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A method for the generation of three-dimensional model microstructures resembling particle reinforced
composites is developed based on the periodic Voronoi tessellation. The algorithm allows for the gener-
ation of arbitrary particle volume fractions and produces periodic geometries based on the erosion pro-
cedure suggested by Christoffersen (1983). A technique for the creation of high quality periodic spatial
discretizations of the particle systems for application with the finite element method is described in
detail. The developed procedure is extensively applied to metal ceramic composites (Al-SiCp) at volume
fractions ranging from 10 to 80%. The elastic and thermo-elastic material properties are investigated and
the effect of higher statistical moments (see, e.g., Torquato, 2002), i.e. of the particle shape and relative
position, is evaluated in terms of constraint point sets used in the generation of the random
microstructures.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The effective properties of heterogeneous materials are much
sought-after quantities. In order to computationally predict the
effective behavior of heterogeneous materials it is necessary to
first find a precise topological description of the considered micro-
structure. Unfortunately, the acquisition of this information is
hindered by a multitude of problems. A popular experimental tech-
nique is the serial sectioning using either polishing (Ganesh and
Chawla, 2005) or the FIB (focus ion beam) technique (Groeber
et al., 2006) combined with optical or electrical measurements.
Another is the X-ray micro computer tomography (e.g., Madi
et al., 2007). All these methods share a considerable sensitivity
with respect to certain physical properties, e.g., electrical conduc-
tivity or the local mass density of the material. This renders the
choice of a suitable experimental method a challenging procedure.
Further, many of the mentioned techniques are destructive, i.e.
they do only allow for limited (if any) in situ measurements, or
for verification of the computed results (at least in the non-linear
regime). When statistical studies with respect to different micro-
structures are aspired, then the effort for experimental techniques
on the microstructural level is immense.

An efficient use of the limited amount of experimental data
can be achieved by recourse to the statistical properties of the
ll rights reserved.
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microscopic medium. The latter are, generally, determined by the
n-point statistics of the material (see, e.g., Ohser and Mücklich,
2000; Torquato, 2002). For many composite structures additional
simplified statistical measures exist, e.g., the distribution of the
filament length in fibrous composites and the fiber orientation dis-
tribution function. Once this statistical data is collected, random
variables can be used to evaluate numerous realizations of a virtual
material. After generation of an adequate spatial discretization, the
model structures can be used in computer based statistical studies.
The Voronoi tessellation was found to be an efficient tool for the
simulation of crystal aggregates (Kumar and Kurtz, 1994). Later,
Decker and Jeulin (2000) introduced the concept of a periodic
Voronoi tessellation for the use with artificial microstructures.
Since, the periodic Voronoi tessellation has been applied to many
microstructural problems with success (see, e.g., Barbe et al.,
2001; Fritzen et al., 2009; Böhlke et al., 2010). Often the finite ele-
ment method (FEM) (e.g., Zienkiewicz et al., 2006) is used in order
to evaluate the mechanical and thermo-mechanical properties. The
FEM requires a three-dimensional discretization of the microstruc-
ture. The construction of these discretizations from experimental
data is still a challenging procedure for two-dimensional problems,
see e.g., Yue et al. (2003), Prabu and Karunamoorthy (2008) or Reid
et al. (2008), and often requires manual interactions. For the three-
dimensional case, tools are currently being developed by various
groups (Kim et al., 2002; Bhandari et al., 2007; Jang et al., 2008)
for different classes of materials. The latter underlines the demand
for efficient three-dimensional mesh generation methods. There-
fore, the authors recently developed a generator for a particular
class of periodic model microstructures based on the periodic
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Fig. 1. Metal matrix composites examined by Miserez et al. (2004) (left: Al-58% vol. Al2O3) and by Chawla et al. (2006b)1 (right: Al-20% vol. SiCp).

Fig. 2. Subdomains with near-homogeneous particle distribution (Chawla et al.,
2006b)1.
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Voronoi tessellation including an algorithm for the generation of a
periodic volume mesh (Fritzen et al., 2009).

In this paper the technique is modified and adopted for consid-
eration of particle-reinforced microstructures. Prominent exam-
ples for materials with such micromorphology are metal matrix
composites such as the ones examined by Miserez et al. (2004),
Ganesh and Chawla (2005) or Chawla et al. (2006c). These materi-
als tempt to combine the thermal resistance and high stiffness of
ceramic materials with the ductility observed for many metals.
Comprehensive overviews on the topic are given by, e.g., Clyne
and Withers (1995), Suresh (2002) and Chawla and Chawla (2006).

In order to overcome the afore mentioned experimental cost, a
class of model microstructures based on the Voronoi tessellation is
developed in Section 2. A similar approach to granular materials
was initially suggested by Christoffersen (1983) in the context of
geomaterials and for the use with analytic calculus. Here, a
three-dimensional realization of the structure is addressed with
the additional consideration of periodicity of the microstructure.
The aim in this work is the development of sophisticated numerical
tools for realistic simulations of such materials. The influence of
different point seed parameters on the statistics of the effective re-
sponse of the microstructures is investigated. The algorithm de-
scribed by Fritzen et al. (2009) for the generation of periodic
three-dimensional FEM discretizations of Voronoi tessellations is
extended to the considered particle systems. A method for the gen-
eration of high-quality meshes for the particle model microstruc-
tures is presented in Section 3. The microstructures are applied
to linear thermo-mechanical problems in Section 4. The influence
of the mesh density on the effective thermo-mechanical material
parameters is examined. Further, the isotropic material properties
of the composite material are computed for different volume frac-
tions. The study is repeated for constraint types of Voronoi tessel-
lation and the resulting macroscopic material parameters are
compared to the ones of the unconstrained tessellation.
1 Reprinted from Engineering Fracture Mechanics, 71, A. Miserez, A. Rossoll and A
Mortensen: ‘‘Investigation of crack-tip plasticity in high volume fraction particulate
metal matrix composites’’, 2385-2406, 2004 with permission from Elsevier.
2. Model microstructures for particulate materials

