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Abstract 

Interest in biologically-inspired optimization techniques has increased due to its accurate results, fast performance and ease of use. In this 
paper, an ant colony optimization (ACO) technique is deployed and used for modelling a twin rotor system.  The system is perceived as a 
challenging engineering problem due to its strong cross coupling between horizontal and vertical axes and inaccessibility of some of its 
states and outputs for measurements. Accurate modelling of the system is thus required so as to achieve satisfactory control objectives. It 
is demonstrated that ACO can be effectively used for modelling the system with highly accurate results. The accuracy of the modelling 
results is demonstrated through validation tests including training and test validation and correlation tests. 
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Nomenclature 

ϕ  rotational angle 

θ  elevation angle 
u(t)  voltage of main rotor 
y(t) pitch angle of the beam 
e(t) error 

bestf  objective function 

Q  quantity of pheromone 

εεφ  auto correlation of residual 

εφu  cross-correlation 
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1. Introduction 

This paper presents an investigation on dynamic modelling of the vertical movement of a twin rotor system; a laboratory 
platform representing a flexible manoeuvring structure and resembles essential characteristics of an air vehicle. Although, 
the twin rotor system does not fly, it has a striking similarity to a helicopter, such as system nonlinearities and cross-coupled 
modes. The twin rotor system, therefore, can be viewed as an unconventional and complex ‘air vehicle’ and possesses 
formidable challenges in modelling, control design and analysis and implementation. The interest in this work stems from 
the fact that helicopters are highly agile, stealthy, multi-purpose and capable of executing different tasks such as 
surveillance, aerial mapping and inspection, which are beyond the domain of their conventional fixed-wing counterparts. 
These new generation air vehicles have presented a variety of unprecedented challenges and opportunities to 
aerodynamicists and control engineers. 

System identification using input and output data from a system is essential for controller design and nonlinear models 
for subsequent controller evaluation. Parametric models, characterising the twin rotor system in hovering mode, have been 
obtained with no a priori knowledge of plant model order or parameters providing any insight into physical characteristics 
of the plant using ant colony optimisation approach. The identified model has been exhaustively validated using time and 
frequency domain tests in order to instill confidence in the model for their subsequent use in the controller design. The 
modelling procedure adopted is suitable for a class of new generation air vehicles whose dynamics are not well-understood 
or difficult to model from first principles.  

The ant colony optimisation (ACO) metaheuristic is a multi-agent framework for combinatorial optimisation whose main 
components are: a set of ant-like agents, the use of memory and of stochastic decisions, and strategies of collective and 
distributed learning. It finds its roots in the experimental observation of a specific foraging behaviour of some ant colonies 
that, under appropriate conditions, are able to select the shortest path among few possible paths connecting their nest to a 
food site. The pheromone, a volatile chemical substance laid on the ground by the ants while walking, affecting in turn their 
moving decisions according to its local intensity, is the mediator of this behaviour. All the elements playing an essential role 
in the ant colony foraging behaviour were understood, thoroughly reverse-engineered and put to work to solve problems of 
combinatorial optimisation by Marco Dorigo and his co-workers in 1999 [1]. 

 

2. Twin Rotor System 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Twin rotor multi-input multi-output system 

Research interest in laboratory set-up platforms to simulate complex aircraft manoeuvres and to investigate different 
control paradigms has noticeably increased in recent years. A laboratory scale aircraft fuel rig is commissioned by [2] using 
model based techniques to study fault diagnostic technique as high safety level within aviation. The model was developed 
and validated in MATLAB successfully to reduce and detect fault and failures in a highly nonlinear and complex 
environment such as aircraft. A fast output sampling technique for robust controller is illustrated using a laboratory scaled 
launch vehicle by [3]. In this approach, the fast output sampling feedback which has the features of static input feedback as 
well as possibility of complete pole assignment is considered. Werner and Meister proposed a 2 DOF laboratory aircraft 
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model, developed to model the behaviour of a vertical-take-off aircraft using a multi-modal approach for robust controller 
design [4]. In this work, the Linear Matrix Inequality (LMI) formulation in conjunction with convex programming for 
robust command tracking and disturbance rejection in normal operation as well as in failure mode is employed. This 
platform is quite similar to the twin rotor syatem. It has roll and yaw movement whereas the twin rotor system has pitch and 
yaw motion. 

