A with coeflicients in M or N by:

H (4; M) = H(B(K, M)) = Tor" (K, M)

H(4; N) = H(B(N, K)) = Tor* (N, K). (3.4)
H*(A; M) = H(Hom,(B(, K), M)) = Ext, (K, M)
H*(A; N) = H(Hom,, (B(K, 4), N)) = Ext, (K, N). (3.5)

We abbreviate H (A) = H (4, K) and H*4) = H*(4, K). Here K
may be regarded as either a trivial left or a trivial right 4-module, since 2.4
and 2.5 imply functorial equivalences

H*(A; M*) ~ H(B(K, M)*) ~ Ext, (M, K).

Choosing bases for I(A)* and M* dual to given bases for /(4) and M and
noting that C(K, M) = T(sI(A)*) & M*, we may write elements of C(K, M)
in the form [oq | >+ | o] p, oy € L(A)*, p € M*. Using 2.2 and 2.3, we find
that the coboundary on C(K, M) is given by

8oy |+ [l g = — 2 (— DM oy [ = Lo [ [ o ] o

=1

By

= (= DA o e o P, (3.6)

where
Ni) = degog | 1ol A 1) = deg oy | = | o, | &'

Here the coproduct ¢* on I(A)* is given by ¢*(;) = 2 o' ® « and the
A*-comodule structure ¢,,* on M* is given by ¢, * (1) = X o’ @ pn’, where
in both cases the index of summation is understood and in the formula for 8,
summation over each such sum is understood. C(K, M) is of course the
cobar construction.

For the remainder of this section, we suppose that 4 is a Hopf algebra
with coproduct . In this case we can give B(A, A4) a structure of differential
coalgebra. We use 4 to give B(A, A) a structure of A-A-bimodule. If we let
0=d®1+1&®dand € =¢ e then B(4, 4) © B(A4, A) becomes an
A-A-bimodule complex over A R A If S=s® 1+ e Xs, ¢ =R o,
T=tX®1e+1X®1? and 7" =7X +, then both S& 4+ 0SS =] — o€
and 8T + 10 =1 —7'¢’. Define D :B(4, A)— B(4, A) & B(A4, 4) by
either Ds = SD or Dt = TD, by D[] =[] ® [ ], and by requiring D to be
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an A-A-bimodule morphism. Explicit calculation shows that the same D is
obtained by both definitions and that 8D = Dd. D is given by

7

l)[d \ ‘ a?’l] — 2( _ l)u(7) [al/ [ arll (l;+1 an/
r=0
@ | al, (D)
where
w(r) = 2 deg aj dega,” -+ 2(7‘ — {) deg a; + 2 (j -~ r)ydegay.
i< i1 j=r+1

Here (a;) = X a;/ & aj, the index of summation being understood, and
summation over each such sum is understood in the expression for D. We
remark that D may be considered as the composition:

B(d, 4) 5> BA® 4, A® A) 5 B4, 4) @ B(A, 4),

where f is induced in the obvious way by ¢, and where g is given by for-
mula (3.7) under the interpretation a, = &, X a; (with no summation); of
course g is defined for any augmented algebra.

D induces a coproduct on each of B(4, K), B(K, A), and B(K, K). The
coproduct on B(A4, K) agrees with that defined by Adams [/, p. 35]. If M is a
left A-module, D induces a structure of left differential B(K, K)-comodule on
B(K, M). Then H,(A; M) becomes a (left) H ,(A)-comodule.

Dualization gives C(K, M) a structure of differential left C(K, K)-module.
The product is denoted by U and is given by:

[y [ fan] VBl [ Bl = [ | T By| [ Bl (3.8)

This cup product of cochains induces a structure of (left) H*(4)-module on
H*(A; M*). The dual of the H*(4)-module structure on H*(A; M*) is
the H ,(4)-comodule structure on H(A; M).

Note that the product (3.8) actually commutes with the differential even
without the assumption that 4 is a Hopf algebra. When 4 is a Hopf algebra,
the resulting product on H*(A4) is commutative.

4. 'THE SPECTRAL SEQUENCES
In this section, A denotes a filtered K-algebra and M a filtered left 4-mo-

dule. If M is any A-module, M may be filtered by F,M = (F,4) - M. We let
E%M denote the associated bigraded E°4-module of M,

F,M
0 M = (—2 ) .
rp,a ( Fﬂ—l]u )p+u
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We assume that for N = 4 and N = M:

FN=N if >0, F,A4-IA4), ad (FN=0 41
D
or

F,N=0 if p<0,  FAd-K, and | JF,N = N.
P (4.1)

Under these hypotheses, we can obtain a spectral sequence passing from
H . (E°4; E°M) to H.(A; M). Let B(A4; M) denote B(K, M). Filter
B(A; M) = T(sI(4)) ® M by

F,B(A; M) = F, [(A) & - @ F, I(4) © F, M summed

over all sequences {p,, -, p,} such that n + El’z <p

i=0

and, in case (4.1), pp < 0 and p; << — 1 for £ > 0. (4.2)

Since F, A - F,A CF, A, it is clear that d(F,B(4; M))CF,_B(4; M), so
that E° = E1 in the resulting spectral sequence. We consider the spectral
sequence to commence with E', and we denote the rth term by E7(M),
r = 1. (The symbol E°M will continue to denote the associated bigraded
module of M). Observe that EY(M) is trigraded, with

