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Abstract

We develop a generalized Littlewood–Paley theory for semigroups acting on Lp-spaces of
functions with values in uniformly convex or smooth Banach spaces. We characterize, in
the vector-valued setting, the validity of the one-sided inequalities concerning the generalized
Littlewood–Paley–Stein g-function associated with a subordinated Poisson symmetric diffusion
semigroup by the martingale cotype and type properties of the underlying Banach space. We
show that in the case of the usual Poisson semigroup and the Poisson semigroup subordinated
to the Ornstein–Uhlenbeck semigroup on Rn, this general theory becomes more satisfactory
(and easier to be handled) in virtue of the theory of vector-valued Calderón–Zygmund singular
integral operators.
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1. Introduction and preliminaries

Given a martingale {fn} with values in a Banach space B, its generalized “square”
function is defined as

Sqf =
( ∞∑

n=1

‖fn − fn−1‖q

B

)1/q

.

Then B is said to have martingale cotype q, 2�q < ∞ if there exist p ∈ (1, ∞)

and a constant C > 0 such that ‖Sqf ‖Lp �C supn ‖fn‖L
p
B

for every bounded B-valued
Lp-martingale {fn}. The validity of the reverse inequality defines martingale type q,
1 < q �2. Recall that if the inequality above (or its inverse) holds for one p ∈ (1, ∞),
so does it for all p ∈ (1, ∞). These notions were introduced and studied in depth by
Pisier (see [Pi1,Pi2]). His renorming theorem states that there are geometric properties
of the underlying Banach space, characterized by the existence of an equivalent norm
in the space which is uniformly convex of power type q or uniformly smooth of power
type q. We also recall that B is of martingale cotype q iff B∗ is of martingale type
q ′, where q ′ is the index conjugate to q. For p ∈ (1, ∞), Lp is of martingale cotype
max{2, p} and of martingale type min{2, p}.

On the other hand, it is well known that martingale inequalities involving square
function are closely related to the corresponding inequalities concerning the Littlewood–
Paley or Lusin square function in harmonic analysis. It is in this spirit that a generalized
Littlewood–Paley theory is developed in [Xu] for functions with values in uniformly
convex Banach spaces. Let us recall the main results of [Xu]. Let f be a function in
L1(T), where T denotes the torus equipped with normalized Haar measure d�. The
classical Littlewood–Paley g-function is defined for z ∈ T as

Gf (z) =
(∫ 1

0
(1 − r)2‖∇Pr ∗ f (z)‖2 dr

1 − r

)1/2

.

In this notation,

‖∇Pr ∗ f (z)‖ =
(∣∣∣∣�Pr

�r
∗ f (z)

∣∣∣∣2 +
∣∣∣∣1r �Pr

��
∗ f (z)

∣∣∣∣2
)1/2

, (1.1)

with

Pr(�) = 1 − r2

1 + r2 − 2r cos �
,

being the Poisson kernel for the disk. It is a classical result that for any p ∈ (1, ∞)

there exist positive constants cp and Cp such that

cp‖f ‖Lp(T) � |f̂ (0)| + ‖Gf ‖Lp(T) �Cp‖f ‖Lp(T). (1.2)
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One can extend the definition of G to functions that take values in a Banach space B,
just by replacing absolute value by norm in (1.1). In this case, (1.2) holds if and only
if B is isomorphic to a Hilbert space. However, one of the two inequalities in (1.2)
can be true in non-Hilbertian spaces. The study of these one-sided inequalities is the
main objective of [Xu]. More generally, we can introduce the following generalized
“Littlewood–Paley g-function”:

Gqf (z) =
(∫ 1

0
(1 − r)q‖∇Pr ∗ f (z)‖q

B

dr

1 − r

)1/q

.

Then B is said to be of Lusin cotype q (resp. Lusin type q) if there exist p ∈ (1, ∞)

and a positive constant C such that

‖Gqf ‖Lp(T) �C‖f ‖L
p
B(T)

(
resp. ‖f ‖L

p
B(T) �C

(
‖f̂ (0)‖B + ‖Gqf ‖Lp(T)

))
.

It is not difficult to see that if B is of Lusin cotype q (resp. Lusin type q), then
2�q �∞ (resp. 1�q �2). It is proved in [Xu] that the definition above is independent
of p, that is, if one of the inequalities above holds for one p ∈ (1, ∞), then so does
it for every p ∈ (1, ∞) (with a different constant depending on p). The main result of
[Xu] states that a Banach space B is of Lusin type q (resp. Lusin cotype q) iff B is
of martingale type q (resp. martingale cotype q).

The main goal of the present paper is to extend the results in [Xu] to general
symmetric diffusion semigroups, and thus to develop a generalized Littlewood–Paley
theory for these semigroups on Lp-spaces of functions with values in uniformly convex
or smooth Banach spaces. Recall that a symmetric diffusion semigroup is a collection of
linear operators {Tt }t �0 defined on Lp(�, d�) over a measure space (�, d�) satisfying
the following properties:

T0 = Id, TtTs = Tt+s , ‖Tt‖Lp→Lp �1 ∀p ∈ [1, ∞], (1.3)

lim
t→0

Tt f = f in L2 ∀f ∈ L2, (1.4)

T ∗
t = Tt on L2, Tt f �0 if f �0, Tt1 = 1. (1.5)

The subordinated Poisson semigroup {Pt }t �0 is defined as

Pt f = 1√
�

∫ ∞

0

e−u

√
u

Tt2/4uf du = t

2
√

�

∫ ∞

0

e−t2/4u

u3/2 Tuf du. (1.6)
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{Pt }t �0 is again a symmetric diffusion semigroup, see [St1]. Recall that if A denotes
the infinitesimal generator of {Tt }t �0, then that of {Pt }t �0 is −(−A)1/2.

It is well know (and easy to check) that any bounded operator T on Lp(�) for all
p ∈ [1, ∞] naturally and boundedly extends to L

p

B(�) for every Banach space B, where
L

p

B(�) denotes the usual Bochner–Lebesgue Lp-space of B-valued functions defined
on �. More precisely, the extension is T ⊗ IdB. Indeed, this is clear for p = 1 (via
projective tensor product); the case p = ∞ is done by duality, and then 1 < p < ∞
by interpolation. With a slight abuse of notation (which will not cause any ambiguity),
we shall denote these extensions still by the same symbol T.

Thus Tt and Pt have straightforward extensions to L
p

B(�) for every Banach space
B; moreover, these extensions are also contractive. (Note that we can also justify these
extensions by the positivity of Tt and Pt .) According to the convention above, we shall
consider {Tt }t �0 and {Pt }t �0 as semigroups on L

p

B(�) too.
In these circumstances we can define the generalized “Littlewood–Paley g-function”

associated to the semigroup as

Gq(f )(x) =
(∫ ∞

0

∥∥∥∥t �Pt f (x)

�t

∥∥∥∥q

B

dt

t

)1/q

.

The first result of this paper, see Theorem 2.1, states that a Banach space B is of mar-
tingale cotype q iff for every symmetric diffusion semigroup {Tt }t �0 with subordinated
semigroup {Pt }t �0, the generalized g-function operator Gq is bounded from L

p

B(�) to
Lp(�), namely

‖Gq(f )‖Lp(�) �C‖f ‖L
p
B(�) ∀f ∈ L

p

B(�). (1.7)

The validity of the reverse inequality (with a necessary additional term) characterizes
the martingale type q (see Theorem 2.2). These results are proved in Section 2. The
main ingredient of our arguments is the classical Rota theorem on the dilation of a
positive contraction on Lp by conditional expectations. This theorem allows to reduce
(1.7) (after a discretization) to a corresponding inequality for martingales.

This approach via Rota’s theorem is also efficacious in studying (1.7) and its dual
form for an individual semigroup. We shall show in Section 3 that for a given sub-
ordinated Poisson semigroup {Pt }, (1.7) is equivalent to its dual form, which is an
inequality reverse to (1.7) with B, p and q replaced by B∗, p′ and q ′, respectively
(and with an additional term). The key to this is the existence of a certain projection,
whose proof, using Rota’s theorem once more, is unfortunately rather technical and
complicated.

Our proof for the implication “(1.7) ⇒ martingale cotype q” uses the Poisson semi-
group on the torus modulo the results in [Xu] quoted previously. (Note however that
this Poisson semigroup on the torus is a multiplicative semigroup on (0, 1).) Thus it
would be interesting to know the family of semigroups {Pt }t �0 for which the validity
of (1.7) implies martingale cotype q. One of the aims of the remainder of the paper
(after Section 3) is to show that this is indeed the case for the Poisson semigroup on
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Rn. Such a result is, of course, conceivable after [Xu]. For any q �1, the n-dimensional
generalized “Littlewood–Paley g-function” is defined as

Gq(f )(x) =
(∫ ∞

0
tq‖∇Pt ∗ f (x)‖q

�2
B

dt

t

)1/q

,

where

‖∇Pt ∗ f (x)‖�2
B

=
(∥∥∥∥�Pt

�t
∗ f (x)

∥∥∥∥2

B

+
n∑

k=1

∥∥∥∥�Pt

�xk

∗ f (x)

∥∥∥∥2

B

)1/2

,

with

Pt(x) =
�

(
n + 1

2

)
�

n+1
2

t

(|x|2 + t2)
n+1

2

,

the kernel of the Poisson semigroup for the upper half-space. Note that we use the
same symbol Pt to denote the Poisson kernels both on T and on Rn. This should not
have any confusion in the concrete context. Then B is of martingale cotype q (resp.
martingale type q) iff for some (equivalently every) p ∈ (1, ∞) there is a constant C
such that

‖Gq(f )‖Lp(Rn) �C‖f ‖L
p
B(Rn)

(
resp. ‖f ‖L

p
B(Rn) �C‖Gq(f )‖Lp(Rn)

)
.

This result, among some others on Gq -function on Rn, is proved in Sections 4 and 5
and achieved by viewing the operators G as vector-valued Calderón–Zygmund operators.
For these operators, under suitable conditions, one can get the equivalence of the strong
type (p, p) and the boundedness BMO − BMO (see Theorem 4.1). As a consequence,
we obtain the characterization of the Lusin cotype in terms of BMO boundedness of
the g-functions (Corollary 4.2 and Theorems 5.2 and 5.3). These two sections extend
most of the results in [Xu] for T to Rn.

The previous results for the usual Poisson semigroup on Rn can be extended to the
Poisson semigroup subordinated to the Ornstein–Uhlenbeck semigroup on Rn. This is
done in Section 6 (see Theorems 6.1 and 6.2).

The last section contains a further characterization of Lusin cotype property in terms
of almost sure finiteness of the generalized Littlewood–Paley g-functions (Theorems
7.1 and 7.4).

2. One-sided vector-valued Littlewood–Paley–Stein inequalities for semigroups

We shall consider general symmetric diffusion semigroups, that is, the collections
of linear operators {Tt }t �0 defined on Lp(�), satisfying (1.3)–(1.5). Given such a
semigroup {Tt }t �0 we consider its subordinated semigroup {Pt }t �0, defined as in
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(1.6). Let F ⊂ L2(�) be the subspace of the fix points of {Pt }t �0, i.e., the subspace
of all f such that Pt (f ) = f for all t > 0. Let F : L2(�) → F be the orthogonal
projection. It is clear that F extends to a contractive projection (still denoted by F)
on Lp(�) for every 1�p�∞ and that F (Lp(�)) is exactly the fix point space of
{Pt }t �0 on Lp(�). Moreover, for any Banach space B, F extends to a contractive
projection on L

p
B(�) for every 1�p�∞ and that F

(
L

p

B(�)
)

is again the fix point
space of {Pt }t �0 considered as a semigroup on L

p

B(�). According to our convention,
in the sequel, we shall use the same symbol F to denote any of these contractive
projections.

Recall that the generalized Littlewood–Paley g-function associated with {Pt }t �0 is
defined by

Gq(f )(x) =
(∫ ∞

0

∥∥∥∥t �Pt f (x)

�t

∥∥∥∥q

B

dt

t

)1/q

.

The main results of this section are the following two theorems.

