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a b s t r a c t

This paper presents an analytical solution to estimate the liquid film thickness in two-
phase annular flow through a circular pipe using electrical resistance tomography. Gas–
liquid flow with circular gas core surrounded by a liquid film is considered. Conformal
mapping is employed to obtain the analytic solution for annular flow with an eccentric cir-
cular gas core. The liquid film thickness for an arbitrary annular flow is estimated by com-
paring the resistance values for concentric and eccentric annular flows. The film thickness
estimation has a good performance when the normalized distance between the gas core
center and the flow center is less than 0.2 and the void fraction is greater than 0.4, the esti-
mated error of the normalized thickness is less than 0.04.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Two-phase flow is commonly encountered in many industrial processes. Due to its practical interest, extensive experi-
mental and theoretical studies were performed to describe two-phase flows in the last decades [1–12]. In the analysis of
gas–liquid two-phase flow systems, especially for annular flows, the thickness of liquid film is one of the key parameters.
There have been many contributions to develop techniques to measure the thickness of liquid film in the area of two-phase
flows. Simulation studies have been conducted to demonstrate the possibility of using a multifiber optic sensor to determine
the thickness of a liquid film in a gas–liquid two-phase flow situation by Yu et al. [13]. Schubring et al. [14–16] used planar
laser-induced fluorescence to provide direct visualization of the liquid film in upward vertical air–water annular flow, and
presented that the film thickness model can be used to estimate the critical liquid flow rate. Kishore and Jayanti [17] devel-
oped a finite volume method-based CFD model to simulate annular gas–liquid flow in a duct, and showed that the resulting
model gives good predictions of the literature data of annular flow parameters under equilibrium and non-equilibrium
conditions.

Of all film thickness measurement techniques, the conductance method is probably most extensively used, which is based
on the fact that the liquid and the gas have different conductivity values [18–21]. The parallel wire conductance technique
was used to measure the film thickness by Jong and Gabriel [22]. In their work, a pair of wires was stretched across the tube’s
cross section, drilled through the liquid film and air core, and the electrical conductance between the two wires was
. All rights reserved.
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measured. That conductance is indicative of the relative proportion of the phases in a particular cross sectional area. Conte
and Azzopardi [23] and Geraci and Azzopardi [24] used flush-mounted pin probes and parallel wire conductance technique
to collect the liquid film thickness data in their work. The first method was used for very thin films, typically up to 2 mm.
Electrodes were pins mounted flush with the pipe surface linked in a circuit to a neighboring, similar electrode. The resis-
tance between a pair of flush-mounted pins was measured and the measurements were converted to film thicknesses using
calibration curves. The method is non-intrusive but the response is non-linear. The range of film thickness that can be han-
dled depends on the size and spacing of the electrodes. However, the greater the spacing, the more averaged is the result
over the space. Design is based on a compromise between the range of operability and local characteristics of the measure-
ment. The second type, suitable for thicker film thickness, was used only for the bottom side. The parallel wire conductance
technique they used was similar to the method employed by Jong and Gabriel [22], with a pair of wires stretched across the
tube’s cross section and the resistance was measured between the two wires. Fu et al. [25] also reported their work about the
measurement of the liquid film thickness by making use of the electrical conductance method. They measured the resistance
between two probes placed along the tube. The resistance value depends on the length between the two probes and the area
of the conductive liquid according to the definition of the electric resistance. Then the liquid film thickness which is related
to the area of the conductive liquid is obtained from the measured resistance. Recently, a review of the film thickness mea-
surement techniques applied to micro-scale two-phase flow system was presented by Tibiriçá et al. [26]. They focused on the
recent literature concerning the methods used to measure two-phase liquid film thicknesses in macro- and micro-scale
systems.

This work considers the electrical method, specifically the resistance type, using the analytical method to estimate the
thickness of water film in two-phase circular annular flow. At first, the two-dimensional potential distribution in the pipe
is found analytically using conformal mapping [27–29]. The analytical solutions of the potential distribution for two-region
problems for concentric circular case can be determined relatively easily. However, for eccentric case, the computation of the
analytical solutions becomes more complicated. Conformal mapping can be used for transforming a given region into a con-
centric one, thus it is useful to establish a bi-directional link between two geometric frames especially from eccentric circles
to concentric circles. From the potential distribution, the resistance is obtained in a series form as a function of the void frac-
tion and the location of the electrode which is also related to the water film thickness. Then the resistance between two elec-
trodes of eccentric case is compared with the resistance value of concentric case to estimate the thickness of water film.