F.B, (A; M
E;‘q't(M) — [ » p+q( ) ]t’

Fp—prJrq(A > ‘M)

where p + ¢ is the homological dimension. As a K-module, we may identify
E} . (M) with B, (E°A; E°M)_,,,,, where B, (E°A; E°M) has its
natural bigrading. It is convenient to regrade B(E®A; E°M) by

B(EOA; EUM)P;Q.! = BP+G(EOA; EO[W)HQ.C}Lt ’

and then EYM) = B(E°A; E°M) as a trigraded K-module. By using the
definition of the differential in the bar construction (formula 3.3), it is easily
verified that the differential in E(M) is the same as that in B(E°4; E°M).
It follows that E¥ M) = H ,(E°A; EOM) (with the appropriate grading). Thus
we have

Tueorem 3. Let A be a filtered K-algebra and M a filtered left A-module.
Suppose A and M satisfy (4.1) or (4.1'). Then the filtration (4.2 ) of B(A; M)
gives rise to a spectral sequence {ET(M )} which converges to H ,(A; M) and satis-
fres:

Eﬁ,q.t(M) = erq(EOA; EOM)Aq,q—H :
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Proof. We need only observe that (4.1) or (4.1') implies that the filtra-
tion (4.2) is finite in each degree and that the spectral sequence therefore
converges.

We now obtain the dual spectral sequence passing from H*(E°4; (E°M)*)
to H*(A; M*). FPN* = (N|F,_ N)* defines a filtration on N*, N = 4 and
N = M, and the resulting associated bigraded objects are (E°4)* and (E°M)*.
Let C(4; M) denote B(A4; M)* and filter C(A; M) = T(sI(A4)*) & M* by

FrC(A; M) = FrI(A)* & - & Frl(A4)* & Frod* summed

n
over all sequences {p,, -, p,| such that n | El’i =p

2=}

and, in case (4.1}, po =0 and p, = 1 1f £ > 0. (4.3)

This is equivalent to FPC(A; M) = [B(A; M)/F,_B(4; M)]*. E, = E,
in the resulting spectral sequence. We consider the spectral sequence to
commence with £} , and we denote the rth term by E (M), » = 1. Trigrading
C(E°A; E°M) by ClE°A; E°M), , ¢ = [B(E°A; E°M),, , ,]*, we find that
E(M) = C(E*A; E°M) as a trigraded K-module. It is easily verified that the
differential in E,(M) is the same as that in C(E°A4; E°M). Therefore

Ey(M) = H*(E0A; (EM)*)

(with the appropriate grading).

Arguing as in Massey [6], we find that each E,(M) is a differential F£,(K)-
module. Clearly this structure is dual to an ET(K)-comodule structure on
E7(M). The spectral sequence {£,(M)} converges to H*(4; M*), regarded as
an H*(A)-module. This means that if E°H*(A; M*) denotes the associated
graded object of H*(A4; M*) with respect to the filtration

FrH*(A4; M*) = Image [H(FPC(4; M))],
then
E (M) = EH*(A; M*)

and the K (K)-module structure on E,(M) agrees with the E°H*(A)-module
structure on EOH*(4; M*) obtained by passing to quotients from the 7*(A)-
module structure on H*(A4; M*). Summarizing, we have the

TaeoreM 4. Let A be a filtered K-algebra and M a filtered left A-module.
Suppose A and M satisfy (4.1) or (4.1"). Then the filtration (4.3) of C(A; M)
grves rise to a spectral sequence {£,(M)} which satisfies:

(i) Each E(M)is a differential E,(K)-module.
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(it)y Ey(M) = H*(EA; (E°M)*) as a module over Ey(K) = H*(E°A).
(i) {L(M)} converges to H*(A; M*), regarded as an H*(A)-module.
(1v)  The spectral sequences {E"(M)} and {E (M)} are dual to each other.

5. TeE HomoroGy oF LIE ALGEBRAS

In this section, L will denote a (graded or bigraded) Lie algebra over K and
U(L) will denote its universal enveloping algebra.

We will construct a U(L)-free resolution of K regarded as a trivial right
U(L)-module. As a K-module, our resolution will be Y(L) = Y(L) ® U(L),
where Y(L) = I'(sL-) & E(sL*). Here I' denotes a divided polynomial algebra
and E an exterior algebra. L~ denotes the K-submodule of L. consisting of the
elements of odd (total) degree and L+ denotes the K-submodule of even degree
elements. sL denotes a copy of L with all elements being given a new degree,
the (homological) dimension, of one. We adopt the convention that L+ = L
and L= 1s void if 2 = 0 in K.

In the next section, we will rely heavily on the fact that Y'(L) can be given a
structure of differential K-algebra. Our procedure will be to first define an
algebra structure on Y(L) and then to impose the appropriate differential.
The author is indebted to W. S. Massey for suggesting the approach to be
followed in this section.