Theorem 2.1. Given a Banach space B and 2�q < ∞, the following statements are
equivalent:

(i) B is of martingale cotype q.
(ii) For every symmetric diffusion semigroup {Tt }t �0 with subordinated semigroup

{Pt }t �0 and for every (or, equivalently, for some) p ∈ (1, ∞) there is a con-
stant C such that

‖Gqf ‖Lp(�) �C ‖f ‖L
p
B(�) ∀f ∈ L

p

B(�). (2.1)

Theorem 2.2. Given a Banach space B and 1 < q �2, the following statements are
equivalent:

(i) B is of martingale type q.
(ii) For every symmetric diffusion semigroup {Tt }t �0 with subordinated semigroup

{Pt }t �0 and for every (or, equivalently, for some) p ∈ (1, ∞) there is a con-
stant C such that

‖f ‖L
p
B(�) �C

(
‖F(f )‖L

p
B(�) + ‖Gqf ‖Lp(�)

)
∀f ∈ L

p

B(�). (2.2)

The rest of this section is essentially devoted to the proof of these theorems. The
difficult part is the implication “(i) ⇒ (ii)” in Theorem 2.1. Then the same impli-
cation in Theorem 2.2 will follow by duality. Both converse implications will be
done by using the Poisson semigroup on the torus with the help of [Xu]. For the
main part of the proof we shall need the following result, which has independent
interest.



436 Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475

Theorem 2.3. Let B be a Banach space of martingale cotype q ∈ [2, ∞) and {Tt }t �0
a symmetric diffusion semigroup. Then for any p ∈ (1, ∞),

∥∥∥∥∥
(∫ ∞

0
,

∥∥∥∥t �Mtf

�t

∥∥∥∥q

B

dt

t

)1/q
∥∥∥∥∥

Lp(�)

�Cp,q,B ‖f ‖L
p
B(�) ∀f ∈ L

p

B(�),

where Mt = 1

t

∫ t

0
Ts ds.

The pattern of our proof for the theorem above is borrowed from [St1, Chapter
IV]. As in [St1], the key ingredient is Rota’s dilation theorem (see Theorem 2.5 be-
low), which allows to reduce the inequality in Theorem 2.3 to a similar inequality for
martingales.

Given a �-finite measure space (M, F, dm) and a sub-�-algebra G ⊂ F , we denote
as usual by E( · |G) the conditional expectation with respect to G. (Note that our mea-
sure space (M, F, dm) is no longer a probability one; however all usual properties on
conditional expectations in the probabilistic case are still valid in the present setting.)
Recall that E( · |G) is a positive contraction on Lp(M, F, dm) for every p ∈ [1, ∞]
and naturally extends to L

p

B(M, F, dm) for every Banach space B. The classical Doob
maximal inequality is also valid in the vector-valued setting. Let (Fn) be an increas-
ing filtration of sub-�-algebras of F . For f ∈ L1

B(M, F, dm) we define its maximal
function as

f ∗ = sup
n�1

‖E(f |Fn)‖B.

Then we have the following Doob maximal weak type (1, 1) inequality

�m{f ∗ > �}�
∫

{f ∗>�}
‖f (x)‖B dm(x)

for every Banach space B. Similarly, we can also extend the results of [MT]; in par-
ticular, we get that for every 1 < p, q < ∞ and every sequence (fk) ⊂ L

p

B(M, F, dm)

∥∥∥∥∥
( ∞∑

k=1

((fk)
∗)q
)1/q

∥∥∥∥∥
Lp

�Cp,q

∥∥∥∥∥
( ∞∑

k=1

‖fk‖q

B

)1/q
∥∥∥∥∥

Lp

. (2.3)

We shall use the following lemma, motivated by [St1], inequality (∗∗) on p. 115.



Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475 437

Lemma 2.4. Let B be a Banach space of martingale cotype q ∈ [2, ∞), (M, dm) be
any �-finite measure space and {En} be an arbitrary monotone sequence of conditional
expectations on (M, dm). Then, for every p, 1 < p < ∞,

∥∥∥∥∥
( ∞∑

n=1

nq−1‖(�n − �n−1)f ‖q

B

)1/q
∥∥∥∥∥

Lp

�Cp,q,B ‖f ‖L
p
B
,

where

�n = E0 + · · · + En

n + 1
.

Proof. Observe that it is enough to prove the inequality taking the summation in n�n0
for any fixed n0. If we define dn = En − En−1 for n�0 (with the convention that
E−1 = 0), for j �1 we have

�j = E2j − E2j−1 =
2j∑

k=0

dk −
2j−1∑
k=0

dk =
2j∑

k=2j−1+1

dk.

Consider, for each n�5, Jn the unique integer such that 2Jn < n�2Jn+1. Then

�n − �n−1 = 1

n(n + 1)

n∑
j=0

jdj

= 1

n(n + 1)

(
d1 + 2d2 +

Jn∑
k=2

2k∑
j=2k−1+1

jdj +
n∑

k=2Jn+1

jdj

)
.

Now, for each k, 2�k�Jn,

2k∑
j=2k−1+1

jdj = 2k�k −
2k∑

j=2k−1+1

(2k − j)dj

= 2k�k −
2k−1∑

j=2k−1+1

2k−1∑
i=j

dj = 2k�k −
2k−1∑

i=2k−1+1

Ei(�k).



438 Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475

We can treat the rest of the terms in a similar way, and then we get

�n − �n−1 = 1

n(n + 1)

[
d1 + 2d2 +

Jn∑
k=2

(
2k�k −

2k−1∑
i=2k−1+1

Ei(�k)

)

+nEn(�Jn+1) −
n−1∑

k=2Jn+1

Ek(�Jn+1)

]
.

Thus,

( ∞∑
n=5

nq−1‖(�n − �n−1)f ‖q

B

)1/q

� ‖d1f + 2d2f ‖B

( ∞∑
n=5

nq−1

nq(n + 1)q

)1/q

+
( ∞∑

n=5

nq−1

nq(n + 1)q

∥∥∥∥ Jn∑
k=2

2k�kf

∥∥∥∥q

B

)1/q

+
( ∞∑

n=5

nq−1

nq(n + 1)q

∥∥∥∥ Jn∑
k=2

2k−1∑
i=2k−1+1

Ei(�kf )

∥∥∥∥q

B

)1/q

+
( ∞∑

n=5

nq−1

nq(n + 1)q
‖nEn(�Jn+1f )‖q

B

)1/q

+
( ∞∑

n=5

nq−1

nq(n + 1)q

∥∥∥∥ n−1∑
k=2Jn+1

Ek(�Jn+1f )

∥∥∥∥q

B

)1/q

= C‖d1f + 2d2f ‖B + I + II + III + IV .

Using
∣∣∑n

i=1 2iai

∣∣q �2n(q−1)
∑n

i=1 2i |ai |q , we have that

I q �
∞∑

n=5

1

nq+1 2Jn(q−1)

Jn∑
k=2

2k‖�kf ‖q

B �
∞∑

n=5

1

n2

Jn∑
k=2

2k‖�kf ‖q

B

�
∞∑

k=2

‖�kf ‖q

B.

Since B is of martingale cotype q, ‖I‖Lp �Cp,q,B ‖f ‖L
p
B

.
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In order to handle the second term, let us call k(j) = k when 2k−1 �j < 2k . Then,

II q �
∞∑

n=5

1

nq+1

∥∥∥∥∥
2Jn−1∑
j=3

Ej(�k(j)f )

∥∥∥∥∥
q

B

�
∞∑

n=5

1

nq+1 2Jn(q−1)
2Jn−1∑
j=3

‖Ej(�k(j)f )‖q

B

�
∞∑

n=5

1

n2

n−1∑
j=3

‖Ej(�k(j)f )‖q

B �
∞∑

j=3

1

j + 1
‖Ej(�k(j)f )‖q

B.

Using (2.3) and the martingale cotype q of B, we obtain that

‖II‖Lp �
∥∥∥∥∥
( ∞∑

j=3

1

j + 1
‖Ej(�k(j)f )‖q

B

)1/q∥∥∥∥∥
Lp

� Cp,q

∥∥∥∥∥
( ∞∑

k=2

‖�kf ‖q

B

2k∑
j=2k−1+1

1

j + 1

)1/q∥∥∥∥∥
Lp

�Cp,q,B ‖f ‖L
p
B
.

Analogously, one can show that ‖III‖Lp +‖IV ‖Lp �Cp,q‖f ‖L
p
B

. We leave the details
to the reader. Thus the lemma is proved. �

We shall also need the following result due to Rota, see [St1, Chapter IV]. Let Q
be a linear operator on Lp(�, A, d�) satisfying the conditions

(i) ‖Q‖Lp→Lp �1 for every p ∈ [1, ∞],
(ii) Q = Q∗ in L2,

(iii) Qf �0 for every f �0,
(iv) Q1 = 1.

Theorem 2.5. For any Q as above, there exist a measure space (M, F, dm), a de-
creasing collection of �-algebras · · · ⊂ Fn+1 ⊂ Fn ⊂ · · · ⊂ F1 ⊂ F0 ⊂ F , and
another �-algebra F̂ ⊂ F such that

(a) there exists an isomorphism i : (�, A, d�) → (M, F̂, dm) (which induces an
isomorphism between Lp spaces, also denoted by i, i(f )(m) = f (i−1m)),

(b) for every f ∈ Lp(M, F̂, dm), we have

Q2n(i−1f )(x) = Ê(En(f ))(i(x)), x ∈ �,

where Ê(f ) = E(f |F̂) and En(f ) = E(f |Fn).

This theorem holds in the scalar-valued case. For the vector-valued case, the validity
of the second statement is a consequence of the fact that all operators in consideration
extend to contractions on B-valued Lp-spaces. Indeed, the linearity implies that the



440 Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475

formula in the statement (b) above holds for all B-valued simple functions, and so for
all B-valued p-integrable functions.

Proof of Theorem 2.3. Observe that it is enough to prove

∥∥∥∥(∫
ab

∥∥∥∥t �Mtf

�t

∥∥∥∥q

B

dt

t

)1/q∥∥∥∥
Lp(�)

�Cp,q,B‖f ‖L
p
B(�)

for any 0 < a < b < ∞, and also that it is enough if we restrict ourselves to functions
f in the algebraic tensor product B⊗Lp(�). Take then f = ∑K

k=1 vk�k . By the results
in [St1], see the lemma in p. 72 and its proof, it is not difficult to observe that for
every t0 ∈ (0, ∞), there exists ε0 > 0 such that

Tt f (x) =
∞∑

j=0

fj (x)(t − t0)
j (2.4)

for t ∈ (t0 − ε0, t0 + ε0) and almost every x, where
∑ ‖fj‖L

p
B

ε
j
0 < ∞ and where fj

depend on t0. Since we can cover (a, b) with a finite collection of such intervals, we can
split (a, b) into a finite collection of subintervals (ai, bi) of (a, b) in which a expression
like (2.4) holds for a fixed t0 (and therefore, with the same fj ) for every t ∈ (ai, bi).
Then, splitting the integral between a and b into the integrals corresponding to such
subintervals, we can handle all the functions appearing in the integral as power series
with vector-valued coefficients. In these circumstances, we can replace the integral by
Riemann sums, and all derivatives by difference quotients. The first step is choosing ε

small. Then, we approximate the integral as follows:

∥∥∥∥∥
(∫

ab

∥∥∥∥t �Mtf

�t

∥∥∥∥q

B

dt

t

)1/q ∥∥∥∥∥
Lp

∼
∥∥∥∥∥
(

n1∑
n=n0

(nε)q−1
∥∥∥∥ �Mtf

�t

∣∣∣∣
t=nε

∥∥∥∥q

B

ε

)1/q ∥∥∥∥∥
Lp

,

where the sign ∼ means that the difference term goes to zero as ε → 0. The next step
is substituting the partial derivative inside the sum by the difference quotient

M(n+1)εf − Mnεf

ε
= 1

ε

1

(n + 1)ε

∫ (n+1)ε

0
Tsf ds − 1

ε

1

nε

∫ nε

0
Tsf ds,

and then each of the integrals by its Riemann sums, getting then that

∥∥∥∥∥
(∫

ab

∥∥∥∥t �Mtf

�t

∥∥∥∥q

B

dt

t

)1/q ∥∥∥∥∥
Lp
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∼
∥∥∥∥∥
(

n1∑
n=n0

nq−1

∥∥∥∥∥ 1

n + 1

n∑
j=0

Tjεf − 1

n

n−1∑
j=0

Tjεf

∥∥∥∥∥
q

B

)1/q∥∥∥∥∥
Lp

=
∥∥∥∥∥
(

n1∑
n=n0

nq−1‖�̃nf − �̃n−1f ‖q

B

)1/q ∥∥∥∥∥
Lp

,

where �̃nf = 1
n+1

∑n
j=0 Tjεf . Now, observe that by our hypothesis, Tε/2 satisfies

assumptions (i)–(iv) of Rota’s theorem and Tnεf = Ê(En(f )). Hence, �̃nf = Ê(�nf )

where �n is as in Lemma 2.4. Therefore, by the properties of conditional expectation
and Lemma 2.4, we get∥∥∥∥∥

(∫
ab

∥∥∥∥t �Mtf

�t

∥∥∥∥q

B

dt

t

)1/q∥∥∥∥∥
Lp

∼
∥∥∥∥∥
(

n1∑
n=n0

nq−1‖Ê(�nf ) − Ê(�n−1f )‖q

B

)1/q ∥∥∥∥∥
Lp

�
∥∥∥{n1−1/q(�nf − �n−1f )

}∥∥∥
L

p

�
q
B

=
∥∥∥∥∥
( ∞∑

n=1

nq−1‖�nf − �n−1f ‖q

B

)1/q ∥∥∥∥∥
Lp

� Cp,q,B ‖f ‖L
p
B
.