The twin rotor system is a laboratory facility retaining the most important helicopter features such as couplings and 
strong nonlinearities as well as it can be perceived as an unconventional and complex ‘air vehicle’. These system 
characteristics present formidable challenges in modelling, control design and implementation. In an actual flight situation, 
the parameters of a helicopter are varying due to the change in flight conditions. There is a need to perform system 
identification under different flight conditions in order to update the aircraft model and also the controllers. .  It is driven by 
two DC motors at both ends of the beam; the main rotor motor and tail rotor motor. Its two propellers are perpendicular to 
each other and joined by a beam pivoted on its base that can rotate freely in the horizontal and vertical planes. The beam can 
thus be moved by changing the input voltage in order to control the rotational speed of the propellers. The articulated joint 
allows the beam to rotate in such a way that its ends move on spherical surfaces. The system is equipped with a pendulum 
counterweight hanging from the beam, which is used for balancing the angular momentum. A schematic diagram of the 
TRMS is shown in Figure 1 and the characteristic parameters are tabulated in Table 1.  

Table 1: Characteristic parameters of the TRMS 

 Parameters Value 

Maximum input voltage range +/- 10 V 

Length of the beam 0.49 m 

Length of the counter balance 0.26 m 

Mass of the main DC motor with main rotor 0.228 kg 

Mass of the tail DC motor with tail rotor 0.206 kg 

 

3. Ant Colony Optimisation (ACO) 

The basic ACO algorithm actually fits a discrete problem only and is not suitable for solving continuous optimization 
problems such as linear or non-linear programming. Applying this algorithm to continuous domains was not straightforward 
where the main issue is how to model a continuous nest neighbourhood with a discrete structure. As the design problem can 
always be formulated as optimization problem in continuous design space, the ACO algorithm applied in any field should 
be modified accordingly [5-6]. Continuous ACO was proposed by Wang and Wu, [7] and Quan and Chao, [8]. This 
algorithm is referred to as ACO1 throughout this work. Here, the optimization problem is solved by a cooperation of 
artificial ant colony by exchanging information via pheromone deposited on graph edges. It consists of a framework as 
follows: 

 
Step 1 Initialization 

At the start of algorithm, the pheromone values are all initialized to a constant value (e.g. 1=cP ) 

Step 2 Solution construction 
For each ant, the solution is constructed using pheromone trail. A constructive heuristic assembles 
solutions as sequences of elements from finite set of solution components. 

Step 3 Apply pheromone update 
The pheromone update rule is used to increase the pheromone values on solution components that have 
been found in high quality solutions. 

Stopping criterion is imposed. 
 

Let the vector ],...,,[ 21 nxxxX =  be the parameters to be optimized, where n represents the total number of parameters in 

the AVC system, along with upper and lower bounds to be ],[)(
oplow iiii xxxDx =∈

 
with ni ,...,2,1=  . The definition field 

)( ixD is divided into M subspaces, and the middle of each subspace defines a node. A single artificial ant k, nk ,...,2,1= , 

where antN   is the maximum number of ants, would choose to move from one node to the other, in the total of P nodes in 

each )( ixD . The length of each sub-space ih can be expressed by 
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For each level which has P nodes on it, there are nM ×   nodes in total. A modification has been made to this algorithm by 
the author to the state vector of the ant k that completed its tour, as shown in Figure 2, with travel index ],...,,[ 4678 iiii  ]. 

This index depends on the entries of cumulative probability (CP) from the probability ,ijP of the ant k to move to the ith 

node on the jth level. For example if ]0.1,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0[,10 == CPM ,and the generated random number 

lies between 0.7 and 0.8, the first travel index, ,8i  is chosen as 8 (eighth column of the CP). This process is done until all 

travel index are found. The values of the parameters X, held by ant k, are as  
 

] ,, , ,[] ,, ,[ 4_low36low_327low_218low_1321 nnn hixhixhixhixxxxx ×+×+×+×+=                        (2) 

 
The state transition rule of the ant k is expressed as 
 

=

=
n

i
ijijijP

1

ττ                                                                               (3) 

 
Where ,ijP is the probability of the ant k  to move to the ith  node on the jth level, and ,ijτ is the amount of the pheromone 

at the node. When all the ants have finished their tours, the pheromone is updated by using 
 

best/)1( fQijij +−= τρτ                                                                               (4) 

 
where 10 << ρ  is a pheromone decay parameter, Q is the quantity of pheromone laid by an ant per iteration cycle, ,0τ   

is a constant for the initial value of ,ijτ   (for initialization ,ijτ  on the RHS is set to be 0τ ), and bestf  is the objective 
function value given by the best ant of each searching period.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: State space graph for ACO1 

