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We develop a deformation method for attaining new magnetic monopole analytical solutions consistent
with generalized Yang–Mills–Higgs model introduced recently. The new solutions fulfill the usual radially
symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify
our prescription by studying some particular cases involving both exactly and partially analytical initial
configurations whose deformation leads to new analytic BPS monopoles. The results show consistency
among the models, the deformation procedure and the profile of the new solutions.
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1. Introduction

In the context of classical field theories, configurations possess-
ing nontrivial topology are usually described as static solutions
to some nonlinear models [1]. In particular, these models usu-
ally allow for the spontaneous symmetry breaking mechanism,
since ordinary topological defects are known to be formed during
symmetry breaking phase transitions. Beyond that, in very special
cases, topologically nontrivial structures can be obtained by solv-
ing a given set of first-order differential equations [2]. In addition,
one also verifies that the solutions obtained this way possess the
minimum energy possible, since they saturate a given lower bound
for the total energy.

In this sense, the simplest topological defect is the static kink
[3] appearing within a classical model containing one single real
scalar field. Also, regarding higher dimensional scenarios, the ordi-
nary vortex [4] arises within a planar Abelian–Higgs model, whilst
the magnetic monopole [5] stands for the topological profile com-
ing from a (1 + 3)-dimensional non-Abelian–Higgs theory.

In addition, during the last years, topological solutions arising
within nonstandard field models have been intensively studied,
such models being endowed by noncanonical kinetic terms which
change the overall dynamics in a nonusual way. The interesting
point is that these theories engender topological configurations
even in the absence of symmetry breaking potentials for the mat-
ter self-interaction. It is worthwhile to point out that the idea re-
garding generalized dynamics arises in a rather natural way in the
context of the string theories. Furthermore, these new results have
been applied to many physical investigations, including the ones
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regarding the accelerated inflationary phase of the universe [6],
strong gravitational waves [7], tachyon matter [8], dark matter [9],
and others [10].

Recently, some of us have investigated the way the noncanon-
ical scenarios engender self-duality [11]. The overall conclusion is
that, in general, the new self-dual solutions behave in the same
way their standard partners do. However, within some particular
cases, unusual kinetic terms also change the shape of the engen-
dered profiles by inducing variations on the defect amplitude and
characteristic length. Many additional properties of such theories
and their solutions can be found in Ref. [12]. In particular, it was
also verified the way the generalized theories mimic the standard
results, the so-called twinlike models [13].

On the other hand, some years ago, some of us have intro-
duced a particular prescription, named the deformation method
[14], which allows for the calculation of new models starting
from well-established ones. The overall prescription relies on an
invertible and differentiable deformation function, to be chosen
conveniently. The method was initially proposed for the study of
(1 + 1)-dimensional theories containing scalar fields only. In this
sense, deformed solutions were already investigated within poly-
nomial [15], sine-Gordon and multi-sine-Gordon scenarios [16].
Besides, an orbit-based extension of such prescription was applied
to models involving two interacting scalar fields [17]. More re-
cently, similar calculations regarding the static domain walls aris-
ing in a noncanonical Abelian–Chern–Simons–Higgs model were
also performed [18].

In this Letter, we go further by introducing a deformation pre-
scription consistent with the generalized non-Abelian–Higgs model
firstly introduced in [19]. In order to present our results, this
Letter is organized as follows. In Section 2, we review the way
the nonstandard Yang–Mills–Higgs theory, that we consider as
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our starting-point, engenders self-duality. The non-Abelian fields
are supposed to be described by the usual spherically symmetric
ansatz, the corresponding solutions standing for BPS magnetic
monopoles possessing finite energy. In the sequel, in Section 3,
we attain our main goal by introducing a deformation prescrip-
tion consistent with this non-Abelian theory. Further, in Section 4,
we verify our construction by studying some particular examples.
Here, it is worthwhile to say that the prescription we have in-
troduced works very well for both totally and partially analytical
scenarios, the deformed configurations being well-behaved in all
relevant sectors. Finally, in Section 5, we present our concluding
remarks and perspectives regarding future investigations.