Therefore, we have achieved the proof of Theorem 2.3. �

The following lemma says that the boundedness of Gqf = ‖Tf ‖L
q
B((0,1), dr/(1−r))

from L
p

B(T) in Lp(T) is equivalent to the boundedness of the operator T when the
kernel is restricted to values of r close to one and � close to zero.

Lemma 2.6. Let B be a Banach space and p, q ∈ (1, ∞). Let � > 0 (close to 0).
Then there is a constant C� (depending only on �) such that for any f ∈ L

p

B(T)

∥∥∥∥[(1 − r)
�Pr

�r
�

(0,1−�)
(r)

]
∗ f

∥∥∥∥
L

p

L
q
B

((0,1), dr
1−r

)
(T)

�C�‖f ‖L
p
B(T),

and ∥∥∥∥[(1 − r)
�Pr

�r
�

(1−�,1)
(r)�

(−�,�)
(�)

]
∗ f

∥∥∥∥
L

p

L
q
B

((0,1), dr
1−r

)
(T)

�C�‖f ‖L
p
B(T).

Proof. The proof is very easy. We show only the first inequality. Its left-hand side
is a convolution of the B-valued function f with an Lq((0, 1), dr

1−r
)-valued function.
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Therefore it is enough to prove that the latter is in L1
Lq((0,1), dr

1−r
)
, namely, we have to

prove

∫ 2�

0

∥∥∥∥(1 − r)
�Pr(	)

�r
�

(0,1−�)
(r)

∥∥∥∥
Lq((0,1), dr

1−r
)

d	 < ∞.

But this follows immediately if we observe that

∥∥∥∥(1 − r)
�Pr(	)

�r
�

(0,1−�)
(r)

∥∥∥∥q

Lq((0,1), dr
1−r

)

=
∫ 1−�

0

∣∣∣∣(1 − r)
2(1 − r)2 − 2(r2 + 1) sin2(	/2)

((1 − r)2 + 2r sin2(	/2))2

∣∣∣∣q dr

1 − r
�C

q

� .

Hence the lemma is proved. �

The following easy lemma is proved in a similar way as in [St1, p. 49].

Lemma 2.7. Let B be a Banach space and p, q ∈ (1, ∞). Then for any f ∈ Lp(�)⊗B

we have

(∫ ∞

0

∥∥∥∥t �Pt f

�t

∥∥∥∥q

B

dt

t

)1/q

�C0

(∫ ∞

0

∥∥∥∥t �Mtf

�t

∥∥∥∥q

B

dt

t

)1/q

,

where C0 is an absolute constant.

Proof. Call �(s) = 1
2
√

�
e−1/4s

s3/2 . Using integration by parts we have

Pt = 1

t2

∫ ∞

0
�
( s

t2

)( �
�s

sMs

)
ds= −

∫ ∞

0

s

t4 �′ ( s

t2

)
Ms ds= −

∫ ∞

0
s �′ (s) Mt2s ds.

Therefore (with M ′
s = �Ms

�s
),

t
�
�t

Pt = −2
∫ ∞

0
t2 s2�′(s)M ′

t2s
ds = −2

∫ ∞

0
s �′(s)

[
t2s M ′

t2s

]
ds. (2.5)
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Thus

[∫ ∞

0

∥∥∥∥t �Pt f

�t

∥∥∥∥q

B

dt

t

]1/q

� 2
∫ ∞

0
s |�′(s)|

[∫ ∞

0

∥∥∥t2s M ′
t2s

f

∥∥∥q

B

dt

t

]1/q

ds

= 21−1/qK

[∫ ∞

0

∥∥tM ′
t f
∥∥q

B

dt

t

]1/q

,

where

K =
∫ ∞

0
s |�′(s)| ds.

Hence the lemma is proved. �

Now we are well prepared for the proofs of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. (i) ⇒ (ii). This is an immediate consequence of Theorem 2.3
and Lemma 2.7.

(ii) ⇒ (i). We shall prove that the operator f �→ G1
q(f ) is bounded from L

p

B(T) to
Lp(T) for p ∈ (1, ∞). Recall that

G1
q(f )(z) =

(∫ 1

0
(1 − r)q

∥∥∥∥�Pr

�r
∗ f (z)

∥∥∥∥q

B

dr

1 − r

)1/q

, z ∈ T.

By [Xu], this is equivalent to the martingale cotype q of B. Observe that if in the
Poisson kernel Pr , 0 < r < 1, we change the parameter according to r = e−t , we
obtain the kernel P̃t of the Poisson semigroup subordinated to the heat semigroup in
the torus. Fix a � ∈ (0, 1) (very close to 1). By the same change of parameter and the
fact that for any t ∈ (0, − log �), 1−e−t

e−t ∼ t , then we have

∫ 1

�

∥∥∥∥(1 − r)
�Pr

�r
∗ f (�)

∥∥∥∥q
dr

1 − r
=
∫ − log �

0

∥∥∥∥1 − e−t

e−t

�P̃t

�t
∗ f (�)

∥∥∥∥q
e−t dt

1 − e−t

�C
q

�,q

∫ − log �

0

∥∥∥∥t �P̃t

�t
∗ f (�)

∥∥∥∥q
dt

t
�C

q

�,q

∫ ∞

0

∥∥∥∥t �P̃t

�t
∗ f (�)

∥∥∥∥q
dt

t
.

Therefore, by hypothesis (ii), we have that

∥∥∥∥[(1 − r)
�Pr

�r
�

(�,1)
(r)

]
∗ f

∥∥∥∥
L

p

L
q
B

((0,1), dr
1−r

)
(T)

�C′
�,q

‖f ‖L
p
B(T).



444 Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475

Then by Lemma 2.6 we get

∥∥∥G1
q(f )

∥∥∥
Lp(T)

�C
′′ ‖f ‖L

p
B(T).

By [Xu], this implies that B is of Lusin cotype q, and so of martingale cotype q too.
Thus the proof of Theorem 2.1 is finished. �

Proof of Theorem 2.2. (i) ⇒ (ii). Write the spectral decomposition of the semigroup
{Pt }t �0: for any f ∈ L2(�)

Pt f =
∫ ∞

0
e−�t de�f,

where {e�} is a resolution of the identity. Thus

�Pt f

�t
= −

∫ ∞

0+
�e−�t de�f.

It is easy to deduce from this formula that for any f, g ∈ L2(�) (recalling that F is
the projection on the fix point subspace of {Pt }t �0)

∫
�
(f − F(f ))(g − F(g))d� = 4

∫
�

∫ ∞

0

[
t
�Pt f

�t

] [
t
�Pt g

�t

]
dt

t
d�. (2.6)

Now we use duality. Fix two functions f ∈ L
p

B(�) and g ∈ L
p′
B∗(�), where p′ denotes

the conjugate index of p . Without loss of generality we may assume that f and g are

in the algebraic tensor products
(
Lp(�) ∩ L2(�)

) ⊗ B and
(
Lp′

(�) ∩ L2(�)
)

⊗ B∗,

respectively. With 〈 , 〉 denoting the duality between B and B∗, we have

∫
�
〈f, g〉d� =

∫
�
〈F(f ), F (g)〉d� +

∫
�
〈f − F(f ), g − F(g)〉 d�.

The first term on the right is easy to be estimated:

∣∣∣∣∫
�
〈F(f ), F (g)〉d�

∣∣∣∣ �‖F(f )‖L
p
B(�) ‖F(g)‖

L
p′
B∗ (�)

�‖F(f )‖L
p
B(�) ‖g‖

L
p′
B∗ (�)

.
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For the second one, by (2.6) and Hölder’s inequality

∣∣∣∣∫
�
〈f − F(f ), g − F(g)〉d�

∣∣∣∣ = 4

∣∣∣∣∫
�

∫ ∞

0
〈t �Pt f

�t
, t

�Pt g

�t
〉 dt

t
d�

∣∣∣∣
� 4

∫
�

∫ ∞

0

∥∥∥∥t �Pt f

�t

∥∥∥∥ ∥∥∥∥t �Pt g

�t

∥∥∥∥ dt

t
d�

� 4‖Gq(f )‖Lp(�)‖Gq ′(g)‖
Lp′

(�)
.

Now since B is of martingale type q, B∗ is of martingale cotype q ′. Thus by Theorem
2.1,

‖Gq ′(g)‖
Lp′

(�)
�C ‖g‖

L
p′
B∗ (�)

.

Combining the preceding inequalities, we get

∣∣∣∣∫
�
〈f, g〉d�

∣∣∣∣ � (
‖F(f )‖L

p
B(�) + C‖Gq(f )‖Lp(�)

)
‖g‖

L
p′
B∗ (�)

.

which gives (ii), taking the supremum over all g as above such that ‖g‖
L

p′
B∗ (�)

�1.

(ii) ⇒ (i). As in the corresponding proof of Theorem 2.1, we use again the Poisson
semigroup on the torus. We keep the notations introduced there. Recall that P̃t = Pe−t .
By the calculations done there,

∫ 1

�

∥∥∥∥(1 − r)
�Pr

�r
∗ f (�)

∥∥∥∥q
dr

1 − r
≈
∫ − log �

0

∥∥∥∥∥t �P̃t

�t
∗ f (�)

∥∥∥∥∥
q

dt

t
,

where the equivalence constants depend only on � and q. On the other hand, on the
interval (0, �), we have

∫ �

0

∥∥∥∥(1 − r)
�Pr

�r
∗ f (�)

∥∥∥∥q
dr

1 − r
=
∫ ∞

− log �

∥∥∥∥∥1 − e−t

e−t

�P̃t

�t
∗ f (�)

∥∥∥∥∥
q

e−t dt

1 − e−t

� C
q

�,q

∫ ∞

− log �
e(q−1)t

∥∥∥∥∥�P̃t

�t
∗ f (�)

∥∥∥∥∥
q

dt

� (C′
�,q

)q
∫ ∞

− log �
tq−1

∥∥∥∥∥�P̃t

�t
∗ f (�)

∥∥∥∥∥
q

dt.
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Therefore,

∫ ∞

0
tq−1

∥∥∥∥∥�P̃t

�t
∗ f (�)

∥∥∥∥∥
q

dt �C
q

�,q

∫ 1

0

∥∥∥∥(1 − r)
�Pr

�r
∗ f (�)

∥∥∥∥q
dr

1 − r
.

Thus by hypothesis (ii),

‖f ‖L
p
B(T) �C�,q

(
‖f̂ (0)‖B + ‖G1

q(f )‖Lp(T)

)
.

Hence by [Xu], B is of Lusin type q, and so of martingale type q too. �

We end this section with some remarks and questions.

Remark 2.8. Checking back the proofs above of Theorems 2.1 and 2.2, we see that
under the condition that B is of martingale cotype q (resp. martingale type q), (2.1)
(resp. (2.2)) is true for more general semigroups {Pt } associated to a symmetric dif-
fusion semigroup other than the subordinated Poisson semigroup given by (1.6). ({Pt }
needs not be even a semigroup for the validity of (2.1).) What we need is that {Pt } is
defined by

Pt =
∫ ∞

0
�(s)Tt
s ds,

where 
 is a non-zero real number, and where � is a derivable function on R+ such
that both � and t �′ are integrable on R+ and such that the two limits limt→0 t�(t) and
limt→∞ t�(t) exist. For instance, this is the case when the infinitesimal generator of
{Pt } is −(−A)� with 0 < � < 1, where A is the infinitesimal generator of a symmetric
diffusion semigroup {Tt }. Indeed, by [Y, IX], {Pt } can be represented as above with

 = 1/� and � given by

�(s) =
∫ ∞

0
exp

[
st cos � − t� cos(��)

]× sin
[
st sin � − t� cos(��) + �

]
dt,

where � can be any number in [�/2, �].