It should be more or less clear that the standard algebra structure on Y(L)
is not appropriate for our purposes. We will need the concept of semi-tensor
product, introduced by Massey and Peterson [7], and defined as follows.
Suppose B is an algebra over a Hopf algebra 4. This means that B is a left
A-module and that the product on B is a morphism of 4-modules, where the
coproduct i on 4 is used to define the A-module structure on B %) B. Then
B % A may be given a product by the formula:

(@) (by ®ay) (b, ® ay) = 2 (— 1)degnqdegb2 by(ay'by) & aja,,
where
Play) = 2 ay @ ay .

The resulting object is an algebra called the semi-tensor product of B and A
and denoted B (O 4. A proof that the product is associative may be found
in the cited paper of Massey and Peterson. B and 4 are imbedded as sub-
algebras of B O Aviab—5b ® 1 and a — | & a. The product is completely
determined by the formula for (1 @ @) (b ® 1), where a and b are indecom-
posable elements of 4 and B, and by the products on 4 and B.

To apply this concept to Y(L), we must give ¥(L) a structure of algebra
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over the Hopf algebra U(L). If suflices to define u{y and wuy,(x) for u €L,
€ E(sL*) and y,(x) € I'(sL~). Then the definition is extended to Y(L)
by

(b)  uzy3, == (uz) 2y + (— Ddeswdesziz (uzy)) 2, ¢ V(L) uel.

To simplify statements, we will sometimes write sz for an element of ¥(L)
of dimension one. Now define

() wiy = (- DIefu vl ) = (— Dy, (x) s[u, ]

It 1s easily seen that (b) and (c) are consistent on y(x) y,(x) == (2, J) v, ().
We must prove that (b) and (c) define a structure of L-module on Y(L), that is,

uy(uy) — (— lylesdedus () 2y = 1y, uy) 2, ze Y(L).

Using (b), we find that it suffices to prove this for ¥ = (v and 2 = ().
In these cases, the result is obtained by explicit calculations using the Jacobi
identity:

(= D7 [ [0 2]+ (= D [s, 2]+ (= D™ e, [x, 0] = 0,
Xy, 2el, deg x == p, degv =g, deg z = 7.

Since L(L) is primitively generated, the elements of L being primitive, it
follows that (b) and (c) do give ¥(L) a structure of algebra over the Hopf
algebra U(L).

Now Y(L) may be considered as the K-algebra Y(L) &> U(L). We identify
¥(L) and U(L) with their images in Y (L) and write the product by juxta-
position. Thus the symbol uz, u € U(L), » € Y(L) will henceforward mean
the product (1 @ u)(z @ 1) in V(L) ¢» U(L) and not the U(L)-module
product in Y(L), the latter structure being of no further direct concern to us.
We can now state the following lemma and theorem:

Levva 4. Y(L) may be given an algebra structure by requiring the product
to agree with the natural one on Y (L) and on U(L) and to salisfy the relations:

u‘fiy> i (, l)degu <"y‘> U — ( _ l)degu S[u,}’], u GL,
Jyr sy eslt. (5.1

uyr(x) - '}’r(x) u - (— l)degu yooa(¥) s(u, ], uel,
yx) = sx e sL—. (5.2)

Y(L) may be given a Hopf algebra structure with coproduct D by requiring
D to be a morphism of algebras and to agree with the natural coproduct on ¥(L)
and on U(L).

Proof. 'The lemma correctly describes the algebra Y(L) = Y(L) & U(L),
relations (5.1) and (5.2) following from (a) and (c).
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TueOREM 5.  Define a differential d on Y(L) by
d(ab) = d(a) b + (— 1)4°&* a d(b), a,be Y(L), (5.3)

and

d(u) =0, d<y> =% d)"r(x) == Vr-l(x) X — %'}’r—z(x) <[V’ x]), (5-4)
where u € U(L), {y) € sL*, yy(x) e sL~, and y_;(x) = 0.

Then Y(L)is a U(L)-free resolution of K, and is also a differential coalgebra
over U(L).

Proof. d is easily seen to be well-defined, that is, d is consistent with
relations (5.1) and (5.2). Clearly d and D are morphisms of right U(L)-modu-
les. Explicit calculation gives d? =0 and Dd=(d® 1l + 1 ®d)D on
generators of Y(L), noting for the latter that

Dy =<y @1+ 1@y
and

Dy,(x) = 2, yidx) @ y,(x).

itj=r
It follows that @* =0 and Dd =(d ® 1 + 1 ® d) D on Y(L). We omit the
proof of exactness, as it is quite similar to that given in Cartan and Eilenberg
[3, p- 281] for the classical case of Lic algebras concentrated in degree zero
and to the proof to be given in the next section for restricted Lie algebras.
We remark that Y(L) is a differential Hopf algebra over K, but is not an

algebra over U(L). Had we started with Y(L) = U(L) () Y(L), the lemma and
theorem would still be true precisely as stated. An explicit formula for d is
easily obtained. Let f = Yr(%1) v (Xm) and g =<3y, =+, ¥,> denote
typical elements of I'(sL~) and E(sL*). Let f; result from f by replacing 7,
by r; —1,and let f; ; = (f;);,  <<j, unless i == j and r; -= 1, when f; ; = 0.
Let g, result from g by omission of y,, and let g, ; = (g,); , ¢ << j. With this
notation, we have:

o) = 2 7 fei 4 (17 D f,

(o D 2l D)
je=1

(=0t D gl

i< j<im

(- D (= 1 e Ky, v

1< jin

(= fir(lxs» v3D) &5 - (5.5)