2. Mathematical model

Consider an annular flow composed of water background and circular air core as shown in Fig. 1. rw is the conductivity of
the water region, uw the potential distribution of the water region, ra the conductivity of the air region and ua the potential
distribution of the air region. The radius of the pipe is a1 and the radius of the air region is a2, so the thickness of water film is
T = a1 � a2. Two electrodes are flush-mounted on the inner boundary of the pipe. The width and height of the electrodes are
W and H. From Ohm’s law, if the voltage between the two electrodes is DV and the current applied is I, then the resistance R
is DV/I. As the first step, we need to obtain the potential distribution in the problem domain to calculate the voltage differ-
ence between the two electrodes.

The potential distribution u for a given conductivity r in the flow domain satisfies the Laplace equation:
r � rru ¼ 0; ð1Þ
Fig. 1. Cross section of the annular flow.
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which is subjected to the following boundary and interfacial conditions:
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where J = I/(WH) is the applied current density on the electrode. h1, h2, h3 and h4 are the angles of the beginning point and
ending point of the two electrodes. As for the gaps between the two electrodes, the proper boundary condition is the insu-
lation condition. In our work, we assumed that the size of the two electrodes is same. Therefore
h2 � h1 ¼ h4 � h3 ¼ Dh ¼W=R: ð3Þ
Practically, the air is non-conductive. Hence, the boundary condition (2b) is not required and (2c) becomes the insulation
condition.

2.1. Relationship between resistance and water film thickness for concentric case

The analytical solution of Eq. (1) for concentric case is
uwðr; hÞ ¼
X1
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a1

nrw

1
1� an

ðpn cos nhþ qn sin nhÞ r
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; ð4Þ
where the void fraction of the circular annular flow is defined as
a ¼ ða2=a1Þ2 ¼ ðða1 � TÞ=a1Þ2; ð5Þ
and the coefficients of Fourier series expansion of the boundary current j(h) are
pn ¼
J

np
ðsin nh2 � sin nh1Þ �

J
np
ðsin nh4 � sin nh3Þ; ð6Þ

qn ¼
�J
np
ðcos nh2 � cos nh1Þ þ

J
np
ðcos nh4 � cos nh3Þ: ð7Þ
If we approximate the electrode voltage as the average value over the electrode, then from the analytical solution we can
calculate the voltage difference between the two electrodes. On the boundary, r = a1, therefore the resistance between the
two electrodes for concentric case becomes
Rc ¼ DV=I ¼ a1

rwIDh
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2.2. Relationship between resistance and water film thickness for eccentric case

For eccentric case, we can use the linear fractional conformal mapping [27–29] to transform eccentric circles into concen-
tric circles,
wðzÞ ¼ ðz� b1Þ=ðz� b2Þ; ð9Þ
where z = reih = x + iy and w ¼ r0eih0 ¼ sþ iv are both complex numbers. b1 and b2 are the coordinates of the two symmetrical
points of the circles and are determined by the following equations:
b1b2 ¼ a2
1;

ðb1 � LÞðb2 � LÞ ¼ a2
2;

(
ð10Þ
where L is the distance of the center of two eccentric circles.
From the solution of Eq. (10), we can get
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Thus, from Eq. (9), we can obtain the radius of the two circles after transformation as
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After conformal mapping, the radius of the pipe and the radius of the air core will change, as well as the size and location
of the two electrodes, thus the current density on the electrode will not be constant but be a function of position. However,
the total current through the electrode and the voltage will remain the same as the original, as shown in Fig. 2. Under this
conformal transformation, the Laplacian operator is invariant and, therefore, the problem in the transformed plane can be
solved easily using concentric theory.

For the resistance between the two electrodes in eccentric case, we can use the same formula (8),
R ¼ R0 ¼ DV 0=I ¼ a01
rwI
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where a0 ¼ a02=a01

 �2� p0n and q0n are the coefficient of Fourier series expansion of the transformed boundary condition

j0ðh0Þ ¼
P1

n¼1 p0n cos nh0 þ q0n sin nh0
� 


, which depends on the current density and the location of the electrodes.
Since the current density on the electrode after conformal mapping is changed with location, so in the simulation, the

electrode is divided into M segments and the current density on each segment is assumed to be a constant after conformal
mapping. h1,m�1 and h1,m denotes the beginning point and ending point of the mth segment on the first electrode, h01;m�1 and
h01;m is the phase angle corresponding to h1,m�1 and h1,m after conformal mapping, where h1,0 = h1, h1,M = h2. For the second
electrode, we have the same relationship between the phase angles, h2,m�1 and h2,m denotes the beginning point and ending
point of the mth segment on the second electrode, h02;m�1 and h02;m is the phase angle corresponding to h2,m�1 and h2,m after
conformal mapping, where h2,0 = h3, h2,M = h4. Therefore, the current density on the two electrodes will be
j0ðh0Þ ¼
J01; h0 2 h01; h