Remark 2.9. The proof of (i) ⇒ (ii) in Theorem 2.2 implicitly shows the following:
Given a Banach space B and p, q ∈ (1, ∞), if (2.1) holds for a given subordinated
semigroup {Pt }, then (2.2) holds for the same semigroup with B and p, q ∈ (1, ∞)

replaced by B∗ and p′, q ′ ∈ (1, ∞), respectively. The converse to this latter statement
is also true. This will be the objective of the next section. With this converse, we can
prove (ii) ⇒ (i) in Theorem 2.2 directly by duality and Theorem 2.1 without using the
Poisson semigroup on T. Note that such an approach is inevitable when one wishes to
study the duality between (2.1) and (2.2) for an individual semigroup.
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All semigroups considered in this paper are Markovian, that is, Tt1 = 1. We do not
know whether Theorems 2.1 and 2.2 still hold for symmetric sub-Markovian semigroups
(which are those satisfying (1.3)–(1.5) except the Markovianity).

Problem 1. Let B be a Banach space of martingale cotype q. For which semigroups
{Pt } is the corresponding g-function mapping f �→ Gq(f ) of weak type (1,1)?

We shall see later that the answer is positive for the usual Poisson semigroup and the
subordinated Poisson Ornstein–Uhlenbeck semigroup on Rn. We shall also show that
(2.1) (resp. (2.2)) for one of these Poisson semigroups implies the martingale cotype
q (resp. martingale type q) of B, like for the Poisson semigroup on the torus.

In general, it would be interesting to find conditions on a given semigroup {Pt } which
guarantee that the validity of (2.1) (resp. (2.2)) for {Pt } implies martingale cotype q
(resp. martingale cotype q).

We state another problem about (2.1) for any symmetric diffusion semigroup (not
necessarily subordinated to another one).

Problem 2. Let B be a Banach space of martingale cotype q (resp. martingale type q)
and p ∈ (1, ∞). Does (2.1) (resp. (2.2)) hold for any symmetric diffusion semigroup
{Pt }t �0?

Problem 2 has an affirmative solution when B is further a Banach lattice. Let us
consider only the cotype case. It is well known that a Banach lattice B is of martingale
cotype q (with 2 < q < ∞) iff B is q-concave and p-convex for some p > 1. For
q = 2, the “if” part is still true; the “only if” part admits only a weaker form: B is
r-concave and p-convex for some p > 1 and for any r > q = 2. See [LT]. Let B be
a q-concave and p-convex Banach lattice with 1 < p�2�q < ∞. Then by [Pi3], B

can be written as a complex interpolation space between a Hilbert space and another
lattice, i.e., there are a Hilbert space H and a Banach lattice B0 such that

B = (H, B0)� .

Moreover, B0 is q0-concave and p0-convex with p0 > 1 and q0 satisfying 1/q =
�/2+ (1−�)/q0. Now given a symmetric diffusion semigroup {Tt }, following [St1, pp.
116–119], we consider the fractional averages of {Tt }:

M�
t (f ) = t−�

�(�)

∫ t

0
(t − s)�−1 Tsf ds.

M�
t is well defined for � ∈ C with Re(�) > 0, and is continued analytically into the

whole complex plane. Note that M1
t is the usual average Mt and M0

t = Tt . By [St1],
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for all � ∈ C and f ∈ L
p
H (�) (1 < p < ∞), we have

∥∥∥∥∥∥
[∫ ∞

0

∥∥∥∥t �M�
t f

�t

∥∥∥∥2

H

dt

t

]1/2
∥∥∥∥∥∥

Lp(�)

�Cp,� ‖f ‖L
p
H (�).

(This is proved in [St1] for the scalar-valued case; but the same arguments work as
well for Hilbert-space-valued functions.) On the other hand, using Theorem 2.3, one
can easily check that for any � ∈ C with Re(�) > 1 and f ∈ L

p

B0
(�) (1 < p < ∞)

∥∥∥∥∥∥
[∫ ∞

0

∥∥∥∥t �M�
t f

�t

∥∥∥∥q0

B0

dt

t

]1/q0
∥∥∥∥∥∥

Lp(�)

�Cp,B0,� ‖f ‖L
p
B0

(�).

Then interpolating these inequalities, we deduce that for any f ∈ L
p

B(�) (1 < p < ∞)

∥∥∥∥∥∥
[∫ ∞

0

∥∥∥∥t �M0
t f

�t

∥∥∥∥q

B

dt

t

]1/q
∥∥∥∥∥∥

Lp(�)

�Cp,B ‖f ‖L
p
B(�).

This is the desired inequality on Tt (recalling that Tt = M0
t ).

3. Duality

Throughout this section {Tt }t �0 will be a fixed symmetric diffusion semigroup de-
fined on Lp(�, d�), and {Pt }t �0 its subordinated Poisson semigroup. We shall keep
all notations introduced in the previous section for these semigroups. In particular, F is
the contractive projection from Lp(�) (also from L

p

B(�)) onto the fix point subspace
of {Pt }t �0. The following is the main result of this section.

Theorem 3.1. Let B be a Banach space and 1 < p, q < ∞. Then the following
statements are equivalent:

(i) There is a constant C > 0 such that

‖Gqf ‖Lp(�) �C‖f ‖L
p
B(�) ∀f ∈ L

p

B(�).

(ii) There is a constant C > 0 such that

‖g‖
L

p′
B∗ (�)

�C

(
‖F(g)‖

L
p′
B∗ (�)

+ ‖Gq ′g‖
Lp′

(�)

)
∀g ∈ L

p′
B∗(�).
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The proof of the implication (i) ⇒ (ii) of Theorem 2.2 shows in fact (i) ⇒ (ii)
in the theorem above. The inverse implication needs much more effort (as usually in
such a situation). Let A = L

q

B(R+, dt
t
). An element h in L

p

A(�) is a function of two
variables x ∈ � and t ∈ R+, i.e., h : (x, t) �→ ht (x). The key to the implication (ii) ⇒
(i) above is the existence of a bounded projection from L

p

A(�) onto the subspace of

all functions h which can be written as ht (x) = t
�Pt f

�t
(x) for some function f on �.

Formally, the desired projection is given by h �→ t
�Pt (Qh)

�t
(x), where Qh is defined

by

Qh(x) =
∫ ∞

0
t
�Pt ht

�t
(x)

dt

t
, x ∈ �. (3.1)

Note that Q(h) is well-defined for nice functions h ∈ L
p

A(�), for instance, for all
compactly supported continuous functions from R+ to L

p

B(�). By the density of all
such functions in L

p

A(�), to prove the boundedness of Q we need only to estimate the
relative norm of Qh for all such h.

Theorem 3.2. Let B, p, q be as in Theorem 3.1. Then for any (nice) h

‖Gq(Qh)‖Lp(�) �Cp,q ‖h‖L
p
A(�).

Consequently, GqQ extends to a bounded operator from L
p

A(�) to Lp(�) with norm
controlled by a constant depending only on p and q.

Admitting this theorem, we can easily prove Theorem 3.1.

Proof of Theorem 3.1. (i) ⇒ (ii). The proof for this is similar to that for (i) ⇒ (ii)
in Theorem 2.2.

(ii) ⇒ (i). Fix an f ∈ L
p

B(�). Choose h ∈ L
p′

L
q′
B∗ (R+, dt

t
)
(�) of unit norm such

‖Gqf ‖Lp(�) =
∫

�

∫
R+

〈t �Pt f

�t
(x), ht (x)〉 dt

t
dx.

Now we apply Theorem 3.2 to B∗, p′ and q ′. (We may assume f and h are nice enough
to legitimate the calculations below.) We have, by hypothesis (ii) and Theorem 3.2

‖Gqf ‖Lp(�) =
∫

R+

∫
�
〈f (x), t

�Pt ht

�t
(x)〉 dt

t
dx,

=
∫

�
〈f (x), Q(h)(x)〉 dx,
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� ‖f ‖L
p
B(�)‖Q(h)‖

L
p′
B∗ (�)

� C‖f ‖L
p
B(�)‖Gq ′(Qh)‖

Lp′
(�)

�C′‖f ‖L
p
B(�).

This yields (i). �

As for Theorem 2.3, we shall reduce Theorem 3.2 to an analogous inequality for
martingales via Rota’s theorem. Let {En} be a monotone sequence of conditional ex-
pectations as in Lemma 2.4. Let us maintain the notations in that lemma and its proof.
In the remainder of this section lq denotes the usual �q space over N but with weight
{ 1
n
}, i.e., the norm of a sequence a is given by

‖a‖lq =
⎛⎝∑

n�1

|an|q 1

n

⎞⎠1/q

.

The corresponding B-valued version is l
q

B , denoted by D = l
q

B in the sequel. Now we
consider the discrete version of Q defined by (3.1). As before, the elements in L

p

D(M)

are regarded as sequences with values in L
p

B(M). Given h ∈ L
p

D(M) we define

Rh =
∑
n�1

n��n(hn)
1

n
, (3.2)

where ��n = �n − �n−1. Recall that �n = E0 + · · · + En

n + 1
. Rh is clearly well-defined

for finite sequences (hn)n.

Lemma 3.3. Let B, p, q be as in Theorem 3.1. Let {En} be an arbitrary monotone
sequence of conditional expectations on a measure space (M, dm). Then for any finite
sequence h = (hn) ∈ L

p

D(M)

∥∥(n��n(Rh))n�1

∥∥
L

p
D(M)

�Cp,q ‖h‖L
p
D(M).

Consequently, h �→ (n��n(Rh))n�1 extends to a bounded operator on L
p

D(M) with
norm majorized by a constant depending only on p and q.
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Proof. Without loss of generality, we may assume {En} increasing. What we have to
prove is the following inequality:∥∥∥∥∥∥∥
⎡⎣∑

m�1

∥∥∥∥∥∥
∑
n�1

m��m ��nhn

∥∥∥∥∥∥
q

1

m

⎤⎦
1
q

∥∥∥∥∥∥∥
Lp(M)

�Cp,q

∥∥∥∥∥∥∥
⎡⎣∑

n�1

‖hn‖q 1

n

⎤⎦
1
q

∥∥∥∥∥∥∥
Lp(M)

. (3.3)

Given m, n�0 we have

��m ��n = �m �n − �m−1 �n − �m �n−1 + �m−1 �n−1. (3.4)

A simple calculation yields (with m ∧ n = min(m, n))

�m �n = 1

(m + 1)(n + 1)

m∑
i=0

n∑
j=0

EiEj = 1

(m + 1)(n + 1)

m∧n∑
i=0

(m + n − 2i + 1)Ei.

Setting di = Ei −Ei−1 (with the convention that E−1 = 0) and using Abel summation,
we get

�m �n =
m∧n∑
j=0

(
1 − j (m + n + 2 − j)

(m + 1)(n + 1)

)
dj .

Thus by (3.4)

��m ��n = 1

mn(m + 1)(n + 1)

m∧n∑
j=1

j2 dj . (3.5)

To prove (3.3) we use martingale transforms with vector-valued kernel as in [MT].
See the end of this paper (after Theorem 7.4) for a brief discussion on this subject.
The martingales we consider here are those defined on (M, dm) relative to {En} with
values in D = l

q

B. Because of (3.5), we want to express the mapping

T : h = {hn}n�1 �→
⎧⎨⎩∑

n�1

1

n(m + 1)(n + 1)

m∧n∑
j=1

j2 dj hn

⎫⎬⎭
m�1

as a martingale transform, namely, we have to find a multiplying sequence {vj } such
that

T h =
∑
j

vj djh.
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This is clear from the above definition of Th. In fact, each vj is a constant (an element
in L(D)) and its matrix is given by

Aj =
[

j2

n(m + 1)(n + 1)
�[j, ∞)

(m)�[j, ∞)
(n)

]
m�1,n�1

.

More precisely, vj is the operator Aj ⊗ IdB, where Aj is considered as an operator on
lq . Therefore,

‖vj‖L(D) = j2

⎛⎝∑
m� j

1

m(m + 1)q

⎞⎠1/q ⎛⎝∑
n� j

1

n(n + 1)q
′

⎞⎠1/q ′

�C0.

Therefore by [MT], it suffices to prove (3.3) for p = q. This is the main part of the
proof. In the following C > 0 denotes a constant which may depend on q and vary
from line to line.

