Spanning trees with small degrees and few leaves ${ }^{\star}$

Eduardo Rivera-Campo
Departamento de Matemáticas, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco 186, Mexico D.F. 09340, Mexico

ARTICLE INFO

Article history:

Received 4 October 2010
Received in revised form 9 December 2011
Accepted 13 December 2011

Keywords:

Spanning tree
Bounded degree
Few leaves

Abstract

We give an Ore-type condition sufficient for a graph G to have a spanning tree with small degrees and with few leaves.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

From a classical result by Ore [1] it is well-known that if a simple graph G with $n \geq 2$ vertices is such that $d(u)+d(v) \geq$ $n-1$ for each pair u, v of non-adjacent vertices of G, then G contains a Hamiltonian path.

A leaf of a tree T is a vertex of T with degree one. A natural generalisation of Hamiltonian paths are spanning trees with a small number of leaves. In this direction, Ore's result was generalised by Broersma and Tuinstra [2] to the following theorem.

Theorem 1 ([2]). Let $s \geq 2$ and $n \geq 2$ be integers. If G is a connected simple graph with n vertices such that $d(u)+d(v) \geq$ $n-s+1$, for each pair u, v of non-adjacent vertices, then G contains a spanning tree with at most s leaves.

Further related results have been obtained by Egawa et al. [3] and by Tsugaki and Yamashita [4]. See also [5] for a survey on spanning trees with specific properties.

In this note we consider spanning trees with small degrees as well as with a small number of leaves. Our result is the following.

Theorem 2. Let n, k and $d_{1}, d_{2}, \ldots, d_{n}$ be integers with $1 \leq k \leq n-1$ and $2 \leq d_{1} \leq d_{2} \leq \cdots \leq d_{n} \leq n-1$. If G is a k-connected simple graph with vertex set $V(G)=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ such that $d(u)+d(v) \geq n-1-\sum_{j=1}^{k}\left(d_{i}-2\right)$ for any non-adjacent vertices u and v of G, then G has a spanning tree T with at most $2+\sum_{j=1}^{k}\left(d_{j}-2\right)$ leaves and such that $d_{T}\left(w_{j}\right) \leq d_{j}$ for $j=1,2, \ldots, n$.

2. Proof of Theorem 2

Let T be a largest subtree of G with at most $2+\sum_{j=1}^{k}\left(d_{j}-2\right)$ leaves and such that if $w_{j} \in V(T)$, then $d_{T}\left(w_{j}\right) \leq d_{j}$. Since G is k-connected and $n \geq 2$, it contains a path with at least $k+1$ vertices. Therefore, we may assume that tree T has at least $k+1$ vertices.

If T is not a spanning tree, there is a vertex w of G not in T. By Menger's theorem, there are k internally disjoint paths $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ in G joining w to k different vertices $r_{1}, r_{2}, \ldots, r_{k}$ of T.

[^0]

Fig. 1. $n=15, k=4, d_{1}=d_{2}=\cdots=d_{15}=3$.

Fig. 2. $T^{\prime}=\left(\left(T+z^{-} v\right)-z^{-} z\right) \cup \pi_{1}$.
Let n_{1} denote the number of leaves of T. We claim $n_{1}=2+\sum_{j=1}^{k}\left(d_{j}-2\right)$, otherwise there is a vertex r_{i} such that $d_{T}\left(r_{i}\right)<d_{j_{i}}$ where $w_{j_{i}}=r_{i}$. Then $T^{\prime}=T \cup \pi_{i}$ is a subtree of G with more vertices than T such that $d_{T^{\prime}}\left(w_{j}\right) \leq d_{j}$ for each $w_{j} \in V\left(T^{\prime}\right)$ and with at most $n_{1}+1 \leq 2+\sum_{j=1}^{k}\left(d_{j}-2\right)$ leaves, which contradicts our assumption on the maximality of T.

Because of Ore's theorem, we can assume $d_{i} \geq 3$ for some $i=1,2, \ldots, k$. Since T has $n_{1}=2+\sum_{j=1}^{k}\left(d_{j}-2\right) \geq 3$ leaves, as shown above, there is a vertex w_{j} of T such that $d_{T}\left(w_{j}\right) \geq 3$. Suppose there are vertices x and y of degree one in T such that $x y \in E(G)$. Since T is not a path, there is an edge $z z^{\prime}$ in the unique $x y$ path contained in T with $d_{T}(z) \geq 3$. Let $T^{\prime}=\left(T-z z^{\prime}\right)+x y$ and notice that T^{\prime} is a subtree of G with $V\left(T^{\prime}\right)=V(T)$, with less than $2+\sum_{j=1}^{k}\left(d_{j}-2\right)$ leaves and such that $d_{T^{\prime}}\left(w_{j}\right) \leq d_{j}$ for each $w_{j} \in V\left(T^{\prime}\right)$. As above, this is a contradiction and therefore no leaves of T are adjacent in G.

Notice that $d_{T}\left(r_{1}\right) \geq 2$, otherwise $T^{\prime}=T \cup \pi_{1}$ would be a tree larger than T, with the same number of leaves and with $d_{T^{\prime}}\left(w_{j}\right) \leq d_{j}$ for each vertex w_{j} of T^{\prime}. Let u and v be any two leaves of T with the property that the vertex r_{1} lies in the unique $u v$ path $T_{u v}$, contained in T. Orient the edges of T in such a way that the corresponding directed tree \vec{T} is outdirected with root u (see Fig. 1).