The scope of this paper are particulate materials, i.e. multi-
phase materials consisting of an interconnected phase (referred
to as matrix material) and separated particles. Examples for such
materials are Al-Al2O3 based metal matrix composites (Miserez
et al., 2004) and Al/SiCp composites (Chawla et al., 2006a,b). While
several investigations based on image recognition techniques ap-
plied to two-dimensional cross-sections of such materials have
been used in FEM simulations recently (Figs. 1 and 2), three-
dimensional discretizations are only sparsely used (Chawla et al.,
2006c). More precisely, pseudo three-dimensional structures are
often employed, e.g., the axi-symmetric cell employed by Doghri
and Ouaar (2003), or the number of considered microstructures
is small due to the excessive cost associated with the generation
of the geometry and the meshes. This small number does not allow
for statistical investigations.
In order to find a class of suitable model microstructures, the
following characteristic topological features of particulate metal
matrix composites will be taken into account:

� The particles are mostly convex and often polygonal.
� The volume fraction of the particles is found to vary from very

small values, e.g. 5%, up to values as large as 60% or more.
� While agglomerations of particles can sometimes be observed,

the particles are often homogeneously distributed, particularly,
if the volume fraction of particles is large (e.g., Fig. 1, left). For
small and moderate total particle volume fractions, the compos-
ite often consists of domains with approximately homogeneous
particle distribution, but with varying volume fraction. Thus,
the properties of these almost homogeneous domains can be
employed to reproduce the global material response.
� The particle size varies within a certain range. However, very

large and very small grains are rarely observed. While the size
distribution appears to be highly heterogeneous in two-dimen-
sional micrographs, three-dimensional reconstructions (e.g. by
Chawla et al. (2004)) show that the actual particle size varies
in a moderate range.

Starting from a heuristic approach, the shape of the three-
dimensional cells reconstructed by Chawla et al. (2004) is com-
pared to the cells of a Voronoi tessellation (Fig. 4). It is observed
that the shape of the SiC particles reconstructed by Chawla et al.
(2004) is correlated to the polygonal shape of the cells in a Voronoi
tessellation. Therefore, the following investigations are based on
artificial microstructures generated using random Voronoi tessel-
lations (see Aurenhammer, 1991 for a review). This allows for a
large number of random realizations and, hence, allows for statis-
tical studies based on Monte Carlo type simulations.

For simplicity, we confine ourselves to the case of a cuboidal
.



Fig. 3. Periodization of the point seed.

Fig. 5. Schematical representation of the erosion algorithm for a single Voronoi cell.
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unit cell X 2 [ � L/2,L/2] � [ � L/2,L/2] � [ � L/2,L/2]. In a first step, N
points (the Voronoi generators) are seeded randomly in the unit cell.
These vertices are then copied 26 times around the unit cell in order
to enforce periodicity of the Voronoi tessellation (Fig. 3) (Decker and
Jeulin, 2000). The latter allows for the application of the favorable
periodic displacement fluctuation boundary conditions in finite ele-
ment computations, if the generated mesh is periodic, too. A tessel-
lation resulting from this process is shown in Fig. 4.

In order to arrive at a particulate structure, the key idea in our
approach is the erosion of the Voronoi cells by moving the cell walls
homogeneously in inward normal direction by a given offset w/2
(Fig. 5). Such an erosion process is a common procedure in image
processing where it can, e.g., be used in combination with dilatation
processes to smoothen data (see, e.g., Ragnemalm, 1992). Our
approach is, however, not based on an image based technique.

Between two neighboring particles a wall of thickness w is
thereby created. All of the walls in the unit cell form an intercon-
nected network resembling a closed cell foam as examined, e.g.,
by Roberts and Garboczi (2001). In our studies this structure is
occupied by the matrix material. The described procedure has
the following advantages:
Fig. 4. Periodic Voronoi tessellation (200 grains).
� The distance between particles is (mostly) homogeneously dis-
tributed, unless originally small cells, which are deleted in the
erosion process.
� The faces of neighboring particles are parallel.
� The volume fraction of the particles can be arbitrarily chosen.

This is an advantage over many existing algorithms based on
spherical, ellipsoidal or polygonal cells, which cannot be applied
if the volume fraction of the particles is large. The method of
simulated annealing was used by Flaquer et al. (2007) to pro-
duce virtual diamond ceramic microstructures to overcome this
short-coming. However, the statistical properties of the micro-
structures generated in the process of simulated annealing are
hard to predict.
� The number of cell faces of small particles is smaller than of

large particles. This can account for the fact that small particles
are often generated from larger particles by brittle cracking. The
latter is exemplified in Fig. 6, where the number of faces of the
particle P1 is significantly smaller than the one of particle P2.
� The properties of the microstructure can easily be modified by

introduction of a minimum distance between two generator
points (see, e.g., Fritzen et al., 2009). The latter is commonly
referred to as hardcore condition. Another possibility is the gen-
eration of a centroidal Voronoi tessellation (Du et al., 1999)
(Fig. 7).
The cells generated using either of the two constraints are more
regular, i.e. bad aspect ratios (Fig. 8) or small cells (Fig. 9) can be
prevented. The particle shape can, hence, be controlled. Holding
the particle volume fraction fixed, the effect of higher statistical
moments on the effective properties of the material can, thus,
be investigated.