-+

[\ZE
M:

||
—
i
—

=13
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6. Tue Homorocy oF RestrICTED LIE ALGEBRAS

In this section, K will be an algebra over Z,, for some prime number p.
L will denote a (graded or bigraded) restricted Lie algebra over K with
restriction (pth power) & : L= — L=, }'(L) will denote the universal enveloping
algebra of L. Recall that (L) = U(L)! ], where [ is the ideal in U(L) generated
by {y" — &) iy el'}. ~

Let W(L) = Y(L) < V(L). Recalling the definition of Y(L) as an algebra
over the Hopf algebra U(L), it is easily verified that ] - Y(L) = 0, and there-
fore Y(L) may be considered as an algebra over the Hopf algebra I'(L). Then
W(L) has an algebra structure as the semi-tensor product Y(L) O V(L).
Lemma 4 is true with W(L) replacing Y(L) and I(L) replacing U(L). If we
define a differential on W/(L) by 5.3 and 5.4, W(L) becomes a V(L)-free
complex over K, and 5.5 remains valid. (L) is a coalgebra over V(L) and a
Hopf algebra over K. W(L) is not a resolution of K since {y 3771 — (&)
is a nonbounding cycle, y € L+. We wish to enlarge W(L) to obtain a resolu-
tion. Let sz’ denote a copy of L+ with degrees multiplied by p and with
all elements having (homological) dimension two. As a K-module, our resolu-
tions will be

X(L) = I(s*=L*) @ W(L)

and, writing § = s®zy, we will have

dyy(F) =yt — L&)

If L is Abelian with restriction zero, then
H(V(L)) = I(snL") @ F(L),

and therefore no smaller resolution could be obtained canonically.

The construction® of X(L) is a simple application of the theory of twisted
tensor products developed by Brown in [2]. We recall the dcfinition. Let B
be a differential coalgebra with coproduct D, let G be a differential algebra
with product o, and let F be a left differential G-module with module product
0. Let R = Hom (B, G) and give R a structure of differential algebra with
differential 8 and product U defined by

8(r) (b) = d(r(b)) + (— 1)%ee 1 #(d(b)) (6.1
and

(r Ur)(b) = n(r @ 7r) D). (6.2)

3 The construction of X(L) given here replaces that outlined in [8]. N. Shimada
pointed out an error in the previous construction.
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Then give B X F a structure of left differential R-module with module pro-
duct M defined by

rnGRf)=1%)(1rQNHDD1)GD]) (6.3)

The statement as to differential algebra and module structure on R and
B ) F are easily proven by verifying the identities:

(ruryur =ru(r ur, (6.4)
S(r Ur) =8(r) Ur + (— 1)3ery U 8(r), (6.5)
Fur)NGERf)=rn@ NnERY), (6.6)

and
dr N Rf)=8r) NBXRSf)+ (=D r ndb®f). (6.7)

Now let t ¢ R, so that t,: B, —> G, ;,n = 1.
Define d,: B@QF—~ B XF by

dib Rf) =db R f) +t N (bR). (6.8)

Using (6.6) and (6.7), wefind d2(b @ f) = (8(t) + ¢ V) N (b X f). tis said
to be a twisting cochain if et; =0, ¢ : G— K, and if 8(t) + ¢t U t =0, that
is, if

n—1
dt, + t,ad + Dt UL, =0, >l (6.9)
i=1

Then B X F furnished with the differential d, is called a twisted tensor pro-
duct and 1s denoted by B &), F.

Under additional hypotheses on B, F, and G, we can formulate a procedure
for defining a structure of differential quasi-coalgebra on B &), F. First, give
F ®F a structure of left differential G X G-module with module product
(e ®a)(1 R T 1) where (# ®7)(1 @ T & 1) defines the product on
G ® G. Thenif S = Hom (B, G & G), we can give B X) (F (X F) a structure
of left S-module precisely as above. Now suppose that F' is a differential
coalgebra and define

A:SRXBRF)—>BRXFXRBRF
by

AP ) =1 R TRXND @11 (s N (&R D(f)). (6.10)
Then A is a morphism of complexes, that is,
d(sAb @ 1) = 3(s) A D) + (— Diesssdd(b @ ). (6.11)

Of course, the tensor product of coalgebras is a coalgebra with coproduct
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(1T ® (D& D). Suppose that G is a differential Hopf algebra and

that F is a left G-module coalgebra, so that
FEMUARXTHNDRD)=Dr: GGG G

and

(@) (1 RTH)DRD)=Do:GRAF~FQF.

Let ¢, ¢,, and ¢, denote the morphisms of diflcrential algebras R -— N
defined by ¢(r) (8) = D(r(0)), ¢,(r) (6) = | Cw(b), and P(r) (b) = #(b) & 1.