 
The algorithm begins with the initialization of the pheromone trail. For each ant, the desired optimization fitness function 

is evaluated and the minimum value is stored as f0. At each iteration, an ant constructs a complete solution to the problem 
according to a probabilistic state transition rule as in equation (3). The state transition rule depends mainly on the state of 
the pheromone. The third step updates quantity of pheromone; a global pheromone updating rule is applied in two phases. 
First, an evaporation phase where a fraction of the pheromone evaporates, and then a reinforcement phase where each ant 
deposits an amount of pheromone which is proportional to the fitness of its solution. This process is iterated until the 
stopping criterion is satisfied. 
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4. Parametric Model Identification 

4.1. Excitation signal 

This work aims to obtain data with as much information as possible about the process under study and in a wide range of 
frequencies. According to Ljung [9], the type of input signal to be used should be able to excite all the dynamic modes of 
interest where the spectral content of the input signal should be rich in frequency corresponding to system bandwidth. It 
should also be rich in amplitude level whereby it should have different levels of input amplitudes over the whole range of 
operation. This goal can be achieved by exciting the process with a pseudo-random binary signal (PRBS). This signal will 
provide not only a persistent excitation to the process and rich in amplitude level, since input changes are applied to both up 
and down directions to evaluate possible nonlinearities and different gains. Experimental work is carried out using a 
sampling time of T = 0.1s and duration of 100 seconds. Input–output data necessary for parametric identification are 
collected, where the excitation signal input PRBS indicates the voltage of main rotor, )(tu  is used to excite the TRMS 
system. The output data collected is the pitch angle of the beam, )(ty . The input PRBS and its power spectral densities are 
shown in Figure 3. 
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(a) Time domain (b) Power spectral density

Figure 3: Pseudo random binary signal 

4.2. Model structure 

It has been observed from the power spectral density of the system that the significant mode lies in the 0-1Hz bandwidth, 
with a main resonance mode at 0.34Hz which can be attributed to the main body dynamics. A model order of 2, 4, and 6 
corresponding to prominent normal modes at 0.25Hz, 0.34Hz, and 0.46Hz were anticipated. However, a fourth order model 
was employed which gave better representation of the system dynamics than a second or sixth order [10]. The parametric 
modeling technique employed in this paper is shown in Figure 4. 
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Figure 4: Parametric modeling of a TRMS 
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Auto-regressive with exogenous input (ARX) model structure is chosen, as depicted in Figure 3 for the parametric model 
and expressed as [9] 

)()()(ˆ
01

jtubityaty
M

j
j

N

i
i −×+−×−=

==

   (5) 

where ji ba ,  are denominator and numerator polynomial coefficients, N and M are the number of coefficients in the 
denominator and numerator polynomials, y , u  and ŷ  are measured output, input and predicted output respectively. The 
order of the transfer function depends on N. Taking the values of N and M as 4 and 3, equation (2.24) can be simplified as: 

)3()()4()1()(ˆ 3041 −+++−−−−−= tubtubtyatyaty    (6) 

A useful way to visualise equation (2.25) is to view it using a backshift operator 1−z  as defined by  
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The difference between the predicted and actual output is recorded as error, )(te : 

)(ˆ)()( tytyte −=    (8) 

 

5. Model validation 

It is crucial to test that the identified model can adequately describe the data set in any model formulation or algorithm 
identification [11]. In practise, the model of the system will be unknown and the detection of an inadequate fit is more 
challenging. 

5.1. One step ahead prediction 

The one-step-ahead (OSA) prediction of the system output is a common measure of predictive accuracy used in control 
and system identification [12]. This approach is adopted in this work and expressed as: 

 
))](),...,2(),1(),(),...,2(),1(),([)(ˆ yntytytyuntutututufty −−−−−−=    (9) 

 
where ( )•f  is a nonlinear function, u and y  are the input and output respectively. The residual or prediction is the 

difference between the measured output and the predicted output, given by: 
 

)(ˆ)()( tytyte −=           (10) 
 
Often )(ˆ ty will be a relatively good prediction of )(ty over the estimation set even if the model is biased because the 

model was estimated by minimizing the prediction errors. 
 