Let us first rewrite (3.3) in the case p = q (by using (3.5)):

L ≡
∫

M

∑
m�1

∥∥∥∥∥∥
∑
n�1

1

n(m + 1)(n + 1)

m∧n∑
j=1

j2 dj hn

∥∥∥∥∥∥
q

1

m
�C

∫
M

∑
n�1

‖hn‖q 1

n
. (3.6)

It is easy to see that it is enough to prove the above inequality (3.6) for m∧n�5. We
have

L �
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
∑

5�n�m

1

n(n + 1)

n∑
j=1

j2 dj hn

∥∥∥∥∥∥
q

+
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
∑
n>m

1

n(n + 1)

m∑
j=1

j2 dj hn

∥∥∥∥∥∥
q

≡ A + B. (3.7)

Let us first estimate A. To this end, we use the notations �k and Jn introduced during
the proof of Lemma 2.4. Note that for 2k−1 < j �2k

dj = Ej(�k) − Ej−1(�k).

Thus by Abel’s summation we have

2k∑
j=2k−1+1

j2 dj = 22k�k −
2k−1∑

j=2k−1+1

(2j + 1)Ej (�k), k�2
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and so for n�5

∑n
j=1 j2 dj = d1 + 4d2 +

Jn∑
k=2

2k∑
j=2k−1+1

j2 dj +
n∑

j=2Jn+1

j2 dj

= d1 + 4d2 +
Jn∑

k=2

22k�k −
Jn∑

k=2

2k−1∑
j=2k−1+1

(2j + 1)Ej (�k)

+ n2En(�Jn+1) −
n−1∑

j=2Jn+1

(2j + 1)Ej (�Jn+1). (3.8)

Inserting this decomposition of
∑n

j=1 j2 dj in the expression of A in (3.7) and by
triangle inequality, we see that A is majorized by a sum of five terms, A0 +A1 +A2 +
A3 + A4, corresponding respectively to the five terms of the last member in (3.8). The
term A0 is handled easily. Fix 0 < � < 1/2 and put 
 = 1 − �. For A1 we have

A1 =
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
∑

5�n�m

1

n(n + 1)

Jn∑
k=2

22k�k hn

∥∥∥∥∥∥
q

=
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
Jm∑
k=2

22k�k

⎡⎣ ∑
n: Jn �k

1

n(n + 1)
hn

⎤⎦∥∥∥∥∥∥
q

� C
∑
m�5

m2�q

mq+1

Jm∑
k=2

22
qk

∫
M

∥∥∥∥∥∥�k

⎡⎣ ∑
n: Jn �k

1

n(n + 1)
hn

⎤⎦∥∥∥∥∥∥
q

� C

∫
M

∑
m�5

m2�q

mq+1

Jm∑
k=2

22
qk

∥∥∥∥∥∥
∑

n: Jn �k

1

n(n + 1)
hn

∥∥∥∥∥∥
q

� C

∫
M

∑
m�5

1

m(1−2�)q+1

Jm∑
k=2

22
qk 2−k
∑

n: Jn �k

1

nq
‖hn‖q

� C

∫
M

∑
m�5

1

m(1−2�)q+1

∑
5�n�m

1

nq
‖hn‖q

Jn∑
k=2

2(2
q−1)k

� C

∫
M

∑
n�5

n2
q−q−1‖hn‖q
∑
m�n

1

m(1−2�)q+1
(since 2
q − 1 > 0)

� C

∫
M

∑
n�1

‖hn‖q

n
(since 1 − 2� > 0).
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We pass to A2:

A2 =
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
∑

5�n�m

1

n(n + 1)

Jn∑
k=2

2k−1∑
j=2k−1+1

(2j + 1)Ej�k hn

∥∥∥∥∥∥
q

=
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
Jm∑
k=2

⎡⎣ 2k−1∑
j=2k−1+1

(2j + 1)Ej�k

⎤⎦⎛⎝ ∑
n: Jn �k

1

n(n + 1)
hn

⎞⎠∥∥∥∥∥∥
q

.

Let us handle the expression concerning the internal norm. As for A1 previously, we
have

∥∥∥∥∥∥
Jm∑
k=2

⎡⎣ 2k−1∑
j=2k−1+1

(2j + 1)Ej�k

⎤⎦⎛⎝ ∑
n: Jn �k

1

n(n + 1)
hn

⎞⎠∥∥∥∥∥∥
q

�C m2�q

Jm∑
k=2

22
qk

∥∥∥∥∥∥
2k−1∑

j=2k−1+1

2−2k(2j + 1)Ej�k

⎛⎝ ∑
n: Jn �k

1

n(n + 1)
hn

⎞⎠∥∥∥∥∥∥
q

�C m2�q

Jm∑
k=2

22
qk
2k−1∑

j=2k−1+1

2−2k(2j + 1)

∥∥∥∥∥∥Ej�k

⎛⎝ ∑
n: Jn �k

1

n(n + 1)
hn

⎞⎠∥∥∥∥∥∥
q

.

Therefore,

∫
M

∥∥∥∥∥∥
Jm∑
k=2

⎡⎣ 2k−1∑
j=2k−1+1

(2j + 1)Ej�k

⎤⎦⎛⎝ ∑
n: Jn �k

1

n(n + 1)
hn

⎞⎠∥∥∥∥∥∥
q

�C m2�q

Jm∑
k=2

22
qk
2k−1∑

j=2k−1+1

2−2k(2j + 1)

∫
M

∥∥∥∥∥∥Ej�k

⎛⎝ ∑
n: Jn �k

1

n(n + 1)
hn

⎞⎠∥∥∥∥∥∥
q

�C m2�q

Jm∑
k=2

22
qk
2k−1∑

j=2k−1+1

2−2k(2j + 1)

∫
M

∥∥∥∥∥∥
∑

n: Jn �k

1

n(n + 1)
hn

∥∥∥∥∥∥
q

�C

∫
M

m2�q

Jm∑
k=2

22
qk

∥∥∥∥∥∥
∑

n: Jn �k

1

n(n + 1)
hn

∥∥∥∥∥∥
q

.
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Combining the preceding inequalities, we get

A2 � C

∫
M

∑
m�5

1

m(1−2�)q+1

Jm∑
k=2

22
qk

∥∥∥∥∥∥
∑

n: Jn �k

1

n(n + 1)
hn

∥∥∥∥∥∥
q

� C

∫
M

∑
n�1

‖hn‖q

n
.

It is easier to estimate A3 and A4. Indeed, for A3 we have

A3 =
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∥
∑

5�n�m

1

n(n + 1)
n2En�Jn+1 hn

∥∥∥∥∥∥
q

� C
∑
m�5

1

m2

∑
5�n�m

∫
M

∥∥En�Jn+1 hn

∥∥q �C

∫
M

∑
n�1

‖hn‖q

n
.

A4 is similarly estimated. Therefore, we get

A�C‖h‖q

L
q
D(M)

. (3.9)

Now we turn to B. This time we fix � such that q−1
2q

< � <
q−1
q

and put again

 = 1 − �. As for A previously, using (3.8) with n replaced by m, we see that B is
less than or equal to B0 + B1 + B2 + B3 + B4, corresponding to the decomposition in
(3.8). Thus

B1 =
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥∑
n>m

1

n(n + 1)

Jm∑
k=2

22k�k hn

∥∥∥∥∥
q

=
∫

M

∑
m�5

1

mq+1

∥∥∥∥∥
Jm∑
k=2

22k�k

[∑
n>m

1

n(n + 1)
hn

]∥∥∥∥∥
q

� C
∑
m�5

mq−3
Jm∑
k=2

22k

∫
M

∥∥∥∥∥�k

[∑
n>m

1

n(n + 1)
hn

]∥∥∥∥∥
q

� C

∫
M

∑
m�5

mq−1

(∑
n>m

1

n2�q ′

)q−1 ∑
n>m

1

n2
q
‖hn‖q

� C

∫
M

∑
m�5

m2(q−1)−2�q
∑
n>m

1

n2
q
‖hn‖q (since 2�q ′ > 1)

� C

∫
M

∑
n�1

‖hn‖q

n
(since q − 1 > �q).
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In a similar way (also as for A2, A3 and A4), we obtain the same bound for B2, B3
and B4. Therefore, we have

B �C‖h‖q

L
q
D(M)

. (3.10)

Finally combining (3.7), (3.9) and (3.10), we get (3.6). Therefore, the lemma is
proved. �

Proof of Theorem 3.2. For notational simplicity we put

�t = t
�Pt

�t
and �t = t

�Mt

�t
.

(Recall that Mt = 1
t

∫ t

0 Ts ds.) By Lemma 2.7,

∫
�

[∫ ∞

0

∥∥∥∥∫ ∞

0
�s�t ht

dt

t

∥∥∥∥q] p
q ds

s
�Cp

∫
�

[∫ ∞

0

∥∥∥∥∫ ∞

0
�s�t ht

dt

t

∥∥∥∥q] p
q ds

s
.

By (2.5), ∫ ∞

0
�s�t ht

dt

t
= −2

∫ ∞

0

∫ ∞

0

( u

t2

)2
�′ ( u

t2

)
�s�uht

du

u

dt

t

=
∫ ∞

0

∫ ∞

0

[
t2�′(t)

]
�s�uhu1/2t−1/2

du

u

dt

t
.

By the triangle inequality (recalling that A = L
q

B(R+, ds
s

)),∥∥∥∥∫ ∞

0
�· �t ht

dt

t

∥∥∥∥
L

p
A(�)

�
∫ ∞

0

∥∥∥∥∫ ∞

0
�· �u hu1/2t−1/2

du

u

∥∥∥∥
L

p
A(�)

t2|�′(t)|dt

t
.

Now using the same discretization arguments as in the proof of Theorem 2.3, we
deduce from Lemma 3.3 that

∥∥∥∥∫ ∞

0
�· �u hu1/2t−1/2

du

u

∥∥∥∥p

L
p
A(�)

� Cp

∫
�

[∫ ∞

0
‖hu1/2t−1/2‖q du

u

] p
q

= 2p/qCp‖h‖p

L
p
A(�)

.
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Combining the preceding inequalities, we obtain∥∥∥∥∫ ∞

0
�· �t ht

dt

t

∥∥∥∥
L

p
A(�)

�C′‖h‖L
p
A(�).

This is the desired inequality. Thus we have achieved the proof of Theorem 3.2. �

4. Poisson semigroup on Rn

This section and the next are devoted to the study of the Littlewood–Paley g-function
on Rn in the vector-valued case. Our main goal is to prove the implications (ii) ⇒
(i) in Theorems 2.1 and 2.2 in the particular case of the Poisson semigroup on Rn.
This section collects some results on the g-function operator on Rn, represented as
a Calderón–Zygmund operator. It can be considered as preparatory, although some of
these results are of general interest. The proof of the mentioned implications will be
done in the next section.

Let B be a Banach space and 1 < q < ∞. Recall the generalized Littlewood–Paley
g-function on Rn:

Gq(f )(x) =
(∫ ∞

0
tq‖∇Pt ∗ f (x)‖q

�2
B

dt

t

)1/q

, x ∈ Rn.

It is often easier to consider the corresponding g-function defined only by the derivative
in time, which is the following

G1
q(f )(x) =

(∫ ∞

0
tq
∥∥∥∥�Pt

�t
∗ f (x)

∥∥∥∥q

B

dt

t

)1/q

.

Similarly, we define G2
q (f ) as the part of Gq(f ) corresponding to the gradient in the

space variable:

G2
q (f )(x) =

(∫ ∞

0
tq‖∇xPt ∗ f (x)‖q

�2
B

dt

t

)1/q

,

where

∇x =
(

�
�x1

, . . . ,
�

�xn

)
.

These g-functions can be treated as Calderón–Zygmund operators. To this end we
first recall briefly the definition of these operators. Given a pair of Banach spaces B1
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and B2, a linear operator T is a Calderón–Zygmund operator on Rn, with associated
Calderón–Zygmund kernel k if T maps L∞

c,B1
(Rn), the space of the essentially bounded

functions on Rn with compact support, into B2-valued strongly measurable functions
on Rn, and for any function f ∈ L∞

c,B1
(Rn) we have

Tf (x) =
∫

Rn
k(x, y)f (y)dy, for a.e. x outside the support of f,

where the kernel, k(x, y) ∈ L(B1, B2) satisfies

(a) ‖k(x, y)‖�C|x − y|−n,
(b) ‖∇xk(x, y)‖ + ‖∇yk(x, y)‖�C|x − y|−(n+1).

We shall always assume that there is � ∈ L(B1, B2) such that T (c) ≡ �(c) for all
c ∈ B1.