3. Periodic mesh generation

3.1. Generation of the geometry

The generation of a periodic spatial discretization of the model
microstructure described in Section 2 is subdivided into two major
steps, (i) the generation of the geometry and (ii) the subsequent
generation of a periodic surface and the derived volume mesh.
The creation of the geometry can be enriched by an iterative algo-
rithm in order to construct cells with a prescribed volume fraction
(Section 3.2).
Fig. 6. Reduction of the number of particles faces due to brittle particle cracking.



Fig. 7. Comparison of a random Voronoi tessellation (left) and the resulting centroidal Voronoi tessellation (right) after 5 iterations (50 Voronoi points); shown are the
centers of mass and the Voronoi generators.

Fig. 8. 2d Voronoi cell with high aspect ratio.

Fig. 9. Small cell in a 2d Voronoi tessellation.
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In this section we focus on the generation of the geometry which,
first, requires the creation of a random point seed containing the
Voronoi generators. As described in Section 2 the point seed may
be subjected to different constraints. After the initial creation the
vertices are copied around the unit cell (Fig. 3) to enforce a period-
icity constraint and the Voronoi tessellation is generated using the
qhull package (Barber et al., 1996). The output of the latter consists
of a set of corner vertices for each Voronoi cell. Then each of these
cells undergoes a erosion process, where only cells having a
non-empty intersection with the unit cell are considered in order
to increase the computational efficiency. The erosion process
exploits the dual representation of the polyhedral (i.e. convex) cells
in terms of the set H of nH halfspaces,

H ¼ fðni;diÞ 2 R3 � Rg; ð1Þ

which are defined in terms of the inward normal ni and the normal
distance from the origin di. Any point x found inside (or on the
boundary) of the considered cell then satisfies the inequalities

ni � xþ di 6 0 ði ¼ 1; . . . ;nHÞ: ð2Þ

In order to erode a polyhedral cell in inward normal direction, it suf-
fices to modify the normal distance di of all separating hyperplanes
via

d�i ¼ di þ h; ð3Þ

where h equals half of the wall thickness w separating two neigh-
boring particles (Fig. 5). While the erosion algorithm itself is sug-
gestive to be simple, the algorithmic realization involves elements
of computational geometry and the associated algorithmic chal-
lenges. In our approach the program qhalf included in the qhull

package was used in order to determine the corner points and the
facet information of the eroded cell. It can calculate the cell in terms
of the intersection of the set of modified halfspaces H� ¼ ni; d

�
i

� �� �
.

However, qhalf requires an interior point of the final eroded cell as
additional input parameter. In particular, it has to be known a priori
if the cell is deleted in the course of the process, due to its small ini-
tial size. The problem can be solved by first checking if the cell mid-
point m is found inside of the final cell based on the inequalities (2)
with di replaced by d�i . If this is the case then m is taken as interior
point and one can proceed. Otherwise each of the nH planes is trea-
ted individually in order to construct intermediate cells. The last
intermediate cell then results in the final eroded cell, if the algo-
rithm is not aborted due to deletion of the cell caused by the erosion
process. The algorithm is initialized with the original cell. In each of
the following iterations, the halfspace representation and the corner
points of the intermediate cell CðjÞ are needed. In the j-th step we
define
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dðjÞi ¼
di i > j;

d�i i 6 j:

�
ð4Þ

Then the intermediate corner point with the furthest normal dis-
tance to the plane nj; d

ðjÞ
j

� �
is identified by p(j). If the distance d of

this point from the plane is negative, then the algorithm stops since
the halfspace intersection results into an empty set. Otherwise, a
truly interior point of the eroded cell is

qðjÞ ¼ pðjÞ þ d
2
ðmðjÞ � pðjÞÞ; ð5Þ

and the intersection computed based on this point defines the
subsequent intermediate cell. After nH steps the algorithm has
produced the eroded cell, since dðnHÞ ¼ d�i holds. A schematic Al
two-dimensional scheme of the algorithm is shown in Fig. 10. In
the current work no particles were deleted, even if the volume of
the particle was small (see, e.g., Fig. 10 rightmost picture). Many
composite materials contain such small particles. If such small
inclusions are not desired in the presented model, they can be
deleted in the algorithm without additional cost.

After the erosion process, the modified cell is still not necessar-
ily found inside of the considered unit cell. Hence, an intersection
of the polyhedron with the cuboidal volume element has to be
computed. The resulting geometric data, i.e. point coordinates,
facet and cell information, is then used in the following mesh
generation.

3.2. Particle volume fraction iteration

Before the actual mesh generation step, the volume fraction cp

of the particles is computed. Since the one point statistics (i.e.
the volume fractions) of real materials can often be determined
to a considerable precision, it is desirable to replicate certain
given values of the particle volume fraction to the best possible
extent. Therefore, we developed an iterative procedure that
adjusts the cell wall thickness w automatically, until the desired
volume fraction c�p is achieved. The following algorithm was
found to produce fast convergence for (almost) arbitrary initial
values, where a good initial guess for the wall thickness is
Fig. 10. Illustration of the sub

Table 1
Results of the iteration process for prescribed volume fraction.

Vol. fraction No. particles cð0Þp � c�p
			 			ðw0Þ w

20% 20 65.0% 0
20% 20 19.6% 0
20% 50 42.3% 0
50% 50 12.3% 0
80% 40 59.5% 0
w0 ¼ 2Lð3=ð4pNÞÞ1=3 1� c1=3
p

� �
, which is derived from the assump-

tion of spherical particles.

V1 Initialize algorithm with w = w0 > 0. Set j = 0.
V2 Compute the eroded Voronoi tessellation and determine the

volume fraction cðjÞp . If cðjÞp � c�p
			 			 < � accept the wall thickness

and proceed with the mesh generation.