0
2

� 

;

J02; h0 2 h03; h
0
4

� 

;

0; otherwise;
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where
Fig. 2. Schematic structure of the annular flow for conformal mapping.
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and H(x) is the Heaviside function, which is 1 for x > 0 and 0 for x < 0.
Thus, the Fourier coefficients are
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3. Numerical results and discussion

For numerical calculations, we set the cross section as a unit circle, i.e. a1 = 1. For the comparison of concentric and eccen-
tric case, we assume that there are 2 electrodes with 0.15 width placed along the boundary of the pipe, and the gap between
the electrodes is 0.046. This electrode set-up allows 32-electrode system. We introduce the normalized resistance R⁄, ex-
pressed as
R� ¼ ðR� RwÞ=Rw; ð16Þ
where Rw is the resistance for homogenous case when the void fraction a is 0.
In concentric case, if the void fraction is fixed, then the water film thickness is identical along the boundary of the pipe.

However, in eccentric case, the thickness of the water film varies with the angle. The thickness will be different according to
different measuring points (location of the electrodes) in eccentric case as shown in Fig. 3. The resistance values are calcu-
lated using Eq. (8) for concentric cases and Eq. (13) for eccentric cases. 3000 terms of Fourier series expansion and 100 seg-
ments on the electrode are used in the numerical calculations.

The resistance values for the given thickness of water film for eccentric cases with the gas core center at D = (0.125,0.125)
are compared with the concentric cases for the corresponding thickness of water film, as shown in Fig. 4. We can see that if
the thickness of the water film of eccentric case is similar with the water film thickness of eccentric case, the resistance val-
ues for the two cases will be similar. Thus, we can make use of this characteristic to estimate the water film thickness in
eccentric case by comparing the resistance value. For the estimation of the water film thickness, 32 measurement points
were selected for the given void fraction and location of the air core. Fig. 5 shows some of the estimated results compared
with the true boundary of the air core.

RMSE (Root Mean Square Error) is calculated to evaluate the performance of the estimation, which can be defined as
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k ðTw;trueðkÞ � Tw;estimatedðkÞÞ2

K

s
; ð17Þ
Fig. 3. Description of the thickness of water film w.r.t. the measuring point.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Thickness of the water layer

N
or

m
al

iz
ed

 R
es

is
ta

nc
e

concentric case
eccentric case, D(0.125,0.125)

Fig. 4. Comparison of the resistance values of concentric and eccentric cases.

Fig. 5. Comparison of the estimated location of air core and the true boundary of two-phase annular flow (line: true boundary, dot: estimated points).

2838 R. Wang et al. / Applied Mathematical Modelling 36 (2012) 2833–2840
where Tw,true is the true value of water film thickness and Tw, estimated is the estimated water film thickness and K is the num-
ber of measured points.

Fig. 6 shows the RMSE of film thickness estimates for different cases. It is found that the RMSE increases with the distance
of the air core from the center, and it decreases with the void fraction. The film thickness estimation has a good performance
when the normalized distance between the gas core center and the pipe center is less than 0.2 and the void fraction is greater
than 0.4. The resistance value becomes very small when the water film thickness is greater than 0.4 and this leads a bigger
RMSE values as the distance of the air core from the pipe centre increases, However, it should be noted that the annular flow
is observed at high void fraction region (a > 0.7) and the proposed measurement procedure is fairly applicable to estimation
of the liquid film thickness in annular flows.
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4. Conclusions

This work deals with the analytical solution of the potential on the boundary of two-phase annular flow. Conformal map-
ping is employed to get the analytical solution for eccentric case, and the relationship between the void fraction and the
resistance was derived. It is found that if the thickness of the water film of eccentric case is similar with the water film thick-
ness of concentric case, the resistance values for the two cases are close to each other. Thus, we make use of this character-
istic to estimate the water film thickness (boundary of the air core) in eccentric case by comparing the resistance values. The
estimations shows a good performance (RMSE < 0.04) when the distance of the air core center from the pipe center is less
than 0.2 and the void fraction is greater than 0.4.
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