Let us recall the BMO and H 1 spaces on Rn. Let B be a Banach space. BMOB(Rn)

is the space of B-valued functions f defined on Rn such that

‖f ‖BMOB(Rn) = sup
Q

1

|Q|
∫

Q‖f (x)−fQ‖B dx<∞,

where fQ = 1
|Q|
∫
Q

f (x) dx and the supremum is taken over the cubes Q ⊂ Rn. The

space H 1 is defined in the atomic sense. Namely, we say that a function a ∈ L∞
B (Rn)

is a B-atom if there exists a cube Q ⊂ Rn containing the support of a, and such
that ‖a‖L∞

B (Rn) � |Q|−1, and
∫
Q

a(x) dx = 0. Then, we say that a function f is in

H 1
B(Rn) if it admits a decomposition f = ∑

i �iai , where ai are B-valued atoms and∑
i |�i | < ∞. We define ‖f ‖H 1

B
= inf

{∑
i |�i |

}
, where the infimum runs over all those

such decompositions (see [BG]).
The following theorem is a kind of folklore. We give a sketch of its proof for the

convenience of the reader. BMOc,B(Rn) denotes the subspace of BMOB(Rn) consisting
of functions with compact support.

Theorem 4.1. Let B1, B2 be two Banach spaces and T a Calderón–Zygmund operator
with an associated kernel k as above. Let S be defined as S(f ) = ‖T (f )‖B2 . Then,
the following statements are equivalent

(i) T maps L∞
c,B1

(Rn) into BMOB2(R
n).

(ii) S maps L∞
c,B1

(Rn) into BMO(Rn)

(iii) T maps H 1
B1

(Rn) into L1
B2

(Rn).

(iv) T maps L
p

B1
(Rn) into L

p

B2
(Rn) for any (or equivalently, for some) p ∈ (1, ∞).

(v) T maps L1
B1

(Rn) into weak-L1
B2

(Rn).
(vi) T maps BMOc,B1(R

n) into BMOB2(R
n).

(vi) S maps BMOc,B1(R
n) into BMO(Rn).



Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475 459

Proof. The structure of the proof is the following: first, (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Then,
we prove (i) ⇒ (iv) ⇒ (vi) ⇒ (vii) ⇒ (ii) and (iv) ⇒ (v) ⇒ (i).

The fact that L∞
B1

is contained in BMOB1 gives that (vi) implies (i). Since the
norm of a function in BMOB is a function in BMO, then we have (i) ⇒ (ii) and
(vi) ⇒ (vii).

To get (ii) ⇒ (iii) and (iii) ⇒ (i), we can proceed as in [Jou, p. 49] with minor
modifications due to considering the operator Sf = ‖Tf ‖B2 .

As we already know that (i) ⇒ (iii), we can apply interpolation (see [BX]) and we
have that T maps L

p

B1
into L

p

B2
for 1 < p < ∞, so we have (i) ⇒ (iv).

The proof of (iv) ⇒ (vi) is where the condition that T (c)(x) = �(c) plays a role.
Let f be a function in BMOc,B1 . Given a cube Q with center x0, let Q̃ be its doubled
cube. We decompose

1

|Q|
∫

Q

‖Tf (x) − T g2(x0)‖B2 dx

� 1

|Q|
∫

Q

‖T g1(x)‖B2 dx + 1

|Q|
∫

Q

‖T g2(x) − T g2(x0)‖B2 dx,

where f = g1 + g2, g1 = (f − fQ)�
Q̃

and g2 = (f − fQ)�Rn\Q̃ + fQ. By using

Jensen and the Lp boundedness of T, we have

1

|Q|
∫

Q

‖T g1(x)‖ dx �
(

1

|Q|
∫

Q

‖T g1(x)‖p dx

)1/p

� C

(
1

|Q|
∫

Rn
‖g1(x)‖p

B1
dx

)1/p

= C

(
1

|Q|
∫

Q̃

‖f (x) − fQ‖p

B1
dx

)1/p

�C‖f ‖BMOB1
,

where in the last inequality we have used the John–Niremberg theorem. On the other
hand, using T (c)(x) = �(c), we have

T g2(x) − T g2(x0) = T ((f − fQ)�Rn\Q̃)(x) − T ((f − fQ)�Rn\Q̃)(x0)

=
∫

Rn\Q̃
(k(x, y) − k(x0, y))(f (y) − fQ) dy.

Now, using the hypothesis on the kernel k we have that for x ∈ Q, y ∈ Rn \ Q̃,

‖k(x, y) − k(x0, y)‖� |x−x0|
|y−x0|n+1 , and therefore

‖T g2(x) − T g2(x0)‖B2 �
∞∑

j=1

2−j

∫
2j Q\2j−1Q

1

|y − x0|n ‖f (y) − fQ‖B1 dy

�
∞∑

j=1

2−j 1

|2jQ|
∫

2j Q

‖f (y) − fQ‖B1 dy�C‖f ‖BMOB1
.
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By [GR, Theorem V.3.4], the strong type (p, p) implies that T is of weak type
(1, 1). This gives (iv) ⇒ (v). From (v), statement (i) can be achieved by using an
slight modification of the argument given in the proof of Lemma 5.11 of [GR, p. 199].
The key is using Kolmogorov’s inequality [GR, Lemma V.2.8] relating L1,∞ norm with
Lq norm for 0 < q < 1 and the fact that BMOq = BMO. �

It is well known that the various Littlewood–Paley g-functions can be expressed as
Calderón–Zygmund operators with regular vector-valued kernels (see [Xu] for the case
of the torus; also see [St2] for the scalar case). Therefore, we immediately get the
following

Corollary 4.2. Given a Banach space B, q ∈ (1, ∞), the following statements are
equivalent.

(i) Gq maps L∞
c,B(Rn) into BMO(Rn).

(ii) Gq maps H 1
B(Rn) into L1(Rn).

(iii) Gq maps L
p

B(Rn) into Lp(Rn) for any (equivalently for some) p ∈ (1, ∞).
(iv) Gq maps BMOc,B(Rn) into BMO(Rn).
(v) Gq maps L1

B(Rn) into L1,∞(Rn).

These statements are also equivalent if we replace Gq by G1
q or G2

q .

The following result reduces the boundedness on Gq , G1
q and G2

q to that on one of
them.

Proposition 4.3. Let B be a Banach space and p, q ∈ (1, ∞). Then for any f ∈
L

p

B(Rn)

‖G1
q(f )‖Lp(Rn) ≈ ‖G2

q (f )‖Lp(Rn),

where the equivalence constants depend only on p, q and n.

Proof. Set, for simplicity,

� = �
�t

, �i = �
�xi

and �t = t �Pt , �i
t = t �iPt , i = 1, . . . , n.

Given t = t1 + t2 we have

Pt ∗ f = Pt1 ∗ Pt2 ∗ f.

Differentiating the two sides first in t2 and then in xi , we get

t2 �i�P2t ∗ f = �i
t ∗ �t ∗ f. (4.1)
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(Here �i�P2t ∗f = [
�xi

�s(Ps ∗ f (x))
]∣∣

s=2t
.) We use again the singular integral theory.

Let A = L
q

B(R+, dt
t
). Given x ∈ Rn let k(x) : A → A be the operator defined by

k(x)(�)(t) = �i
t (x) · �(t) for � ∈ A. It is easy to check that (x, y) �→ k(x − y) is a

Calderón–Zygmund kernel (satisfying additionally the condition in Theorem 4.1). Let
T be the associated operator. We claim that T is bounded on L

q

A(Rn). Indeed, fix h ∈
L

q

A(Rn). Note that h can be regarded as a function of two variables (x, t) ∈ Rn × R+.
Then

‖T (h)‖q

L
q
A(Rn)

=
∫

Rn

∫
R+

∥∥∥∥∫
Rn

�i
t (y)h(x − y, t) dy

∥∥∥∥q
dt

t
dx.

However,

(∫
Rn

∥∥∥∥∫
Rn

�i
t (y)h(x − y, t) dy

∥∥∥∥q

dx

) 1
q

�
∫

Rn

∣∣∣�i
t (y)

∣∣∣ (∫
Rn

‖h(x − y, t)‖q dx

) 1
q

dy

�C

(∫
Rn

‖h(x, t)‖q dx

) 1
q

.

Therefore,

‖T (h)‖L
q
A(Rn) �C‖h‖L

q
A(Rn).

This gives our claim. Then by Theorem 4.1, we deduce that T is bounded on L
p

A(Rn)

for all p ∈ (1, ∞).
Applying this boundedness of T to h(x, t) = �t ∗ f (x) and using (4.1), we get

∫
Rn

(∫
R+

‖t2 �i�Pt ∗ f (x)‖q dt

t

)p/q

dx�Cp ‖G1
q(f )‖p

Lp(Rn)
.

Assume, without loss of generality, that f is good enough such that �iPt ∗ f (x) → 0
as t → ∞ (for instance, f is compactly supported). Then

�iPt ∗ f (x) = −
∫ ∞

t

��iPs ∗ f (x)ds.
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Therefore∫ ∞

0
‖t�iPt ∗ f (x)‖q dt

t
�
∫ ∞

0
tq
(∫ ∞

t

s‖��iPs ∗ f (x)‖ ds

s

)q
dt

t

� C

∫ ∞

0
tq/2

∫ ∞

t

s3q/2‖��iPs ∗ f (x)‖q ds

s

dt

t

= C′
∫ ∞

0
s2q‖��iPs ∗ f (x)‖q ds

s
.

It then follows that∫
Rn

(∫
R+

‖t �iPt ∗ f (x)‖q dt

t

)p/q

dx

�Cp

∫
Rn

(∫
R+

‖t2 �i�Pt ∗ f (x)‖q dt

t

)p/q

dx.

Therefore, ∫
Rn

(∫
R+

‖t �iPt ∗ f (x)‖q dt

t

)p/q

dx�Cp ‖G1
q(f )‖p

Lp(Rn)
.

Adding the n inequalities so obtained over i = 1, . . . , n, we get

‖G2
q (f )‖Lp(Rn) �Cp,q,n ‖G1

q(f )‖Lp(Rn).

To prove the reverse inequality, we first observe that the same arguments as above
show that ∫

Rn

(∫
R+

‖t2 �2
i Pt ∗ f (x)‖q dt

t

)p/q

dx

�Cp

∫
Rn

(∫
R+

‖t �iPt ∗ f (x)‖q dt

t

)p/q

dx.

Then using the formula

�2
Pt ∗ f (x) = −

n∑
i=1

�2
i Pt ∗ f (x),

we get

∫
Rn

(∫
R+

‖t2 �2
Pt ∗ f (x)‖q dt

t

)p/q

dx�Cp ‖G2
q (f )‖p

Lp(Rn)
.
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Finally, using the arguments in the second part of the above proof, we can go down
to �Pt ∗ f (x) to have

‖G1
q(f )‖Lp(Rn) �Cp,q,n ‖G2

q (f )‖Lp(Rn).

This completes the proof of the proposition. �

Remark. The equivalence in Proposition 4.3 still holds when Lp is replaced by L1,∞.

The last result of this section is a duality theorem for the boundedness of the
g-functions (Theorem 4.5 below). This theorem is a particular case of Theorem 3.1. It
is also the analogue for Rn of [Xu, Theorem 2.4] (for the torus). As in such a situation
the key is again the existence of a certain projection. For the reader interested only in
the Rn case, we include a proof for this latter fact, which is much simpler than that of
Theorem 3.2. Fix a Banach space B and q ∈ (1, ∞), and we keep the notation used
in the previous proof with A = L

q

B(R+, dt
t
). The projection in question is defined as

(recalling that �t = t�Pt )

Q(h)(x) =
∫ ∞

0
�t ∗ h(·, t)(x)

dt

t
, x ∈ Rn.

Note that Q(h) is well defined for functions h in a dense family of L
p

A(Rn), for
instance, for those which are compactly supported continuous functions on Rn × R+.

The proof of the following lemma is an adaption for Rn of [Xu, Lemma 2.3], so
we are rather sketchy.

Lemma 4.4. Let B be a Banach space and p, q ∈ (1, ∞). Let Q be defined as before.
Then for any B-valued continuous function h with compact support in Rn × R+

‖G1
q(Q(h))‖Lp(Rn) �Cp,q‖h‖L

p
A(Rn).

Consequently, the map h �→ G1
q(Q(h)) extends to a bounded map from L

p

A(Rn) to
Lp(Rn).

Proof. Set f = Q(h). Then

s�s ∗ f = s

∫ ∞

0
�s ∗ �t ∗ h(·, t)(x)

dt

t

= st

∫ ∞

0
�2

Ps+t ∗ h(·, t)(x)
dt

t
=
∫ ∞

0
ks,t ∗ h(·, t)(x)

dt

t
,
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where

ks,t = st �2
Ps+t = st

�2

�u2
Pu

∣∣∣∣∣
u=s+t

.