V3 If j < 3 then set wðjþ1Þ ¼ cðjÞp =c�p
� �1=3

wðjÞ. Otherwise, determine

w(j+1) by means of quadratic extrapolation from the previous
three iterations. Set j ? j + 1 and proceed with [V2].

Examples illustrating the robustness of the algorithm, even for
unfortunate initial guesses w0, are shown in Table 1. The iteration
time for all of the considered examples was below 60 seconds on a
standard notebook computer. This highlightens the efficiency of
the proposed algorithm.

3.3. Hierarchical mesh generation algorithm

The mesh generation procedure used for composite materials
with particle reinforcement is related to the one developed by
the authors previously for polycrystalline aggregates (Fritzen
et al., 2009). A hierarchical meshing algorithm is applied in order
to guarantee the periodicity of the resulting discretization. More
precisely, after having determined the (periodic) geometric input,
the corner points of the cells are the first mesh entities. In the next
step all edges found on master surfaces, i.e. at x = L/2, y = L/2 or
z = L/2, or inside of the unit cell are endowed with a point seed.
Again, all mesh entities are held constant during the following
steps, i.e. no points are inserted on any of the considered edges.
Then, based on the fixed point seed on the boundary of internal
and external faces, a quality surface mesh is generated using the
triangle library developed by Shewchuk (1996). The thereby
generated surface mesh is more complicated than the one of poly-
crystalline aggregates (Fritzen et al., 2009) in the sense that every
particle intersecting the boundary produces a complicated mesh
topology. In particular, the mesh associated with the matrix mate-
rial on the faces of the cube contains holes (Fig. 11). The bounding
sequent erosion process.

0/2 n = nvol.iter cn
p � c�p

			 			ðwnÞ wn/2

.01 8 0.00016% 0.07750

.05 6 0.00170% 0.07750

.02 9 0.00010% 0.05646

.02 6 0.00066% 0.02817

.06 9 0.00001% 0.01067
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Fig. 11. Surface mesh of the matrix material: Input data for the 2d mesh generator (left; } represent hole indicators) and obtained surface mesh (right).
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edge points of these have to conform with the surface mesh of the
particles (and vice versa). Similar to the approach pursued for the
crystalline aggregates (Fritzen et al., 2009), the mesh density can
be controlled independently without introduction of geometrical
imperfections. The latter property allows for the consideration of
rather coarse meshes for quick estimates (see also Section 4.2).
Moreover, a modified mesh density can be realized within the par-
ticles. This can help to reduce the number of degrees of freedom in
calculations with, e.g., elastic particles and an elasto-plastic matrix
material.

All particle faces are meshed independently and the resulting
surface meshes are merged into the final surface mesh of the
microstructure. In the last step of the mesh generation procedure
this surface mesh is used as input data for the popular tetgen (Si
and Gaertner, 2005) mesh generator. Note that all surface mesh
entities have to be fixed during the extrusion of the volume mesh
in order to maintain the enforced periodicity. Finally, the mesh is
converted and written into input files for ABAQUS/STANDARD
and for a self-written three-dimensional finite element imple-
mentation. The latter is particularly designed for the purpose of
computational homogenization in the presence of periodic
displacement fluctuation conditions. The solution of the resulting
linear systems of equations is performed using the precondi-
tioned iterative solvers ILUPACK http://www-public.tu-bs.de
(Bollhoefer and Saad, 2006) and HIPS http://hips.gforge.inria.fr.
Some example meshes for different volume fractions are shown
in Fig. 12.
4. Effective properties of Al-SiCp

4.1. Problem setup

In the following, the elastic and thermo-elastic properties of
Al-SiCp are examined in terms of virtual experiments. Periodic
Fig. 12. Meshes containing 10, 20, 50 an
displacement fluctuation boundary conditions are assumed, i.e.
the total displacement field u is additively decomposed into a homo-
geneous part uh ¼ �ex and a fluctuation part ~u

u ¼ �exþ ~u: ð6Þ

In order to replicate the prescribed kinematic loading �e, the fluctu-
ation part ~u has to satisfy

~uðxþÞ ¼ ~uðx�Þ ð7Þ

for all boundary nodes x+ and x- of the spatial discretization, that are
found on opposing faces of the considered cuboidal unit cell (see
Fig. 13).

For a given displacement field u the infinitesimal strain tensor e
is defined via

e ¼ 1
2
ðgradðuÞ þ gradðuÞTÞ: ð8Þ

The local thermo-kinematical loading of a material from a stress-
free equilibrium state is then described by the strain tensor e and
the temperature increment Dh. The latter is considered homoge-
neous within the unit cell due to the assumed separation of scales
(e.g., Willis, 1981). In a linear elastic context the stress tensor r in-
duced by such thermo-kinematical loading is

r ¼ C½e� aDh�; ð9Þ

with the symmetric tensorial thermal expansion coefficient a and
the symmetric and positive definite material stiffness tensor C.
The elastic stiffness tensor and the tensorial thermal expansion
coefficient both depend on the position x, i.e., they are both heter-
ogeneously distributed.