Tedious calculations then yield

D(r N (b)) = p(r) A(b 5, _ (6.12)

A O (b f)) = (s U ) Al ), (6.13)

(L@ 1 @7 ) DB @) = dlr) Ab ), (6.14)
(1@ 1 @7 M) (A ©) =@ U A, (6.15)

and, provided that B is cocommutative,

(r G ) DB ) A A ), (6.16)
and

(r O @) (Ab ) — @Gl U AB RS (6.17)
Now let s € 89, 5, : B, — (G (& (), , and suppose 5, = 0. Define

D,=D +sA:B&F (B, F)x(BxF).
If G is a Hopf algebra, F is a left G-module coalgebra, and B is a cocommuta-
tive coalgebra, then, letting ¢ = ¢ — ¢, — ¢, , formulas (6.10) through (6.17)
imply:
(@ @1+ 10d)D, — D) (b /)

= [3(5) (1) — s VD) + b0 Us + (1) U] A @),

We say that s is a t-twisting coproduct if the bracketed element of .S vanishes,
that is, if

S(Sn) == %(tn) + n—i (si v ‘i)(tn—i) - (}sf(tngi) s - qﬁ,,(f,7,,L) U .5‘1-), (618)

and then D, gives B (X, F a structure of differential quasi-coalgebra.

To apply this theory to the construction of X(L), we let B == I'(s*zL™),
G = Y(LY), and F -= W(L). I'(s*xL*) is given its natural coproduct and zero
differential. The left differential Y(L*)-module structure on W(L) is deter-
mined by the epimorphism of differential algebras ¥Y(L*) —> W(L*¥) and by
the algebra structure of W(L). We must define a twisting cochain
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t: I(s2aL*t)y — Y(L*), that is, we require t,: [y(s?wL?)— Y, (L") satis-
fying (6.9). (Of course, , is to be of degree zero with respect to the grading
derived from that of L.) Note that 7, = 0 if # is odd, since I (s*zL*) is then
Zero.

LeMMA 6. There exists a twisting cochain t: I'(s*wL*) — Y(L*) such that
() =<yt =Ly, yeln

Proof. We must define #,,, # 2> 2, so as to have dt,, = —r, where

1
7 o= 2 to; U ty(n_s) -
i=1

Suppose inductively that #,; has been defined for 7 < n. Since Y(L*) is
acyclic, 1t clearly suffices to prove that d(r()) = 0 for all b € I, (s*#L1). We
have

n—1 n—1
dr = 2 dty; Ity - 2 ty U dlyrs)
i=1 =1

n-1i-1
=dly, Uy — 2 2 Ly M ey Y latien
=2 k=1

2 n—i-—-

|
[

b

1
=ty Y dly 1 by Uity Vi)

™

t
7= A=l

=dty Uty - bapy Yy

Now since I'(s>zL*) is cocommutative and since diy(y;(§)) = v* — &(y), we
easily see that for any b € Iy, (s*zL*), dr(b) is a sum of commutators of the form
[y? — &(y), 2], 2 € Y(L*). But for 2 € L, we have:

[y, 2] = (ady)” (z) = [£(¥), =]

and, using (1) of the previous section,
[v7, z0] = ady)” (2); = <[€(), 5] = [€), <),

where (ady)?(z) = [y[y[--- [y, 2] ---]l], P factors of y. Thus y” — &y) is
central in Y(L*), and it follows that d(r(8)) = 0, as was to be shown.

Since Y(L*) is a differential Hopf algebra, W(L) is a left Y(L*)-module
coalgebra, and I'(s*zL*) is a cocommutative coalgebra, it makes sense to
seek a f-twisting coproduct s : ['(s*7L*) — Y(L*) & Y(L*). Again, we must
have s, = 0 if z is odd.
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Levma 7. Let t:I(s*nL*t)— Y(Lt) be a fwisting cochain such that
Lo(yy(F)) == (v y" L — {&(y)), y eL+. Then there exists a t-twisting copro-
duct s : I'(s*>nL*) — Y(L*) & Y(L?) such that

p—1

(@) = 2, (— Py @ pyrt, yelr
i=1

Proof. An easy calculation gives dsy(y,(#)) =d(%) (vi(F)). We must
defines,, ,n = 2, satisfying (18). Suppose inductively that s,; has been defined
for i << m, n = 2. It suflices to prove that d(u(b)) = 0 tor all b € Iy, (s*=L+),
where

n—1

u :$(t277) -+ 2 (521’ qu(fz(lwi)) (l‘sl(t2(n—i)) U sy - (;Sr(t?.(n_?')) v szi)'

i==1
A long, but straightforward, calculation proves that

du = Syyy Y Pdty) — PAdty) U samyy — bildls) U S0y -

Now dt,(y, (7)) = v* — &(v), which is primitive in U(L), hence
P(dly) = $(dly) — ¢,(dty).

Therefore, for any b € Iy, (s*7L+), du(b) is a sum of commutators of the form
[~ €@ T -+ 1RO — ) 2 @] 5= e V(LT QO Y(L).

The fact that y» — &(y) is central in Y(L*) implies that (v — &(y)) (9 I and
1 @ (v — &) are central in Y(L*) & Y(L*), and it follows that du(b) is
zero for all b.

From now on, we suppose given a fixed twisting cochain ¢ and ¢-twisting
coproduct s on I'(s*7L*), and we let d and D denote the differential d; and
the coproduct D, on I'(s*zL ') (0, W(L). We supposc that ¢ and s are so chosen
that ¢(6) = 0 if 7(b) = 0 and s(b) — 0 if w(h) = 0, where r and u are the maps

defined in the proofs of the lemmas above.