Now consider the operator K(x) : A → A defined by

K(x)(�)(s) =
∫ ∞

0
ks,t (x)�(t)

dt

t

for every � ∈ A. Using the inequality

|ks,t (x)|�C
st

(|x| + s + t)(n+2)

and a similar one for the derivative of ks,t (x) in x, one can easily check that for any
x ∈ Rn \ {0}, K(x) is bounded and

‖K(x)‖� C

|x|n , ‖∇K(x)‖� C

|x|n+1 .

Thus (x, y) �→ K(x − y) is a Calderón–Zygmund kernel. Hence to prove the lemma it
suffices to show that the singular integral operator h �→ K ∗ h is bounded on L

q

A(Rn),
in virtue of Theorem 4.1. This is easily done as follows. For x ∈ Rn and s ∈ (0, ∞)

we have

‖K ∗ h(x, s)‖ �
(∫ ∞

0

∫
Rn

|ks,t (x − y)| dy
dt

t

)1/q ′

×
(∫ ∞

0

∫
Rn

|ks,t (x − y)| ‖h(y, t)‖q dy
dt

t

)1/q

� C

(∫ ∞

0

∫
Rn

|ks,t (x − y)| ‖h(y, t)‖q dy
dt

t

)1/q

.

Therefore,

‖K ∗ h‖q

L
q
A(Rn)

� Cq

∫
Rn

∫ ∞

0

∫ ∞

0

∫
Rn

|ks,t (x − y)| ‖h(y, t)‖q dy
dt

t

ds

s
dx

� Cq

∫
Rn

∫ ∞

0

[∫
Rn

∫ ∞

0

st

(|x − y| + s + t)(n+2)

ds

s
dx

]
×‖h(y, t)‖q dt

t
dy

� C
q
q,n‖h‖q

L
q
A(Rn)

.
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This implies the desired boundedness of the singular integral on L
q

A(Rn). �

Remark. Lemma 4.4 holds as well for Gq and G2
q instead of G1

q . Moreover, the weak
type (1, 1) inequality is true too.

From Lemma 4.4 and using the arguments in the proof of Theorem 3.1, we deduce
the following

Theorem 4.5. Let B be a Banach space and q ∈ (1, ∞). Then the following statements
are equivalent:

(i) One of the statements in Corollary 4.2 holds.
(ii) For every p ∈ (1, ∞) (equivalently for some p ∈ (1, ∞)) there is a constant C

such that

‖f ‖L
p

B∗ (Rn) �C ‖G1
q ′ ‖Lp(Rn), ∀f ∈ L

p

B∗(Rn).

5. Poisson semigroup on Rn continued

Our aim in this section is proving that in the definition of the Lusin type or cotype
the Gq -function on the torus can be replaced by that on Rn. This, together with [Xu],
will imply the validity of (ii) ⇒ (i) in both Theorems 2.1 and 2.2 for the particular
case of the Poisson semigroup on Rn. This is done by a careful analysis of the Poison
kernels on T and on R and a comparison of its essential parts.

We shall also need a lemma, similar to Lemma 2.6, for the Poisson kernel on R.
We leave its elementary proof to the reader.

Lemma 5.1. Let B, p, q and � be as in the previous lemma. Then for any f ∈ L
p

B(R)

∥∥∥∥[t �Pt

�t
�

(0,�)
(t)�

(�,∞)
(|x|)

]
∗ f

∥∥∥∥
L

p

L
q
B

((0,∞), dt
t )

(R)

�C�‖f ‖L
p
B(R).

Now we state our result on the Lusin cotype for the Poisson semigroup on Rn.

Theorem 5.2. Let B be a Banach space and 2�q < ∞. Then the following statements
are equivalent:

(i) B is of Lusin cotype q.
(ii) For every (or equivalently, for some) positive integer n and for every (or equiva-

lently, for some) p ∈ (1, ∞) there is a constant C > 0

‖Gq(f )‖Lp(Rn) �C‖f ‖L
p
B(Rn) ∀f ∈ L

p

B(Rn).
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(iii) For every (or equivalently, for some) positive integer n there is a constant C > 0
such that

‖Gq(f )‖L1,∞(Rn) �C‖f ‖L1
B(Rn) ∀f ∈ L1

B(Rn).

The same equivalences hold with G1
q or G2

q instead of Gq in (ii) and (iii).

Proof. In virtue of Proposition 4.3, we need only to prove the theorem for G1
q .

(i) ⇒ (ii). This is a particular case of Theorem 2.1.
(ii) ⇔ (iii). This equivalence for a given integer n is already contained in Corollary

4.2.
(ii) for n > 1 ⇒ (ii) for n = 1. By Corollary 4.2, it is enough to get the boundedness

from L∞
c,B into BMO of G1

q on R from the same boundedness property of G1
q on Rn.

To this end, consider x̃ = (x2, . . . , xn) ∈ Rn−1, and h ∈ L∞
c,B(R), and define f (x) =

h(x1)�[0,1]n−1(x̃), where x = (x1, x2, . . . , xn) ∈ Rn. The symmetric diffusion semigroup
generated by the Laplacian on Rn is given by convolution with the Gaussian density.
Then we have

Tt f (x) =
∫

Rn

1

(4�t)n/2 e− |x−y|2
4t f (y) dy

= C0

∫
R

1

(4�t)1/2 e− |x1−y1|2
4t h(y1) dy1 = C0T 1

t h(x1),

where T 1
t is the heat kernel in R. If we denote by P1

t the Poisson semigroup subordi-
nated to T 1

t on R and by P 1
t the Poisson kernel on R, the formula (1.6) implies that

Pt ∗f (x) = Pt f (x) = C0P1
t h(x1) = C0P

1
t ∗h(x1), and therefore G1

qf (x) = C0G1
qh(x1).

Now, for every interval I ⊂ R consider Q = In the cube in Rn whose sides are the
interval I. Then,

1

|Q|
∫

Q

G1
qf (x) dx = 1

|I |n
∫

In

C0G1
qh(x1) dx1 . . . dxn = C0

|I |
∫

I

G1
qh(x1) dx1.

Therefore, and also by using similar arguments,

1

|Q|
∫

Q

∣∣∣G1
qf (x) − (G1

qf )Q

∣∣∣ dx = C0

|I |
∫

I

∣∣∣G1
qh(x1) − (G1

qh)I

∣∣∣ dx1.

Hence,

‖G1
qh‖BMO(R) = 1

C0
‖G1

qf ‖BMO(Rn) �C‖f ‖L∞
B (Rn) = C‖h‖L∞

B (R).
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(ii) for n = 1 ⇒ (i). By Corollary 4.2 and the corresponding result in [Xu] for the
torus, we need to prove that for every f ∈ L

q

B(T)

‖G1
q(f )‖Lq(T) �C‖f ‖L

q
B(T).

(Note that we take p = q here; also recall that G1
q is the Gq -function on the torus

relative to the derivative in the radius.) But by Lemma 2.6 it is enough to show that
for � > 0 very close to 1

∥∥∥∥[(1 − r)
�Pr(�)

�r
�

(1−�,1)
(r)�

(−�,�)
(�)

]
∗ f

∥∥∥∥
L

q

L
q
B

((0,1), dr
1−r

)
(T)

�C‖f ‖L
q
B(T). (5.1)

By the change of variables r = e−t , we have

�Pr(�)

�r
�

(1−�,1)
(r) = 2(1 − e−t )2 − 4(1 + e−2t ) sin2(�/2)[

(1 − e−t )2 + 4e−t sin2(�/2)
]2 ≡ kt (�).

Thus (5.1) is reduced to

∫
T

∫ ε

0

∥∥∥∥∥t
∫ �

−�
kt (�)f (� − �) d�

∥∥∥∥∥
q

dt

t
d��Cq‖f ‖q

L
q
B(T)

, (5.2)

where ε = log 1
1−� . It is elementary to decompose kt (�) as follows

kt (�) = k0
t (�) + k1

t (�) + k2
t (�),

where

k0
t (�) = 2

t2 − �2

(t2 + �2)2 �
(0,ε)

(t)�
(−�,�)

(�) (5.3)

and where k1
t (�) and k2

t (�) are supported on (0, ε) × (−�, �) and satisfy

|k1
t (�)|�C�

t

t2 + �2 , |k2
t (�)|�C�.

The verification of this decomposition, though entirely elementary, could be tedious.
One way to do this is to replace each time only one term of e−t and sin(�/2) by
their respective equivalents 1− t and �/2 in kt (�) and in the functions so successively
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obtained. At each stage the difference between the old and new functions is of type
k1
t (�) when e−t is replaced or of type k2

t (�) when sin(�/2) is replaced.
It is evident that

∫
T

∫ ε

0

∥∥∥∥∥t
∫ �

−�
k2
t (�)f (� − �) d�

∥∥∥∥∥
q

dt

t
d��C

q

�‖f ‖q

L
q
B(T)

.

It is also easy to get such an inequality for k1
t (�). Indeed, we have

∫
T

∫ ε

0

∥∥∥∥∥t
∫ �

−�
k1
t (�)f (� − �) d�

∥∥∥∥∥
q

dt

t
d�

�C
q

�

∫ ε

0
tq

[∫ �

−�

t

t2 + �2 ‖f ‖L
q
B(T) d�

]q
dt

t

�C
q

q,�‖f ‖q

L
q
B(T)

.

Therefore, (5.2) is reduced to

∫
T

∫ ε

0

∥∥∥∥∥t
∫ �

−�
k0
t (�)f (� − �) d�

∥∥∥∥∥
q

dt

t
d��Cq‖f ‖q

L
q
B(T)

. (5.4)

Now we use the Poisson kernel Pt on R. By the definition of k0
t in (5.3),

k0
t (x) = 1

2

�Pt(x)

�t
�

(0,ε)
(t)�

(−�,�)
(x).

Put f̃ (x) = f (x)�
(−�,�)

(x) for x ∈ R. Then by Lemma 5.1, we see that (5.4) is
further reduced to ∫

R

∫ ε

0

∥∥∥∥t �Pt

�t
∗ f̃ (x)

∥∥∥∥q
dt

t
dx�Cq‖f̃ ‖q

L
q
B(R)

.

This last inequality follows from hypothesis (iii). Therefore, B is of Lusin cotype q,
and thus the theorem is proved. �

The following is the dual version of Theorem 5.2.

Theorem 5.3. Let B be a Banach space and 1 < q �2. Then the following statements
are equivalent:

(i) B is of Lusin type q.
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(ii) For every (or equivalently, for some) n�1 and for every (or equivalently, for some)
p ∈ (1, ∞) there is a constant C > 0

‖f ‖L
p
B(Rn) �C ‖Gq(f )‖Lp(Rn) ∀f ∈ L

p

B(Rn).

The same equivalence holds with G1
q or G2

q instead of Gq in (ii).

Proof. (i) ⇒ (ii) is a particular case of Theorem 2.2. (ii) ⇒ (i) is done by duality in
virtue of Theorems 4.5 and 5.3. �

6. Ornstein–Uhlenbeck semigroup

Our purpose of this section is to extend the results in the previous one to the Poisson
semigroup subordinated to the Ornstein–Uhlenbeck semigroup on Rn. Recall that this
latter semigroup is defined by

Otf (x) = 1(
�(1 − e−2t )

)n/2

∫
Rn

exp

[
− |e−t x − y|

1 − e−2t

]
f (y)dy.

We denote by {Ot }t �0 the Poisson semigroup subordinated to {Ot }t �0 as defined in
(1.6).

Let B be a Banach space and 1 < q < ∞. As for the usual Poisson semigroup on
Rn, we introduce the Littlewood–Paley g-function associated to {Ot }t �0 :

gq(f )(x) =
(∫ ∞

0
tq‖∇Ot f (x)‖q

�2
B

dt

t

)1/q

, x ∈ Rn.

Here ∇ still denotes the gradient in Rn × R+. We shall also consider its two variants
corresponding to the time derivative and the space variable gradient, respectively:

g1
q(f )(x) =

(∫ ∞

0
tq
∥∥∥∥�Ot f

�t
(x)

∥∥∥∥q

B

dt

t

)1/q

and

g2
q(f )(x) =

(∫ ∞

0
tq‖∇xOt f (x)‖q

�2
B

dt

t

)1/q

.

The following is the analogue of Theorem 5.2 for the Ornstein–Uhlenbeck semigroup.
	n stands for the Gaussian measure on Rn, i.e., 	n = exp(−|x|2)dx.