For each unit cell a total of seven different linear elastic bound-
ary value problems are solved. The first six calculations serve to
identify the elastic behaviour in the absence of thermo-elastic
effects. Therefore, an orthonormal basis of the space of symmetric
d 100 particles (10%, 10%, 60%, 30%).

http://www-public.tu-bs.de
http://hips.gforge.inria.fr


Fig. 13. Periodic displacement fluctuation boundary conditions.
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tensors Bc (c = 1,. . .,6) is defined (e.g. Federov, 1968). These basis
tensors are then used as boundary data, i.e. the boundary value
problem

divðC½ec�Þ ¼ divðrcÞ ¼ 0 in X; heci ¼ Bc ð10Þ

is solved for c = 1,. . .,6. The six orthonormal basis tensors are

B1¼e1�e1; B2¼e2�e2; ð11Þ

B3¼e3�e3; B4¼
ffiffiffi
2
p

2
ðe1�e2þe2�e1Þ; ð12Þ

B5¼
ffiffiffi
2
p

2
ðe1�e3þe3�e1Þ; B6¼

ffiffiffi
2
p

2
ðe2�e3þe3�e2Þ: ð13Þ

Here, h�i denotes the volume average of a quantity � over the unit
cell. The solutions to these six problems define the apparent macro-
scopic stiffness bC and the strain localization operator A of the con-
sidered micro-heterogeneous structure by

bC ¼X6

c¼1

hrci � Bc; A ¼
X6

c¼1

ec � Bc: ð14Þ

The linear operator A determines the microscopic strain tensor for a
given macroscopic deformation according to

eðxÞ ¼ AðxÞ½�e�: ð15Þ

Here and thereafter apparent quantities �̂, e.g. the stiffness bC of a
particular realization of the model microstructure, are distinguished
from effective quantities ��, e.g. the effective stiffness C of an infinite
piece of material. The thermo-elastic interactions are considered in
the seventh computation, which is defined by an eigenstress prob-
lem induced by a homogeneous temperature increment Dh

divðC½eh � Dha�Þ ¼ divðrhÞ ¼ 0 in X; hehi ¼ 0: ð16Þ

The apparent tensorial thermal expansion coefficient â of the mate-
rial can be computed from the macroscopic compliance bS ¼ bC�1

and the thermally induced stress field rh via

â ¼ � 1
Dh
bS½hrhi�: ð17Þ

In the following, the microscopic material parameters for the alumi-
num matrix and the silicon carbide particles of Chawla et al.
(2006a) (Table 2) are assumed. Notably the parameters used here
are representative for many other particle reinforced Al composites.
Table 2
Isotropic microscopic material parameters for the matrix and inclusion material (cf.
Chawla et al., 2006a).

E [GPa] m [-] a [10�6 K�1]

Al 70 0.33 25
SiCp 400 0.19 4.3
4.2. Mesh density study

A mesh density study was carried out in order to investigate the
influence of the chosen spatial resolution of the discretization onto
the calculated material properties. Three different ensembles were
investigated:

� 10% particle volume fraction based on 10 Voronoi generators,
� 20% particle volume fraction based on 20 Voronoi generators

and
� 30% particle volume fraction based on 20 Voronoi generators.

For each of these ensembles eight different spatial discretiza-
tions of the same geometry are generated. The coarsest mesh con-
tains approximately 20000 degrees of freedom in contrast to
approximately 1100000 degrees of freedom for the finest discreti-
zation. Three of the eight considered discretizations for the ensem-
ble based on 10 Voronoi generators are shown in Fig. 14.

The finest discretization containing more than one million de-
grees of freedom was chosen as reference solution. In order to
quantify the deviation from this reference solution, three non-
dimensional measures are introduced. For each mesh density level
hi, the smallest and the largest eigenvalue of bC�1

h7
bChi

quantify the
deviation of the purely mechanical behaviour, while
kâhi
� âh7k=kâh7k determines the difference in the tensorial appar-

ent thermal expansion coefficient. The results for 10, 20 and 30%
are shown in Tables 3–5.

For all considered ensembles, the apparent stiffness tensor
tends to larger eigenvalues for coarser discretization levels, i.e. to
a stiffer macroscopic material response. Taking into consideration
the formulation of the apparent thermal expansion (17) and the
stiffer apparent elasticity tensor, the lower thermal expansion
coefficient found for coarser discretizations can be explained. How-
ever, the differences for coarser meshes are almost negligible (Ta-
bles 3–5). The smallest eigenvalue of the stiffness tensor is almost
independent of the mesh density, too.

In the course of the mesh study we have found that for approx-
imately 100000 mesh nodes, the relative error is in the order of 0.5
% and smaller for all three error measures. This deviation is consid-
ered acceptable and the meshes employed in all subsequent inves-
tigations all consist of approximately 100000 nodes, which is
equivalent to 300000 degrees of freedom.

4.3. Influence of the particle volume fraction

The presented mesh generation technique has the favourable
property of being able to generate model microstructures with
arbitrary prescribed particle volume fraction (Section 3). In this
section the influence of the amount of ceramic material on the
effective thermo-elastic behaviour is evaluated for volume frac-
tions of 10, 30, 50, 70 and 80%. This implies that no fluctuations
of the volume fraction around the indicated values are considered.
Examples of spatial discretizations for 50 and 80% volume fraction



Fig. 14. Different discretization levels h0 (left), h3 (middle) and h7 (right) for 10 particles (10% vol. frac.).

Table 3
Comparison of mesh densities for 10% particle volume fraction (10 Voronoi generators).

Mesh level h0 h1 h2 h3 h4 h5 h6 h7

# Nodes 6502 11384 21024 40531 79258 158529 236590 363808

kmaxðbC�1
h7
bChi
Þ � 1 [%] 0.8768 0.5844 0.3472 0.2066 0.1123 0.0512 0.0230 –

jtkminðbC�1
h7
bChi
Þ � 1j [%] 0.1687 0.1103 0.0669 0.0396 0.0211 0.0093 0.0042 –

kâhi
� âh7

k=kâh7
k [%] 0.2172 0.1430 0.0870 0.0522 0.0279 0.0126 0.0062 –

Table 4
Comparison of mesh densities for 20% particle volume fraction (20 Voronoi generators).