TueoreMm 8. Let X(L) = X(L) ® V(L), X(L) = I'(s®*zL*) @ Y(L), and
regard X(L) as the twisted tensor product I'(s*ml*)y 0, W(L). Then X(L) is a
V(L)-free resolution of K, and is also a differential quasi-coalgebra over V(L).

Proof. It is easily verified that d and D are morphisms of right V(L)-
modules, and it remains to prove that X(L) is acyclic. We will first filter X(L)
in such a manner that E9X(L) in the resulting spectral sequence is X(LH,
where L¥ is the underlying K-module of L regarded as an Abelian restricted
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Lie algebra with restriction zero. For convenience, if L is bigraded, we
regrade it by total degree. Give V(L) the filtration defined in Theorem [ and
filter X(L) by
FRL) = & Tuenl') @ VL)

pm4n i

Then define
FX(L)= o FXL)®FVL),
i+i=u

and filter Y(L*) similarly. It is easy to see that ¢, and therefore d, is filtration-
preserving. In fact, an examination of the definition of ¢ shows that

t(ri(F) = <> y* ! mod F,_, Y(L)

and
tom( (2L *)) = O mod F,,, _, Y(L*) if m > 1.

Now define
F, X, (L
Eg,v,tX(L) = ( = ( ) )!

Fu—lXu+1)(L)
and then regrade by
ELXL)= @ Ei,.X(L)
utv=n

By Theorem 1, V(L¥) = E) X(L), and we therefore find that
E°X(L) = X(L*) as a K-module. Inspection of the differentials in E9X(L) and
X(L*) shows that we actually have E°X(L) = X(L¥) as a complex. It remains
to prove that H(X(L)) = K under the assumption that L is Abelian with
restriction zero. In this case, the differential in X(L) is given explicitly by

the requirement that X(L) with its natural algebra structure be a differential
K-algebra and by d(u) = 0 if u € V(L),

dyr(x) = )’rAl(x)x lf X EL*’
and

dy> =y and  dy(F) =y, oyt if yel+

We will prove the result by obtaining a contracting homotopy s: X(L) — X(L).
Suppose first that L has one generator v € L+ = L. Define:

s(1) =0

sty ) =vH <y 0<d, 1<j<p—1
styd(F) <>y =0, 0<s, 1<j<p—1
(D) < ") =via(@),  0<i

(yisa(F) =0, 0 <

481/3/2-2
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Clearly s satisfies ds + sd = ¢ — € (where 7 is the identity and ¢ is the aug-
mentation X(L) — K followed by the inclusion K — X(L})). Next, suppose
that L has one generator x € L= = L. Then s(1) = 0, s(y{(x)x) == y,,(x) and
S(yra(x)) = 0, 7 >0, defines the desired contracting homotopy. Now
suppose L =L, ®L,, where L; has dimension one. As a complex,

X(Ly), s @ 1 + € (% s defines a contracting homotopy on X(Z). By finite and
transfinite induction, this completes the proof.

COROLLARY 9. There exists a spectral sequence {E"L} of differential coalge-
bras which converges to H (V(L)) and satisfies

EL = [(s*=L*) 0 H (U(L)).
The dual spectral sequence {E,L} of differential algebras converges to H*(V (L))

and satisfies
EoL = P((s*rL+)*) ¢ H*(U(L)).

Proof. Filter the complex X(L) = X(L) 0 1, K by

FXAL) = @ Dolstnlt) @ Voon(L).

m<i

Observe that the operations ¢ M and s A lower filtration by at least two.
Thus if {E7L} denotes the resulting spectral sequence, we have

EOL = T(s*nL*) 6 V(L)

as a differential coalgebra. Since the homology of ¥(L) is H,(U(L)) and
d; = 0, the result follows. Note that the quasi-coalgebra structure on X(L)
gives rise to a coassociative coproduct on cach E"L.

Remarks 10. If char K — 2, X(L) takes on a quite simple form. An easy
calculation proves that

Ay, % [y, 5 = (L V1) (n(P) n(®), 3, sel =L~
Thus
tn(P n®) =5 [y, and (7)) = 0.

Further, f, U t, + t, U t, = 0, hence we must take 7, -= 0 if n > 4. Another
computation shows that we may define a t-twisting coproduct s by:

s(7r1(y~1) T 'yrn(j)n)) =0
unless each r; = 1 when

5(71(5)1) ’yl(yn)) = Y1y Vo 50 {1  Vn -
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Now X(L) = I'(s*>zL) ® E(sL) is naturally isomorphic (as an algebra) to
I'(sL) via the map {y> —> y;(¥) and y,() = ya(»), y € L. Identify X(L) with
I'(sL)and let f = vy, (y1) =+ 7 (¥n) denote a typical element. Let f; result from
fby replacing r; with#, — 1,and letf; ; = (f;); , 7 <j, unless¢ = jandr; = ]
when f; ; = 0. Then we find that 4 is given explicitly by:

d =S Dhano) + 3 fum@ord. 619

1o jan

The coproduct turns out to be the natural one:

D) =TI Pl where Dyl = 3 7 @) (620)

i+ joor
In particular, X(L) is coassociative in this case.