5.2. Correlation tests 

Apart from OSA prediction, correlation tests are convincing methods in model validation. These tests not only give 
information on the quality of the model structure being investigated, but also indicate bias to noise. If a model is adequate, 
then the residuals or prediction errors )(te should be unpredictable from all linear and nonlinear combinations of past inputs 
and outputs. The derivation of simple tests that can detect these conditions is complex, but it can be shown that the 
following conditions should hold [11]. 
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[ ] )()()()( τδτεφ =−= tetEtee          (11) 

[ ] τττφ ∀=−=                               0)()()( tetuEue       (12) 

[ ] τττφ ∀=−−=               0)()()(()( 22
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eu       (13) 

[ ] τττφ ∀=−−=            0)()()(()( 222
22 tetutuE
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[ ] 0    0)1()1()()()( ≥=−−−−= ττττφ tuteteEeue       (15) 
 
where, )(teeφ , the auto-correlation of the residuals in equation (11) should be an impulse, and )(tueφ , the cross-

correlation functions in equations (12) – (15) should ideally be zero. Ideally, the model validity tests should detect all the 
deficiencies in the algorithm performance including bias due to internal noise. The cause of the bias will however be 
different for different assignments of input set. Correlation function between two sequences )(1 tψ  and )(2 tψ  is given by: 
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        (16) 
 
In practise, normalised correlations are computed. Normalisation ensures that all the correlation functions lie in the range 

1)(ˆ1
21

≤≤− τφ ψψ  irrespective of the signal strengths. The correlation will never be exactly zero for all lags and the 95% 

confidence band defined as 
N

96.1
 is used to indicate if the estimated correlation is significant or not, where N  is the length 

of data. Therefore, if the correlation function is within the confidence interval, the model is regarded as adequate. Among 
the five correlation tests, equations (11) and equations (12) are generally used to determine model validity in the case of 
linear modelling, whereas all the five equations (11) to (15) are used in the case of nonlinear modelling. 

5.3. Percentage accuracy 

Accuracy of a result or experimental procedure can refer to the percentage difference between the experimental result 
and the accepted value. In this work, the percentage of accuracy is calculated to measure the relationship between the actual 
output )(ty  and predicted output )(ˆ ty  according to equation (10). Closer value of percentage accuracy to 100% replicates 
an accurate time domain output mapping of actual output and predicted model output of the system.   
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      (17) 

 

6. Results and Discussions 

All simulations were carried out on a PC (Intel Pentium ®, 2.30 GHz, RAM 3.50 GB). The predicted output for time-
domain tracking using ACO algorithm for vertical motion is presented against the actual measured output in Figure 5(a). 
This result is shown as function of data points, where the spacing between successive data points is 0.1sec. It is clearly 
evident that the algorithm predicted the pitch movement very well. The accuracy between the actual and predicted output is 
99.33%. For frequency-domain response, the result is presented in Figure 5(b). It is apparent that the derived model could 
follow the actual system dynamics in the low frequency region, whereas some differences were observed at higher 
frequency region which were not significant as far as the twin rotor system operation is concerned. The pole-zero diagram 
of the system model using the proposed method is presented in Figure 5(c). It is noted that the poles and zeros were inside 
the unit circle using ACO technique. Figure 5(d) shows the convergence towards the smallest error value for modeling 
optimisation using ACO algorithm. It is clearly evident that the convergence curves remain static with small improvements 
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after 230 iterations for the ACO algorithm. It is noted that ACO algorithm has achieved good MSE value at 757 iterations. 
The maximum number of iterations was set to 1000 for each algorithm.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
(c)

 
(d)

 

Figure 5: a) Actual and ACO predicted output of the system, b) Power spectral density of actual and ACO predicted output, c) Pole zero diagram of the 
system, d) Convergence diagram for 1000 iterations using ACO 

 
Using the steps in ACO algorithm, the combination of ia and ib that give the smallest mean-squared error (MSE) of 
)(te were optimized using the following parameter setting as depicted in Table 2. 
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Number of ants used in an iteration, m 20 
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Correlation validations of vertical plane motion model are shown in Figure 6. It is noted that all the five correlation 
functions were within the 95% confidence bands interval with 1000 data pairs. This indicates that the model behavior was 
unbiased and close to that of the real system. 
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Figure 6: Correlation test of RLS estimation: a) Auto-correlation of residuals, b) Cross-correlation of input and residuals, c) Cross-correlation of input 
square and residuals, d) Cross-correlation of input square and residual square, e) Cross-correlation of residual and (input*residuals) 
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7. Conclusion 

The system identification problem has been formulated as an optimization task in which ant colony optimization has 
been used to estimate parameters of the TRMS so as to minimize the prediction error between actual and predicted outputs 
at each time step. It is also evident that the algorithm can extract a stable and satisfactory model for the system. This 
indicates in-built robustness of the algorithm which can be equally useful and applicable to other systems. The potential of 
the ACO modeling can be further explored for control strategy optimization based on twin rotor application. 
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