Mesh level h0 h1 h2 h3 h4 h5 h6 h7

# Nodes 10626 14363 22909 41385 79191 155374 232162 357520

kmaxðbC�1
h7
bChi
Þ � 1 [%] 2.0628 1.4782 0.7912 0.4907 0.2630 0.1147 0.0529 –

jkminðbC�1
h7
bChi
Þ � 1j [%] 0.4217 0.2908 0.1654 0.0991 0.0519 0.0234 0.0108 –

kâhi
� âh7

k=kâh7
k [%] 0.5378 0.3742 0.2108 0.1265 0.0664 0.0299 0.0142 –

Table 5
Comparison of mesh densities for 30% particle volume fraction (20 Voronoi generators).

Mesh level h0 h1 h2 h3 h4 h5 h6 h7

# Nodes 10150 13649 23257 40179 77729 152091 228745 354322

kmaxðbC�1
h7
bChi
Þ � 1[%] 2.3906 1.9991 1.1268 0.5878 0.3335 0.1396 0.0612 –

jkminðbC�1
h7
bChi
Þ � 1j [%] 0.4493 0.3684 0.1976 0.1143 0.0606 0.0256 0.0116 –

kâhi
� âh7

k=kâh7
k [%] 0.5907 0.4835 0.2633 0.1501 0.0796 0.0338 0.0153 –
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are shown in Fig. 15. The realization of such high particle volume
fractions is often a challenging problem requiring complicated
techniques such as simulated annealing (Nogales and Böhm,
2008) and others. The algorithm presented in this contribution
can, however, easily be triggered to provide the desired volume
fractions without additional computational cost.

The microstructures generated for the particle volume fraction
study are based on 20 Voronoi generators. For each volume frac-
tion a total of 50 different realizations were computed, i.e. 250 dif-
ferent meshes were generated. The different realizations allow for
basic Monte Carlo type statistical studies. The apparent bulk mod-
ulus bK , shear modulus bG and isotropic thermal expansion coeffi-
cient â of each realization were computed by isotropic projection
bK ¼ 1
3

Piso
1 � bC; bG ¼ 1

10
Piso

2 � bC; â ¼ 1
3

I � â; ð18Þ

with the identity on spherical tensors Piso
1 , deviatoric tensors Piso

2

and the second order identity tensor I. The arithmetic means of bK
and bG are considered as the effective moduli K;G and the standard
deviation rðbGÞ;rðbK Þ can be used to determine a confidence interval
for the effective elastic response when assuming approximately a
Gaussian distribution. Due to the observations by Kanit et al.
(2003, 2006), the consideration of a larger number of small unit
cells gives accurate predictions for the effective behaviour obtained
from very large unit cells. This result is explicitly used here in order
to derive the effective response of a material from a set of apparent



Fig. 15. Examples for 50% (left) and 80% (right) particles (	100000 nodes).
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properties. The effective isotropic thermal expansion �a and its stan-
dard deviation rðâÞ are defined accordingly. A summary of the re-
sults is plotted in Fig. 16. For the three quantities K;G and �a the
first- and second-order bounds are also presented. The first-order
bounds of K and G are the arithmetic and the harmonic mean of
the corresponding phase properties. They are only based on the
one-point correlation function, i.e. the volume fraction information.
The Hashin-Shtrikman bounds (Willis, 1981) are of second order
and take into account the one- and the two-point information of
the microstructure. Here, the two-point statistics are assumed iso-
tropic in accordance with the average particle shape.

The bounds for the thermal expansion coefficient are based on
the explicit formulae for the localization tensors in two-phase
composites which allow for a direct computation of first- and
second-order bounds in terms of the corresponding elasticities.
Furthermore, the self-consistent estimate of both, the elastic con-
stants and the thermal expansion are also presented. The results
computed by the finite element method are found to be close to
the lower Hashin-Shtrikman bound for all particle volume fractions.
Fig. 16. Effective bulk modulus, shear modulus and therm

Table 6
Effective isotropic thermo-elastic material parameters and 3r confidence intervals for Al-

Vol. frac. 10% 30%

K [GPa] 75.50 ± 0.125 91.72 ± 0.226

G [GPa] 31.21 ± 0.124 43.54 ± 0.199

E [GPa] 82.29 ± 0.288 112.8 ± 0.446
�m [10�2] 31.83 ± 0.069 29.51 ± 0.092
�a[10�6K�1] 22.23 ± 0.046 17.35 ± 0.056
The numerical values are presented in Table 6 including a 3r confi-
dence interval. Further, the Young’s modulus E and the Poisson ratio
m can be computed from the bulk and shear modulus by

EðK;GÞ ¼ 9KG
3K þ G

; mðK;GÞ ¼ 1
2

3K � 2G
3K þ G

: ð19Þ

Based on the truncated Taylor expansions

EðK þ dK;Gþ dGÞ 	 EðK;GÞ þ @K EðK;GÞdK þ @GEðK;GÞdG; ð20Þ
mðK þ dK;Gþ dGÞ 	 mðK;GÞ þ @KmðK;GÞdK þ @GmðK;GÞdG; ð21Þ

an approximation of the respective standard deviations is given by

rðEÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@K EðK;GÞÞ2r2ðbK Þ þ ð@GEðK;GÞÞ2r2ðbGÞq

; ð22Þ

rðmÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@KmðK;GÞÞ2r2ðbK Þ þ ð@GmðK;GÞÞ2r2ðbGÞq

: ð23Þ

Notably, the first order approximations hold for small deviations
rðbK Þ;rðbGÞ only. In the results presented in Table 6 it can be seen
that this assumption holds for all considered volume fractions.
al expansion coefficient vs. particle volume fraction.