Remarks 11. 1f char K > 2, explicit determination of ¢ and s in the
general case is prohibitively difficult. The complex X(L) is usually most
efficiently studied by means of the spectral sequences of Corollary 9. This is
particularly true since D is not coassociative. In fact, we find that
Lon(va(3)) = 0 and sy, (y,($)) = 0 if # > 1, and we then see that

7. EMBEDDING OF RESOLUTIONS IN THE BAR CONSTRUCTION

In this section, 4 will denote a K-algebra, B(4) = B(A4) %) A will denote
the right bar construction of 4, that is B(A4) =: B(K, A4) in the notation of
section /1/. The differential d and contracting homotopy ¢ in B(A) are
derived from formulas 3.2 and 3.3, and, if 4 is a Hopf algebra, B(A4) has the
coproduct D given by formula 3.7. We will find sufficient conditions for
an A-free complex over K to be canonically embeddable in B(A4). The result
will be used to embed Y(L)in B(U(L)) and X(L) in B(V(L)), where Y(L) and
X(L) are the resolutions obtained in the previous sections. We will need the
following property of B(A).

Levma 12, Let x € Z,B(A) N Kere. Then there exists one and only one
y & B(A) such that d(y) = x, namely y = t(x).

Proof. Since d(x) =0 =e(x), x = (dt + td — 7€) (v) = di(x). If
v € B(A4) also satisfies d(y’) = x, then d(y") =0, y” =3y — #x). Since
Hy") =0 =¢e(y"), y" = (dt +td —7e)y" =0.



142 MAY

ProposITION 13, Let X = X ® A4 be an A-free resolution of K. Suppose
Xy = A and € : Xy— K is the augmentation of A. Then there exists a unique
morphism of A-complexes . : X — B(A) lying over the identity map of K and
satisfying W(X) C B(A). p is determined inductively by the formula v, - tu, ,d
on X, ,m > LIFd(X,) N X,_, =0 foralln -1, thenpisa monomorphism.

Proof. 'T'hat p is a morphism of complexes and is unique follows imme-
diately from the lemma. If d(X,) N X, =0 for all » >= 1, then since
B(4) = ker t, p, ,d(X,) N Kert — 0 and therefore p is a monomorphism.
We remark that u is the “‘canonical comparison’ of MacLane [5, p. 267].

Remarks [4. Suppose X satisfies all the hypotheses of Proposition 13.
Observe that cach of the following is a split exact sequence of K-modules:

k T
0— Z,X S Xy S5 K0,
and

k j
O - ZnXS Xn ij—* Bnng - 0’ n \ l .
i &

Here d =48 and o, j, and % are K-morphisms satisfying k¢ = [, § = [ and
ec =1, kjf =0 and ko =0, ik | 75 =1 and ik 4 oe =~ |. Let s = jk.
Then we have ds < sd - 1 -+ ge and s* - 0. We may define an epimorphism
of A-complexes v : B(A) — X by letting v = svd on B,(A), n > 1. Then
vp — | and therefore X is a direct summand of B(A) as an A-complex. Now
suppose A = U(L) or A == (L) and X' - ¥(L) of Section " or X == X(L)
of Section VI. The argument above applies. If M is a left 4-module, then
(v ¢, 1)* gives an embedding of (X 05, M)* = X* &) M* in

C(A; M) — B(A)* & M*.

If 4 is the associated graded algebra of a given Hopt algebra, it would seem
that this embedding allows direct computation of the differentials in the
cohomology spectral sequence defined in Section IV, However, the author
has not been able to obtain a canonical definition of s and therefore of v*,
and this procedure appears to be unworkable in the applications.

In order to obtain a more explicit description of the embeddings of Y(L)
in B(U(L)) and X(L) in B(F(L)), we need some further properties of the bar
construction. We define an (m, n)-shuffle to be a permutation 7 of the m + n
integers 1,2, ---, m -|- n that satisfies #(i) - =(j) 1f cither | =i <2 ] << m
or m+ 1 <7< j<m - n Using this concept, we define a commutative
product * in B(A) by [ ] * x = x and by

[al Poee ] am] * [am+1 [ am-HI] - 2(_ l)utﬂ) [aw(l) oo | an(m+n)]v (7-1)
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where the sum is taken over all (m, n)-shuffles and

— > deg[a,] deg[a,, ]

summed over all pairs (¢, m —+ j) such that #(f) = =(m —+ j), that is, such that
7 moves a; past a,.;. If A is commutative and B(A4) is regarded as
B(A4) ©, K, then B(A) is a differential K-algebra.

Now suppose L is a sub Lie algebra of {(4) and define V(L) = Y(L) ® 4
where V(L) = I'(sL~) ¢ E(sL*). We adopt the notation for elements of
V(L) given above formula (5) of section V, and then that formula defines a
structure of A-complex on Y(L). Define a monomorphism of K-algebras

i T(L)— B(4) by

p(fg) = (— U ] o Loy [m ok [g] 5 oo [y, (7.2)

where
[2,]7 = [, | - | x], r; factors x;,
and
m,
dimfg =n + 3 r;.
i=1

(Here f <=y, (x1) = ¥y (%), ¥, €L and g = (yy s v 000, 35 eL*). Extend
w to amap Y (L) — B(A) by requiring x to be a morphism of A-modules. We
will prove that the image of u is a subcomplex of B(4) and that p is a mor-
phism of A-complexes. It will follow by uniqueness that u is the map defined
in Proposition 13. If A4 = U(L), p is of course the desired embedding of
Y(L) in B(U(L)). We will need two lemmas.