2. The basic model

We begin reviewing the investigation performed in Ref. [19],
whose starting-point is the (1 + 3)-dimensional Lagrangian density

L = − G(φaφa)

4
F b
μν F μν,b + M(φaφa)

2
Dμφb Dμφb, (1)

where F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + eεabc Ab

μ Ac
ν stands for the non-

Abelian field strength tensor, G(φaφa) and M(φaφa) are arbitrary
positive functions which generalize the overall dynamics of the
model. Also, Dμφa = ∂μφa + eεabc Ab

μφc is the non-Abelian co-

variant derivative and εabc is the totally antisymmetric Levi-Civita
symbol. The Lagrangian density above can be seen as the low en-
ergy limit of a supersymmetric field theory, involving non-Abelian
fields coupled to gravity [20]. It can be also considered as an effec-
tive field model describing the dynamics of non-Abelian fields in
a chromoelectric media whose properties are defined by the func-
tions G(φaφa) and M(φaφa) [19]. Along the Letter, we use standard
conventions, including the plus–minus signature for the Minkowski
space–time. For simplicity, along this Letter, all fields, coordinates
and parameters are considered to be dimensionless, and we fix
e = 1.

This work is devoted to the study of static uncharged (the
temporal gauge, Aa

0 = 0, satisfies trivially the Gauss law of the
non-Abelian model) configurations with spherically symmetric so-
lutions arising from (1), which can be implemented via the stan-
dard ansatz

φa = xa H(r)

r
, (2)

Aa
i = εiakxk

W (r) − 1

r2
, (3)

where r2 = xaxa . Consequently, the profile functions H(r) and
W (r) are supposed to obey the following boundary conditions:

H(0) = 0 and W (0) = 1, (4)

H(∞) = ∓1 and W (∞) = 0, (5)

guaranteeing the spontaneous breaking of the SO(3) symmetry in-
herent to (1). Thus, the functions H(r) and W (r) describe topolog-
ical solutions possessing finite total energy.

In Ref. [19], it was verified that the non-Abelian model (1) only
yields self-dual solutions when G(φaφa) and M(φaφa) satisfy the
following constraint:

G = 1

M
. (6)

In order to review the way the self-duality happens, we point out
that, when considering (6), the static energy density related to (1)
can be written in the form (already supposing the temporal gauge)
ε = 1

4M

(
F a

ik ± εikj M D jφ
a)2 ∓ 1

2
εikj F a

ik D jφ
a, (7)

with the Latin letters, i, k and j, standing for spatial coordinates.
The corresponding total energy is minimized by the self-dual equa-
tion

F a
ik ± εikj M D jφ

a = 0, (8)

the last term in Eq. (7) being the energy density inherent to the
self-dual configurations, i.e.,

εbps = ∓1

2
εikj F a

ik D jφ
a. (9)

Moreover, given the spherically symmetric ansatz (2) and (3),
the self-dual equation (8) provides

dH

dr
= ∓ P (r)

r2
, (10)

dW

dr
= ±M H W , (11)

where we have defined the auxiliary function P (r) as

P (r) = 1 − W 2

M
. (12)

Thus, the profile functions H(r) and W (r) stand for the solutions
of a set of two coupled first-order equations coming from the min-
imization of the non-Abelian total energy. Eqs. (10) and (11) are
the spherically symmetric BPS ones arising within the noncanoni-
cal Yang–Mills–Higgs scenario (1). Once the BPS equations (10) and
(11) are considered, the BPS energy density (9) reduces to

εbps = ∓ 1

r2

d

dr

(
H

(
1 − W 2)), (13)

whilst the total energy is

Ebps = 4π

∫
r2εbps dr = 4π, (14)

whenever the boundary conditions (4) and (5) are fulfilled.
In Ref. [19], for a particular choice of M , some of us have in-

tegrated the first-order equations (10) and (11) numerically by
means of the relaxation technique, the resulting solutions being
generalized self-dual magnetic monopoles possessing finite total
energy given by Eq. (14). In Ref. [21], one has investigated some
effective non-Abelian models for which the resulting BPS equa-
tions were solved analytically. These analytical profiles behave in
the same general way as the usual ones do, despite one of them
has presented a nonstandard ringlike BPS energy density (which
differs from the usual lump-like one).

In the following section, we go further by introducing a con-
sistent prescription through which one can always deform a given
self-dual monopole solution into a new one. As we demonstrate,
the initial configuration can be completely analytical (possessing
exact solutions for both H(r) and W (r)), or only partially analyti-
cal (possessing an exact solution to H(r), but a numerical solution
for W (r)).