SiCp at different particle volume fractions.

50% 70% 80%

112.8 ± 0.282 141.7 ± 0.274 160.7 ± 0.193
61.18 ± 0.267 87.60 ± 0.347 106.1 ± 0.346
155.4 ± 0.578 217.9 ± 0.719 260.9 ± 0.700
27.03 ± 0.098 24.37 ± 0.094 22.93 ± 0.077
13.10 ± 0.044 9.328 ± 0.029 7.585 ± 0.018
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The Hashin-Rosen relation (Rosen and Hashin, 1970)

�a ¼ ð1� cpÞam þ cpap þ
am � ap

K�1
m � K�1

p

1
K
� 1� cp

Km
� cp

Kp

� �
: ð24Þ

was used to verify the finite element implementation used for the
effective thermal expansion coefficient based on the result of the
elastic homogenization. While (24) is an exact representation for
isotropic two phase materials, the computational approach based
on (17) can be applied to systems containing arbitrarily anisotropic
materials and an arbitrary number of different constituents, includ-
ing voids. Additionally, the formulation (17) can be used to com-
puted the apparent expansion coefficient â without the need of
an additional linear-elastic homogenization procedure. The pre-
ceeding formula was used to derive the thermal expansion coeffi-
cients derived from the Hashin-Shtrikman bounds, the Voigt and
Reuss estimate and the self-consistent approximation.

4.4. Influence of the type of Voronoi tessellation

In this section the influence of the type of Voronoi tessellation
on the effective thermo-elastic behaviour is investigated. Three dif-
ferent types of Voronoi tessellation are considered: (i) the standard
Voronoi tessellation (SV) defined by a random (unconstrained) set
of Voronoi generators, (ii) the hardcore Voronoi tessellation (HV)
where the minimum distance between Voronoi generators is con-
straint and (iii) the centroidal Voronoi tessellation (CV). In the lat-
ter the center of each Voronoi cell coincides with the associated
Voronoi vertex. By manipulation of the point seed at constant
volume fraction, the effect of higher statistical moments on the prop-
erties of particulate structures can be evaluated. The latter aspect is
illustrated in Fig. 17 by a top view comparing the periodic geometry
Fig. 17. Comparison of the microstructures resulting from a standard tessellati

Fig. 18. Comparison of the normalized deviation of the effective bulk ðKi � KSVÞ=KSV an
(left: bulk modulus K, right: shear modulus G) as a function of the particle volume fract
of a standard and a centroidal realization (30 vol.%, 20 generators).
The geometry resulting from constraint point seed shows a
pronounced increase in regularity of the particle shape, while the
amount of ceramic material is identical in both cases. In the follow-
ing, the subscript index SV denotes the standard tessellation, HV
followed by a radius indicates the hardcore constraint and CV iden-
tifies quantities associated with the centroidal type of tessellation.

The study is carried out for particle volume fractions of 10, 30,
50, 70 and 80% and for a geometry based on a total of 20 Voronoi
generators. For the hardcore condition the minimum point dis-
tances 0.15 and 0.20 relative to the length of the unit cell are inves-
tigated. For each of the five volume fractions and for each of the
three different types of tessellation (two hardcore and one centroi-
dal tessellation) 30 different random realizations are computed. In
addition to these results, the existing data from Section 4.3 is used
to compare the results to the ones of unconstraint point sets. The
resulting additional 450 different unit cells are again each sub-
jected to the seven load cases described earlier.

The effective isotropic elastic bulk and shear moduli K;G of the
different realizations and their standard deviations are computed.
The values of the constraint tessellations are normalized with re-
spect to the values of the unconstrained point seed (Fig. 18).

First, it can be observed that the effective isotropic material re-
sponse is almost invariant with respect to changes of statistical
moments of second and higher order. It is found that the bulk mod-
ulus of the regularized tessellations is smaller than the one of
unconstrained tessellations. Notably the centroidal Voronoi tessel-
lation has a significantly more pronounced impact than the hard-
core condition. The qualitative change in value of the shear
modulus is found to depend on the volume fraction. For small par-
ticle volume fractions, the increased regularity of the structure
leads to matrix dominated, i.e. softer, material response. For high
on (left) and a centroidal tessellation (right) (translucent matrix material).

d shear modulus ðGi � GSVÞ=GSV for the different tessellations (HV0.15, HV0.20, CV)
ion cp.



Fig. 21. Amount of macroscopic elastic anisotropy induced by the microstructured
material.
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particle volume fractions the influence of the particle reinforce-
ment is more pronounced than for the standard tessellation, i.e. a
high modulus is found.

The second observation made in the course of the numerical
study is a strong influence of the type of tessellation on the stan-
dard deviation of the effective material properties (Fig. 19). The
increased regularity of the centroidal tessellation leads to a rela-
tive reduction in the standard deviation of up to 80%. The hard-
core constraint resulted in a reduction of the statistical scatter
for most volume fractions. However, the reduction was less
distinct.

Additionally, the isotropic thermal expansion coefficient was
evaluated. The values normalized with respect to the coefficient
obtained from the unconstrained point seeds are shown in
Fig. 20. The observed behaviour was almost identical to the one
of the bulk modulus.

If not only the isotropic projection of the material properties is
of interest a suitable measure of the induced macroscopic anisot-
ropy is

AðCÞ ¼ kmaxðC�1
isoCÞ

kminðC�1
isoCÞ

; ð25Þ

with Ciso ¼ 3KPiso
1 þ 2GPiso

2 . This anisotropy measure has been eval-
uated for the different types of tessellation and the different volume
fractions in Fig. 21. While the two different hardcore conditions
have a small effect on the amount of microstructural anisotropy,
the centroidal type of tessellation reduces the directional depen-
dency by more than 50 % over the standard tessellation.
Fig. 19. Comparison of the normalized standard deviations of bulk modulus r(Ki)/r(KSV)
CV over particle volume fraction cp.