Lemma 15, Let y € I(A) and suppose that either the degree of y is even or
2 = 01n K. Define A-morphisms «(y) and () of B(4) into itself by:

(0 e (@ la)) =Db]+la la) and

(i) B (| la]) =fa - ia]y - Z[al e ad [ fand
Then da(y) -+ o(v) d - B(¥) == 0 on B(A).

Proof. Let w(y) = da(y) + o(y)d — B(y). It suffices to prove that
w(y) = 0 on B(A). w(y) ([ 1) = 01is clear. Suppose that z(y) = 0 on B, ,(a)
and consider w(y)(2), € B(4), n = 1. w(y)(2) = (td -I- dt) w(v) (z). A

simple calculation proves that w(y) (2) € Ker ¢, hence it suffices to prove
tdw(y) (=) == 0. By the induction hypothesis,

dw(y) (2) == (d(y) d + d B(y)) (3) = (dB(y) — B(¥) d) (3)

Now explicit calculation shows that dw(v) (2) € Ker 1.
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Lemma 16, Let x € I(A) and suppose that either the degree of x is odd or
2 =0 in K. For each integer k == 1, define A-morphisms o, (x) and B(x)
of B(A) into itself by:

() (@) ([ar | 1 ap]) = [%]* x [ay | - | @]
(1) Bu®) ([ay |l an]) = (= W [« [ay [ | @)«
=[] x [%]*2 o @y | e | 4]

- Z( VU [t s [y | L [ @] | @i |0 T ag],

where
Ai) = deglay | -1 a].

Then do(x) — ap(x) d + B,(x) is zero on B(A).
The proof is analogous to that of Lemma 15. Note that x* = }[x, x] if
deg xis odd and 2 £ 0 in K.

Now we can prove the following theorem:

Tureorem 17. Let L be a sub Lie algebra of I(A) and let Y(L) denote the
A-complex I'(sL-) & E(sL*) & A. Define p: Y (L) — B(A) by formula (7.2).
Then p is a monomorphism of A-complexes and is therefore the map defined in
Proposition 13. If V(L) = Y(L) %, K and B(4) = B(4d) %, K, then
& : Y(L)— B(A) is a morphism of differential coalgebras.

Proof. Letf, g, f; and g, be as defined above 5.5. If y e L+, o v) and B(¥)
of Lemma 15 take the following forms on p(Y(L)):

o(y) p(f8) = — (¥ &) (7.3)

BOVRUR) = [for + 2follvawg + 2 (- fekln D] (04

If x e L, oy(x) and Bi(x) of Lemma 16 take the forms:

(%) p(fg) = (— 1) plyi() fg)- (7.5)
Bu(®) u(fg) = (— D! H[(* D" ya(x) fex g (— 1"y o) fgdls, 1]

(1 3 ) il D>

- i(’ 1y vk-l(x)fyl([x,yj])g;-] : (7.6)
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These maps satisfy the relations:

doy) = —o(y)d —By) and  duy(®) = o(x)d —Bix).  (7.7)

dp = pd is easily verified on elements of the forms (y) and y;(x). By using
induction on m - n, a comparison of formula 5.5 with (7.3) through (7.7)
proves that du = ud on Y(L). The fact that Dz = (& ® ) D on Y(L) follows
from the definitions.

We remark that the proof above is a generalization of that in Cartan and
Eilenberg [3, p. 277-281] for the case of Lie algebras concentrated in degree
zero. Were the sign omitted in the definition of x, we would have du == — pd.

It remains to discuss the embedding of X(L) in B(V(L)), L a restricted
Lie algebra. Suppose first that char K = 2. Identity X(L) with I'(sL) & V(L)
as in Remarks 10. Define a morphism of algebras w : X(L) — B(V(L)) by

pn() = v () = Dl e x [ya]n (7.8)

Extend p to X(L) by requiring u to be a morphism of J(L)-modules. Then
Lemma 16 may be used to prove:

THEOREM 18. Let L be a restricted Lie algebra over K, where char K = 2.
Define p : X(L)— B(V(L)) by formula (7.8). Then u is a monomorphism of
A-complexes. Further, ji : X(L) — B(V(L)) is a morphism of differential coalge-
bras, where

X(L) = X({L)©ypp K and  BF(L)) = BV(L)) @y, K.

If char K > 2, Theorem 17 gives the embedding of V(L) ® V(L) in
B(V(L)). Proposition 13 must be used to obtain the extension to X(L). Theo-
rem 7 tells how to compute ¢ on X(L), and the formula u = #ud on X(L)
allows the determination of u. For example,

tudy\(§) = — [y 13" wn(3) = =y 1y1)"
implies
Wyl 7)) = [y a7+ D,
which in turn implies
plyra(®) = — [y [y
Therefore
(@) = — [y 1y*" and w9 <) =y [y T D], (7.9

where [y | y" 1] =[x | y" 1| - |y y77Y, 7 factors of [y |y?~1]. Of course,
i : X(L)— B(V(L)) is not a morphism of differential coalgebras in this case,
and f(X(L)) is not closed under the coproduct of B(V(L)).
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