3. The deformation prescription

Here, we develop the deformation prescription for self-dual
magnetic monopoles following the procedure introduced for scalar
fields [14], also extended for the Higgs and Abelian gauge fields
[18]. Let us describe the procedure we will implement to find new
monopole solutions. For such purpose, we firstly suppose a new
Lagrangian density mathematically similar to (1), but with new
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functions G → G and M →M. We still assume that the new scalar
and gauge fields are also described by the spherically symmet-
ric ansatz of Eqs. (2) and (3). Similarly, the new profile functions
H(r) and W(r) obey the same finite energy boundary conditions
pointed in Eqs. (4) and (5), i.e.,

H(0) = 0 and W(0) = 1, (15)

H(∞) = ∓1 and W(∞) = 0. (16)

Within this scenario, the corresponding BPS equations can be
calculated in the very same way as performed for the initial
model (1), that is, by requiring the minimization of the total en-
ergy. This leads to the new self-dual equations

dH
dr

= ∓P(r)

r2
, (17)

dW
dr

= ±MHW, (18)

with P(r) being given by

P(r) = 1 −W2

M
. (19)

Nevertheless, one also gets that the energy density of the resulting
BPS structures reduces to

Ebps = ∓ 1

r2

d

dr

(
H

(
1 −W2)), (20)

so that they possess the same total energy given in Eq. (14). Here,
we reinforce that, whereas M(H) and M(H) are not necessarily
equal to each other, the self-dual solutions coming from the two
non-Abelian models are essentially different. In what follows, for
simplicity, we consider only the lower signs in Eqs. (5), (10), (11),
(13), (16), (17), (18) and (20).

We continue our construction by adopting the fundamental re-
lation

H(r) = f
(
H(r)

)
, (21)

where f stands for an invertible and differentiable deformation
function, to be chosen conveniently. In this case, since H and f
are supposed to be known, the new profile function H(r) can be
trivially obtained via

H(r) = f −1(H(r)
)
. (22)

Also, by differentiating (21) with respect to r, and using (10) and
(17), the auxiliary functions P (r) and P(r) obey

P(r) = P (r)

f ′(H(r))
, (23)

where f ′ = df /dH . Furthermore, by combining (18) and (19), the
resulting expression can be integrated to yield

W(r) = CeN (r)

√
1 + C2e2N (r)

, (24)

where C is an integration constant, and the function N (r) is

N (r) = −
r∫ H(r′)
P(r′)

dr′. (25)

From Eqs. (19) and (24), we get the constraint (6) for the deformed
system

G = M−1 = P(r)
(
1 + C2e2N (r)). (26)
The basic equations we have to keep in mind are (22), (23), (24),
(25) and (26). Here, it is worthwhile to point out that the only
initial data we need to perform our calculation is the analytical
solution for H(r). In this sense, the solution for W (r) can be ana-
lytical or even numerical; in both cases, the deformed scenario will
be completely analytical (possessing analytical solutions to both
H(r) and W(r)).

It is important to clarify that, since the deformed solutions
also obey the boundary conditions (15) and (16), they stand for
nontrivial self-dual magnetic monopoles possessing energy density
given by (20) and finite total energy equal to 4π . Besides that,
we also point out that, in all the new scenarios, the generaliza-
tion function M (or M) is positive, as required for the non-Abelian
model (1) to attain a positive energy density [19].

In the next section, we present our results, including the de-
formation of a partially analytical configuration into a completely
analytical one.

4. Deformed BPS monopoles

In order to present our algorithm in an illustrative way, we
first apply the deformation procedure in a completely analytical
scenario. The first situation we address is the deformation of the
usual ’t Hooft–Polyakov monopole. Indeed, we have verified that
such deformation is possible and that the resulting configuration
has already been obtained in a previous work; see Eqs. (16) and
(17) in Ref. [21]. Thus, in order to explain the way it happens, we
consider as the starting-point the standard monopole solution:

Ht H P (r) = 1

tanh(r)
− 1

r
, (27)

Wt H P (r) = r

sinh(r)
. (28)

In this case, one takes the function f as the simplest choice:

f (H) = H(r), (29)

which means that the deformed scenario is described by

H(r) = Ht H P (r). (30)

In this case, despite the usual solution for the Higgs sector, the
integration constant appearing in (24) allows to generalize the cor-
responding solution for the gauge field, leading to