Fig. 20. Comparison of the effective isotropic thermal expansion coefficient �ai=�aSV (lef
HV0.15, HV0.20, CV over particle volume fraction cp.
4.5. Applications to other materials

In the previous applications the phase contrast in the Young’s
modulus Ep/Em was approximately six which is an important ratio
for metal ceramic composite materials with aluminium matrix. The
authors would like to point out the possibility to use the proposed
mesh generation method for the investigation of the properties of
high contrast materials, e.g. for Ep/Em 	 100. In particular, the
bounds and estimates provided by semi-analytical methods are of-
ten found in a broad range and full field simulations are indispens-
able, if more accurate predictions are required. The proposed
computational method has been applied to the same microstruc-
ture but with two different sets of elastic constants to high-lighten
(left) and shear modulus r(Gi)/r(GSV) (right) for tessellation types HV0.15, HV0.20,

t) and its normalized standard deviation r(ai)/r(aSV) (right) for tessellation types



Fig. 22. Al-SiCp composite (Ep 	 6Em; left) and artificial high contrast material (Ep = 100 Em; right).
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this capability. The distribution of the von Mises equivalent stress
is shown in Fig. 22 for a kinematic loading of 0.1% in the e1 � e1

direction for Ep = 100Em and all other parameters as stated in
Table 2. Most notably, the stress concentrations at the corners of
the particles are more pronounced for the near rigid particles.
The authors would also like to point out that the computational
time needed to solve the two phase problem with the more pro-
nounced phase contrast (factor 16 higher) led to an increase in
the solution-time of a factor of two. The chosen preconditioned
conjugate gradient method can, hence, be considered as highly
efficient.
5. Summary and conclusions

5.1. Summary

A method for the generation of model microstructures has been
developed in Section 2 for a large class of composite materials con-
sisting of matrix with polygonal particles using an approach simi-
lar to the early ansatz by Christoffersen (1983). The algorithm is
based on the periodic Voronoi tessellation and can robustly and
without additional computational effort produce microstructures
containing high particle volume fractions, e.g. 80 % and more. In
Section 3 the creation of a periodic spatial discretization for these
materials has been described. The presented algorithm can pro-
duce arbitrarily coarse meshes without violation of the micro-
scopic geometric properties.

The generated discretizations are used in computational
homogenization problems based on the the finite element method
in Section 4. The thermo-elastic material properties of Al-SiCp com-
posites are determined for volume fractions ranging from 10 to
80%. The effect of point set constraints regularizing the Voronoi
diagram has been investigated.
5.2. Conclusions

The mesh sensitivity study shows, that even for rather coarse
discretizations of the geometrically and constitutionally isotropic
microstructures only minor discrepancies to reference finite ele-
ment calculations with very high spatial resolution can be
achieved. In combination with the possibility of generating coarse
discretizations based on the presented algorithm a fast method for
the estimation of the effective thermo-elastic material properties
of composites containing particles. Notably, the coarsest discreti-
zation (approximately 10000 nodes) considered here has the same
number of degrees of freedom as a block-structured grid consisting
of 20 tri-linear brick elements in each spatial direction. Such a
block structured grid offers a spatial resolution of only 5% of the
dimension of the unit cell. This is insufficient when taking into ac-
count that the elongation of the particles is seldom larger than
that. The proposed unstructured meshing approach can still pre-
dict the thermo-elastic properties of the material to a good extent
and is, hence, favorable. Additionally, the geometry of the particles
and, hence, the distribution of the stress and strain fields, are al-
ways properly represented which does not hold true for many
block-structured approaches. The latter are usually based on mul-
ti-phase elements in which the different materials are distin-
guished integration point-wise. A modified mesh density can be
realized within the particles in order to reduce the computational
cost in physically non-linear calculations with elastic particles.

From the results obtained in the study of the different point sets
it was found that the effective isotropic material constants are (al-
most) independent of the type of point seed. Taking into account
that the statistical scatter is highly reduced by the centroidal type
of tessellation, only a few microstructural realizations suffice to
estimate the effective overall response to high precision. This re-
duces the computational effort considerably. A physical motivation
for the centroidal Voronoi tessellation is the existence of a repulso-
ry force acting between the particles which leads to a homoge-
neous distribution of the inclusion.

However, the directional anisotropy of statistical realizations
depends on the shape and number of particles. Thus, the type of
point seed shall not be constraint, if one is interested in the proper-
ties of particulate systems with strongly varying aspect ratios of the
particles. The latter is a limiting factor for many classical homoge-
nization schemes. For the isotropic microstructures examined in
this contribution, both, the upper and lower Hashin-Shtrikman
bounds are not violated for all volume fractions. Accordingly, the
examined model microstructures are statistically representative.

The finite element solution predicts rather soft material behav-
iour, where the approximations for the bulk and shear modulus are
biased versus the lower Hashin-Shtrikman estimate. The lower
Hashin estimate coincides with the Mori-Tanaka estimate for the
examined two phase systems, which is known to predict the elastic
response of particle reinforced materials rather efficiently.
Concerning the self-consistent estimate, it was found that the pre-
dictions are suitable for particle volume fractions up to approxi-
mately 30%. More investigations are needed in order to explore
the inelastic material properties based on the presented micro-
structures in the future, where plasticity and damage will be
accounted for. Another point of interest is the investigation of
the statistical properties of the local stress and strain fields. The
latter are subject of current investigations.
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