For each vertex $z \neq u$ in T let z^{-}be the unique vertex of T such that $z^{-} z$ is an arc of \vec{T}. Let

$$
A=\{y \in V(T): y v \in E(G)\} \quad \text { and } \quad B=\left\{x^{-} \in V(T): u x \in E(G)\right\}
$$

Because of the way the tree T was chosen, all vertices of G adjacent to u or to v lie in T and therefore $|A|=d(v)$. Let x_{1} and x_{2} be vertices of T adjacent to u in G, if $x_{1}^{-}=x_{2}^{-}=z$ for some vertex z of T, let $T^{\prime}=\left(T+u x_{1}\right)-z x_{1}$. Since $z x_{1}$ and $z x_{2}$ are edges of $T, d_{T^{\prime}}(z) \geq 2$ and T^{\prime} is a subtree of G with $V\left(T^{\prime}\right)=V(T)$, with less than $2+\sum_{j=1}^{k}\left(d_{i_{j}}-2\right)$ leaves and such that $d_{T^{\prime}}\left(w_{j}\right) \leq d_{j}$ for each $w_{j} \in V\left(T^{\prime}\right)$. Again, this is a contradiction, therefore $|B|=d(u)$.

Since no vertex in $A \cup(B \backslash\{u\})$ is a leaf of T,

$$
|A \cup B| \leq|V(T)|-n_{1}+1 \leq(n-1)-n_{1}+1=n-2-\sum_{j=1}^{k}\left(d_{j}-2\right)
$$

Also

$$
|A \cup B|=|A|+|B|-|A \cap B|=d(u)+d(v)-|A \cap B| \geq n-1-\sum_{j=1}^{k}\left(d_{j}-2\right)-|A \cap B|
$$

Therefore $|A \cap B| \geq 1$; let $z^{-} \in A \cap B$. We consider two cases:
Case 1. Edge $z^{-} z$ lies on the path $T_{u v}$.
If $z=r_{1}$ (see Fig. 2), let

$$
T^{\prime}=\left(\left(T+z^{-} v\right)-z^{-} z\right) \cup \pi_{1} \quad \text { and }
$$

and if $r_{1} \neq z$ (see Fig. 3), let

$$
T^{\prime}=\left(\left(\left((T+u z)+z^{-} v\right)-r_{1}^{-} r_{1}\right)-z^{-} z\right) \cup \pi_{1}
$$

Both situations lead to a contradiction since T^{\prime} is a subtree of G larger than T, with at most $2+\sum_{j=1}^{k}\left(d_{j}-2\right)$ leaves and such that $d_{T}\left(w_{j}\right) \leq d_{j}$ for each $w_{j} \in V\left(T^{\prime}\right)$.

Case 2. Edge $z^{-} z$ does not lie on the path $T_{u v}$.
If z^{-}lies in $T_{u v}$, let $T^{\prime \prime}=(T+u z)-z^{-} z$ (see Fig. 4).

Fig. 3. $T^{\prime}=\left(\left(\left((T+u z)+z^{-} v\right)-r_{1}^{-} r_{1}\right)-z^{-} z\right) \cup \pi_{1}$.

Fig. 4. $T^{\prime \prime}=(T+u z)-z^{-} z$.

Fig. 5. $T^{\prime \prime}=\left(\left(\left((T+u z)+z^{-} v\right)-x^{-} x\right)-z^{-} z\right)$.
And if z^{-}does not lie in $T_{u v}$, let x be a vertex in $T_{u v}$ not in $T_{u z^{-}}$such that x^{-}is a vertex in $T_{u z^{-}}$(see Fig. 5). Let

$$
T^{\prime \prime}=\left(\left(\left((T+u z)+z^{-} v\right)-x^{-} x\right)-z^{-} z\right) .
$$

In this case $T^{\prime \prime}$ is a subtree of G with $V\left(T^{\prime \prime}\right)=V(T)$, with at most $n_{1}-1=1+\sum_{j=1}^{k}\left(d_{j}-2\right)$ leaves and such that $d_{T^{\prime \prime}}\left(w_{j}\right) \leq d_{j}$ for each $w_{j} \in V\left(T^{\prime \prime}\right)$. As seen above, this is not possible.

Cases 1 and 2 cover all possibilities, therefore T is a spanning tree of G.
Let $k \geqslant 1$ and $d_{1}, d_{2}, \ldots, d_{n}$ be integers with $3 \leq d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots\right.$, $\left.y_{\left.2-k+d_{1}+\cdots+d_{k}\right\}}\right\}$ be sets of vertices. The complete bipartite graph G with bipartition (X, Y) is k-connected, has $n=2+\sum_{j=1}^{k} d_{i}$ vertices and is such that $d(u)+d(v) \geq 2 k=n-2-\sum_{j=1}^{k}\left(d_{i}-2\right)$ for any vertices u and v of G. Nevertheless, if T is a spanning tree of G, then $d_{T}\left(x_{j}\right)>d_{j}$ for some $j=1,2, \ldots, k$. This shows that the condition in Theorem 2 is tight.

References

[1] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[2] H. Broersma, H. Tuinstra, Independence trees and Hamilton cycles, J. Graph Theory 29 (1998) 227-237.
[3] Y. Egawa, H. Matsuda, T. Yamashita, K. Yoshimoto, On a spanning tree with specified leaves, Graphs Combin. 24 (1) (2008) 13-18.
[4] M. Tsugaki, T. Yamashita, Spanning trees with few leaves, Graphs Combin. 23 (5) (2007) 585-598.
[5] K. Oseki, T. Yamashita, Spanning trees: A survey, Graphs Combin. 27 (1) (2011) 1-26.

[^0]: * Research supported by Conacyt, Mexico.

 E-mail address: erc@xanum.uam.mx.
 0893-9659/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.aml.2011.12.021