W(r) = r√
3w0 sinh2(r) − (3w0 − 1)r2

, (31)

where w0 > 0 is related to the aforecited integration constant. The
auxiliary functions P(r) and N (r), can be obtained via Eqs. (23)
and (25), yielding

P(r) = sinh2(r) − r2

sin2(r)
, (32)

N (r) = ln

[
r

2
√

sinh2(r) − r2

]
. (33)

We also obtain the corresponding function M providing this gen-
eralization for the ’t Hooft–Polyakov monopole:

M(r) = 3w0 sinh2(r)

3w0 sinh2(r) − (3w0 − 1)r2
. (34)

Note that the deformed solutions Eqs. (30), (31) and (34) were al-
ready obtained in Eqs. (16), (17) and (18) of Ref. [21]. Also, we
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point out that w0 = 1/3 leads us back to the usual ’t Hooft–
Polyakov monopole.

Our second example illustrates the deformation procedure
of a completely analytical scenario involving a second type of
monopoles introduced in Ref. [21], i.e., those ones which cannot
be reduced to the ’t Hooft–Polyakov solution. For instance, let us
consider the self-dual generalized profile

H(r) = r

1 + r
, (35)

and the corresponding solution for W (r)

W (r) = 1√
1 + r2e2r

, (36)

whilst the generalization function M(r) is

M(r) = (1 + r)2e2r

1 + r2e2r
. (37)

Now, taking the deformation function

f (H) = H1/n(r), (38)

with real n > 0, one achieves

H(r) = rn

(1 + r)n
. (39)

Then, from Eqs. (23) and (25), we obtain

P(r) = nrn+1

(1 + r)n+1
, (40)

N (r) = − ln(r)

n
− r

n
, (41)

whereas Eqs. (24) and (26) yield

W(r) = C1√
C2

1 + r2/ne2r/n
, (42)

M(r) = r2/n(1 + r)n+1e2r/n

nrn+1(1 + r2/ne2r/n)
. (43)

Here, C1 is a positive real constant. In this case, the family of mod-
els defined by (43) has the analytical self-dual solutions (39) and
(42), which are generalizations of the nonstandard solutions (35)
and (36). In particular, for n = C1 = 1, Eqs. (39), (42) and (43) re-
duce to (35), (36) and (37), respectively.

Having analyzed two entirely analytical examples, we now fo-
cus our attention on the more sophisticated case in which one
deforms a partially analytical configuration into a completely an-
alytical one; in this case, only the Higgs field has a starting an-
alytical profile. We can easily verify whether a particular profile
function H(r) gives rise to a completely analytical configuration or
not. The answer is obtained by combining the BPS equations (10)
and (11) into one single equation, i.e.,

dW

dr

dH

dr
= (W 2 − 1)H W

r2
, (44)

relating W (r) and H(r). Therefore, for a given H(r), Eq. (44) can be
integrated analytically or not, providing the corresponding solution
for W (r) (and vice-versa). We now consider a case for which Eq.
(44) cannot be integrated analytically, illustrating the deformation
of a model described by the following analytical expression:

H(r) = sin(Ht H P )
, (45)
sin(1)
Fig. 1. The Higgs profile. Top: the solution given by (45) (dashed orange line). Bot-
tom: the solutions given by (35) (dotted purple line) and (39) (long-dashed red line
for n = 2, and space-dashed blue line for n = 3). In both pictures, the usual profile
Eq. (27) is also shown (solid black line), for comparison. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this Letter.)

with Ht H P being given by (27). Note that the denominator sin(1)

works as a normalization factor that assures H(∞) = 1. It is
worthwhile to point out that, despite the arbitrariness of the non-
Abelian model (1), an arbitrary function of Ht H P is not, in general,
a legitimate solution of the generalized model.

The behavior of W (r) around the boundary values (4) and (5)
can be inferred by using (44). This way, one finds that, near the
origin, W (r) can be approximated by

W (r) = 1 − 1

2
w0r2 + · · · , (46)

whilst, for r → ∞, it reads

W (r) = w∞r

er tan(1)
+ · · · , (47)

where w0 and w∞ are real constants to be fixed by requiring
the desired behavior near the origin and at infinity, respectively.
However, when we fix w0, the parameter w∞ is automatically
fixed, and vice-versa. Hence, we see that the solutions characteriz-
ing the partially analytical configuration we will deform reach the
physical boundary conditions in the same way (despite numerical
factors) as the usual ’t Hooft–Polyakov solution do. In this sense,
the topological stability of our initial configuration is achieved in
the standard manner, being verified by the numerical solution for
W (r) shown in Fig. 2, for w0 = 1/3.