Theorem 6.1. Let B be a Banach space and 2�q < ∞. Then the following statements
are equivalent:
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(i) B is of Lusin cotype q.
(ii) For every (or equivalently, for some) positive integer n and for every (or equiva-

lently, for some) p ∈ (1, ∞) there is a constant C > 0

‖gq(f )‖Lp(Rn,	n) �C‖f ‖L
p
B(Rn,	n) ∀f ∈ L

p

B(Rn, 	n).

(iii) For every (or equivalently, for some) positive integer n there is a constant C > 0
such that

‖gq(f )‖L1,∞(Rn,	n) �C‖f ‖L1
B(Rn,	n) ∀f ∈ L1

B(Rn, 	n).

The same equivalences hold with g1
q or g2

q instead of gq in (ii) and (iii).

We also have a similar result for Lusin type.

Theorem 6.2. Let B be a Banach space and 1 < q �2. Then the following statements
are equivalent:

(i) B is of Lusin type q.
(ii) For every (or equivalently, for some) n�1 and for every (or equivalently, for

some) p ∈ (1, ∞) there is a constant C > 0

‖f ‖L
p
B(Rn,	n) �C

(∥∥∥∥∫
Rn

f d	n

∥∥∥∥
B

+ ∥∥gq(f )
∥∥

Lp(Rn,	n)

)
∀f ∈ L

p

B(Rn, 	n ).

The same equivalence holds with g1
q or g2

q instead of gq in (ii).

The proofs of the theorems above can be reduced to those on the usual Poisson semi-
group on Rn already considered in the previous section. The usual technique dealing
with operators related to the Ornstein–Uhlenbeck semigroup consists in decomposing
Rn into two regions: one where the Gaussian and Lebesgue’s measure are equivalent,
and the corresponding operators comparable, and the other where the kernels of the op-
erators can be estimated by a well-behaved positive kernel. This technique was invented
by Muckenhoupt in the one-dimensional case, and extended by Sjögren to higher di-
mensions, for the maximal operator. For vector-valued functions, the technique has been
developed in [HTV], see also the references therein. Following this, for the g-function
operator, define the domains in Rn × Rn:

D1 =
{
(x, y) : |x − y| <

n(n + 3)

1 + |x| + |y|
}

and

D2 =
{
(x, y) : |x − y| <

2n(n + 3)

1 + |x| + |y|
}

.



Teresa Martínez et al. / Advances in Mathematics 203 (2006) 430–475 471

Let � be a smooth function on Rn × Rn which is supported on D2, equal to 1 on D1
and satisfies

‖∇x�(x, y)‖ + ‖∇y�(x, y)‖�C|x − y|−1.

Let T be a Calderón–Zygmund singular integral operator on Rn with kernel k(x, y) as
described at the beginning of Section 4 (and satisfying conditions (a) and (b) there).
We decompose T into its local and global parts

Tglobf (x) =
∫

k(x, y)[1 − �(x, y)]f (y)dy and Tloc = T − Tglob.

Now we can apply this decomposition to our favorite Littlewood–Paley g-functions.
We get the corresponding operators gq,loc, gq,glob . . . for the subordinated Poisson
Ornstein–Uhlenbeck semigroup, and Gq,loc, Gq,glob . . . for the usual Poisson semigroup.
The proofs of Theorems 6.1 and 6.2 are sketchy since the estimates needed are rather
technical and can be obtained in a parallel way as done in [HTV].

Proofs of Theorems 6.1 and 6.2. We shall use the following known facts from [HTV]

(a) gq,globf (x)�
∫

Rn
Q1(x, y)‖f (y)‖B dy, where Q1 is a non-negative kernel sup-

ported on Dc
1 such that the associated integral operator is of weak type (1, 1) and

of strong type (p, p) for every p ∈ (1, ∞) with respect to the Gaussian measure;

(b)
∣∣gq,locf (x) − Gq,locf (x)

∣∣ � ∫
Rn

Q2(x, y)‖f (y)‖B dy, where Q2 is a non-

negative kernel supported on D2 such that

sup
x

∫
Rn

Q2(x, y)dy < ∞ and sup
y

∫
Rn

Q2(x, y)dx < ∞.

Consequently, the integral operator associated to Q2 is of strong type (p, p) for
every p ∈ [1, ∞) with respect to both Lebesgue and Gaussian measures;

(c) similar statements hold for g1
q and g2

q in place of gq .

Then, using Theorem 5.2, we can show Theorem 6.1 as in [HTV]. We omit the details.
Theorem 6.2 is dual to Theorem 6.1 in the case of g1

q , because of the general Theorem
3.1. Similar duality results hold for gq and g2

q too. Indeed, using the facts above, we
get a projection result (concerning gq and g2

q ) for the subordinated Ornstein–Uhlenbeck
Poisson semigroup similar to Lemma 4.4. Then we deduce the desired duality result
on gq and g2

q . We leave again the details to the interested reader. �

7. Almost sure finiteness

We have seen in the previous sections (and also in [Xu]) that the Lusin cotype
property is equivalent to the boundedness of the various generalized Littlewood–Paley
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g-functions on Lp-spaces. The following result shows that this is still equivalent to an
apparently much weaker condition on the g-functions

Theorem 7.1. Given a Banach space B and q ∈ [2, ∞), the following statements are
equivalent:

(i) B is of Lusin cotype q.
(ii) For any f ∈ L1

B(T), G1
qf (z) < ∞ for almost every z ∈ T.

(iii) For any f ∈ L1
B(Rn), G1

qf (x) < ∞ for almost every x ∈ Rn.

The equivalences also hold when in statement (ii) G1
q is replaced by G2

q or Gq , and

also in statement (iii) G1
q by G2

q or Gq .

Proof. By [Xu], Theorem 5.2 and Corollary 4.2, we have (i) ⇒ (ii) and (i) ⇒ (iii).
The two converse implications are implicitly contained in [GR, VI.2]. Let us first prove
(ii) implies (i) (for G1

q ). To this end, observe that

G1
q(f )(z) = ‖Tf (z)‖

L
q
B((0,1), dr

1−r
)
= sup

ε>0
‖T εf (z)‖

L
q
B((0,1), dr

1−r
)
, (7.1)

where T ε is the operator that sends B-valued functions to L
q

B((0, 1), dr
1−r

)-valued func-
tions given by

T εf (z) =
[
(1 − r)�

(ε,1−ε)
(r)

�Pr

�r

]
∗ f (z).

It is clear that T ε is bounded from L1
B(T) to L1

L
q
B((0,1), dr

1−r
)
(T). Consequently, the

sublinear operator f �→ ‖T ε(f )‖
L

q
B((0,1), dr

1−r
)

is continuous from L1
B(T) to L0(T) (the

latter space being equipped with the measure topology). By (7.1), G1
q is the supremum

of these sublinear operators, and by (ii), G1
q(f ) ∈ L0(T) for all f ∈ L1

B(T). Therefore
it follows from the Banach–Steinhauss uniform continuity principle, Gq is continuous
from L1

B(T) to L0(T). Next, we apply Stein’s theorem. A proof of the scalar version
can be found in [GR, VI.2], and by using the ideas there, one can prove the following
vector-valued version.

Lemma 7.2. Let G be a locally compact group with Haar measure �, B be a Banach
space of Rademacher type p0 and let T : L

p

B(G) −→ L0(G) be a continuous sublinear
operator invariant under left translations. Then for every compact subset K of G there
exists a constant CK such that

�({x ∈ K : |Tf (x)| > �})�CK

(‖f ‖L
p
B

�

)q

with q = inf{p, p0}. In particular, if the group G is compact, T is of weak type (p, q).
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Let us recall that every Banach space is of Rademacher type 1. Then, G1
q is of weak

type (1, 1), because it is clearly sublinear and it is given by a convolution, which is
invariant under translations.

The proof for the implication (iii) ⇒ (i) is similar. Again the sublinear operator
f �→ G1

q(f ) is continuous from L1
B(Rn) to L0(Rn). To infer as above that it is of

weak type (1,1), we use, instead of Lemma 7.2, the following

Lemma 7.3. Let B be a Banach space of Rademacher type p0 and 0 < p�p0. Then
every translation and dilation invariant continuous sublinear operator T : L

p

B(Rn)

−→ L0(Rn) is of weak type (p, p).

This lemma can be proved in the same way as the corresponding result in the scalar
valued case in [GR, VI.2]. We omit the details. Thus the proof of the theorem is
finished. �

Remark. Theorem 7.1 holds also for the g-function associated to the subordinated
Poisson Ornstein–Uhlenbeck semigroup.

In the same spirit, we also have a result similar to Theorem 7.1 in the case of
martingales.

Theorem 7.4. Given a Banach space B and 2�q < ∞, the following statements are
equivalent:

(i) B is of martingale cotype q.
(ii) If f is a martingale bounded in L1

B, then Sq(f ) < ∞ almost everywhere.

For the proof of this theorem, we will use martingale transform operators. Let B1
and B2 be two Banach spaces, (�, F, P ) be a probability space, and {Fn}n�1 be an
increasing filtration of �-subalgebras of F . A multiplying sequence v = {vn}n�1 is
a sequence of random variables on � with values in L(B1, B2) such that each vn is
Fn−1-measurable and supn�1 ‖vn‖L∞

L(B1,B2)
< ∞. Given such a multiplying sequence,

define the martingale transform operator T given by v by (Tf )n = ∑n
k=1 vk dkf for

every martingale f. It is proved in [MT] that a martingale transform operator T is of
weak type (1, 1) iff it is of type (p, p) for 1 < p < ∞:

sup
�>0

�P {(Tf )∗ > �}�C ‖f ‖L1
B1

⇔ ∥∥(Tf )∗
∥∥

Lp �Cp ‖f ‖L
p
B1

, (7.2)

where it is understood that each side must hold for all martingales {fn} with respect
to the fixed filtration {Fn}. It is also proved there that, if T is a translation invariant
martingale transform operator such that each term of its multiplying sequence {vk} is
a constant (in L(B1, B2)) and such that

f ∗ ∈ L1 �⇒ Tf converges a.e., (7.3)
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then T also verifies the inequalities in (7.2). By translation invariance of T we mean that
for any k0 ∈ N, the sequence {vk0

k }k �1, v
k0
k = vk0+k , defines a martingale transform

operator Tk0 such that for any martingale f bounded in L1
B1

,

‖(Tf )n‖B2
=
∥∥∥∥∥

n∑
k=1

vkdkf

∥∥∥∥∥
B2

=
∥∥∥∥∥

n∑
k=1

vk0+kdkf

∥∥∥∥∥
B2

= ∥∥(Tk0f )n
∥∥

B2
∀n�1.

Now, let Qq be the martingale transform operator mapping B-valued martingales into
�
q

B-valued martingales defined by the multiplying sequence {vk}k �1 such that each vk is

the constant given by vk(b) = (0, (k−1). . . , 0, b, 0, . . .) for any b ∈ B. Then for a B-valued
martingale f

(Qqf )n =
n∑

k=1

vkdkf = (d1f, d2f, . . . , dnf, 0, . . .) ∈ �
q

B,

∥∥(Qqf )n
∥∥

�
q
B

=
(

n∑
k=1

‖dkf ‖q

B

)1/q

, (Qqf )∗ = sup
n

∥∥(Qqf )n
∥∥

�
q
B

= Sqf.

Proof of Theorem 7.4. (i) ⇒ (ii) is obvious. To prove the inverse, we use that (7.3)
implies the inequalities (7.2), applied to Tf = Qqf . Qq is translation invariant and
for f ∗ ∈ L1,

‖(Qqf )n − (Qqf )m‖�
q
B

=
(

n∑
k=m+1

‖dkf ‖q

B

)1/q

−→ 0 a.e. as n, m → ∞,

since it is the remaining of a convergent series (by ( ii)). �

We end with a final remark.

Remark. As in [Xu] for the torus, besides the Littlewood–Paley g-function we can
also consider the Lusin area function on Rn. In our vector-valued setting this function
is defined by

Aq(f )(x) =
(∫ ∫

�(x)

tq‖∇Pt ∗ f (y)‖q

�2
B

dydt

tn+1

)1/q

,

where �(x) is the cone with vertex x and width 1:

�(x) = {(t, y) ∈ Rn+1+ : t > 0, |x − y|� t}.
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Similarly, we can as well introduce the two variants A1
q involving only the derivative

in time and A2
q relative to the gradient in the space variable. As in [Xu] for the torus,

all the preceding results (in Sections 4–6) are still valid with Gq replaced by Aq . For
instance, B is of Lusin cotype q iff ‖Aq(f )‖Lp(Rn) �C‖f ‖L

p
B(Rn) for some (or all)

p ∈ (1, ∞), and iff f ∈ L1
B(Rn) ⇒ Aq(f ) < ∞ a.e. on Rn.
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