Now, following our prescription, we choose the deformation
function as

f (H) = sin(H(r))

sin(1)
. (48)

Then, by combining Eqs. (45) and (48), we get that the deformed
solution for H(r) reads as

H(r) = Ht H P (r), (49)
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Fig. 2. The gauge profile. Top: the solutions given by Eq. (31) for w0 = 1/10 (dot-
dashed dark-purple line), and w0 = 1 (double-dotted green line). The numerical
profile related to the Eq. (45) is also shown (dashed orange line for w0 = 1/3). Bot-
tom: the profiles given by (36) and (42). Here, the conventions are the same as
in Fig. 1, with C1 = 1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

i.e., it is the usual ’t Hooft–Polyakov solution, whereas the corre-
sponding deformed solution for W(r) is

W(r) = r√
3w0 sinh2(r) − (3w0 − 1)r2

, (50)

exactly the solution previously studied in Eq. (31). Hence, the aux-
iliary functions P(r) and N (r) are given by Eqs. (32) and (33),
respectively.

The overall conclusion is that, by choosing suitable deformation
functions, both completely and partially analytical monopole con-
figurations can be deformed into a new analytical one.

In the sequel, we depict all the solutions we have found and
compare them with the usual ’t Hooft–Polyakov one, comment-
ing on the main features of the new profiles. The solutions for the
Higgs field are shown in Fig. 1, which reveals that all the pro-
files exhibit the same general behavior, reaching their boundary
values monotonically, whilst spreading over different distances. In
Fig. 2, we depict the solutions for the gauge field. Here, by plot-
ting Eq. (31), we identify the way the integration constant coming
from (24) controls the characteristic length of the deformed so-
lutions: the profiles for w0 > 1/3 spread over smaller distances,
while exhibiting greater cores for 0 < w0 < 1/3.

Fig. 3 displays the results for the product r2 times the BPS
energy densities. These profiles are important, since the enclosed
area gives (within a constant factor of 4π ) the energy of the BPS
monopoles. In general, the solutions we have found are rings, i.e.,
they reach the corresponding amplitudes at some finite distance R
from the origin.

Finally, we point out that the new solutions we have found, de-
spite well-behaved, are of the type H(r) or H(r). To obtain the
inverse function, r(H) or r(H), provides fairly complicated rela-
tions. This way, we have preferred to express M or M as explicit
Fig. 3. The product r2 times the BPS energy density. Conventions as in Fig. 2.

functions of r. This fact does not prevent the existence of simpler
configurations for r(H), which were still not found out, however.

5. Ending comments

In this work, we have established a deformation prescription
consistent with the generalized self-dual Yang–Mills–Higgs sce-
nario presented by some of us in a recent paper [19]. Here, starting
from well-known BPS field profiles, the deformation procedure al-
lows to obtain new self-dual solutions standing for the magnetic
monopoles arising within a non-Abelian–Higgs model endowed by
a particular positive function M . It is worthwhile to point out that
the initial configuration can be completely or partially analytical,
the final scenario possessing exact solutions for both gauge and
scalar fields.

We have checked our algorithm by studying some illustrative
examples. The first two cases we have considered were entirely
analytical, one based on the usual ’t Hooft–Polyakov solution, the
other based on the nontrivial solution introduced in [21]. In the
sequel, we have extended our work for a partially analytical con-
figuration. It is important to point out that we have implemented
a deformation prescription which gives legitimate new self-dual
solutions of a different model with similar BPS equations. Such de-
formed solutions cannot be attained by a trivial redefinition of the
standard fields.

The results we have found are depicted in Figs. 1, 2, and 3, the
overall conclusion being that the deformed profiles behave in the
same general way their standard counterpart do. In Figs. 2 and 3,
we have also identified the way the constant of integration w0
affects the resulting profiles.

We are now investigating the possibility to develop a deforma-
tion procedure applicable to the study of self-dual Maxwell–Higgs,
Chern–Simons–Higgs and Maxwell–Chern–Simons–Higgs vortices.
We hope to report on this in the near future.
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