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Abstract
This paper is an elementary introduction to the theory of moduli spaces of curves and maps. As

an application to enumerative geometry, we show how to count the number of bitangent lines to a
projective plane curve of degree d by doing intersection theory on moduli spaces.
� 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

1.1. Philosophy and motivation

The most apparent goal of this paper is to answer the following enumerative question:

What is the number NB(d) of bitangent lines to a generic projective plane curve Z of
degree d?

This is a very classical question, that has been successfully solved with fairly elementary
methods (see for example [1, p. 277]). Here, we propose to approach it from a very modern
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and “technological” angle: we think of lines in the projective plane as maps � : P1 → P2

of degree 1. We mark two points p1 and p2 on P1 and keep track of their image via the
map �. We then construct the space of all such marked maps, and ask ourselves: can we
understand the locus B of all maps that are tangent to Z at the images of both p1 and p2?
The answer fortunately is yes. The description of B allows us to produce a closed formula
for NB in all degrees.

This brief description already reveals that there is something deep and interesting going
on here, and that the journey is much more important than the destination itself. Our major
goal is to introduce the reader to the rich and beautiful theory of Moduli Spaces in a hopefully
“soft” way, with the final treat of seeing it concretely applied to solve our classical problem.

It is our intention for this paper to be a very readable expository work. We designed it
to be accessible to a first-year graduate student who is considering algebraic geometry as a
specialty field. We emphasize geometric intuition and visualization above all, at the cost of
silently glossing over some technical details here and there.

1.2. Outline of the paper

This paper is divided into three sections, getting progressively more advanced.
Section 2 introduces some basic ideas and techniques in modern algebraic geometry,

necessary to develop and understand the later two sections and is intended for the unex-
perienced reader. We quickly tread through the most basic ideas in intersection theory; we
introduce the concept of families of algebro-geometric objects; we discuss the specific ex-
ample of vector bundles, and give a working sketch of the theory of Chern classes. Finally,
we describe two interesting constructions: the blowup and jet bundles.

Entire books have been written on each of these topics, so we have no hope or pretense to
be complete, or even accurate. Yet, we still think it valuable to present what lies in the back
of a working mathematician’s mind, in the firm belief that a solid geometric intuition is
the best stairway to understand and motivate the technicalities and abstract generalizations
needed to make algebraic geometry “honest”.

Section 3 is the development of most of the theory. After a quick qualitative introduction
to moduli spaces, we discuss our main characters: the moduli spaces of rational stable
curves, and of rational stable maps. Intersection theory on the moduli spaces of stable
maps, commonly referred to as Gromov–Witten theory, is currently an extremely active
area of research.

Finally, in Section 4 we apply all the theory developed so far to solve the bitangent
problem. We explore in further detail the moduli spaces of rational stable maps of degree
1 to P2, with one and two marked points. By intersecting appropriate cycle classes on
these spaces we extract one of the classical Plücker Formulas, expressing the number of
bitangents as a function of the degree d of the curve.

1.3. References

We suggest here some canonical references for the reader in search of more rigor and
completeness. For intersection theory, [2] is a fairly technical book, but definitely it has the
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last word on it. It also presents Chern classes from an algebraic point of view. A discussion
of Chern classes from a geometric point of view can be found in [3].

A good treatment of blowups can be found in any basic book in algebraic geometry, for
example [1] or [4].

A very pleasant reference for jet bundles is [5]. An extensive treatment of jet bundles is
found in [6].

Our presentation of moduli spaces follows the spirit of [7]; for anybody interested in
getting serious, [8] is the way to go. Finally, a good introduction to � classes is [9].

2. Preliminaries

2.1. Intersection theory

It will be helpful, but not essential, that the reader be familiar with the Chow ring, A∗(X),
of an algebraic variety X. The ring1 A∗(X) is, in some loose sense, the algebraic counterpart
of the cohomology ring H ∗(X), and it allows us to make precise in the algebraic category
the intuitive concepts of oriented intersection in topology.

We think of elements of the group An(X) as formal finite sums of codimension n closed
subvarieties (cycles), modulo an equivalence relation called rational equivalence. A∗(X) =⊕dim X

0 An(X) is a graded ring with product given by intersection.

Intersection is independent of the choice of representatives for the equivalence classes.
In topology, if we are interested in the cup product of two cohomology classes a and b,

we can choose representatives a and b that are transverse to each other. We can assume this
since transversality is a generic condition: if a and b are not transverse then we can perturb
them ever so slightly and make them transverse while not changing their classes. This being
the case, then a ∩ b represents the cup product class a ∪ b.

In algebraic geometry, even though this idea must remain the backbone of our intuition,
things are a bit trickier. We will soon see examples of cycles that are rigid, in the sense
that their representative is unique, and hence “unwigglable”. Transversality then becomes
an unattainable dream. Still, with the help of substantially sophisticated machinery (the
interested reader can consult [2]), we can define an algebraic version of intersection classes
and a product that reduces to the “geometric” one when transversality can be achieved.

Throughout this paper, a bolded symbol will represent a class, the unbolded symbol a
geometric representative. The intersection of two classes a and b will be denoted by ab.

Example. The Chow Ring of Projective Space.

A∗(Pn) = C[H]
(Hn+1)

,

where H ∈ A1(Pn) is the class of a hyperplane H.

1 This is probably our greatest sloppiness. In order for A∗(X) to be a ring we need X to be smooth. Since the
spaces we will actually work with satisfy these hypotheses, we do not feel too guilty.
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2.2. Families and bundles

One of the major leaps in modern algebraic geometry comes from the insight that, to
fully understand algebraic varieties, we should not study them one by one, but understand
how they organize themselves in families.

We are all familiar, maybe subconsciously, with the concept of a family. When, in high
school, we dealt with “all parabolas of the form y = ax2” or “all circles with center at the
origin”, we had in hand prime examples of families of algebraic varieties.

The idea is quite simple: we have a parameter space, B, called the base of the family. For
each point b ∈ B we want an algebraic variety Xb with certain properties. Further, we want
all such varieties to be organized together to form an algebraic variety E , called the total
space of the family.

A little more formally we could define a family of objects of type P as a morphism of
algebraic varieties

E
� ↓
B,

where �−1(b) is an object of type P .
A section of a family � : E → B is a map s : B → E such that � ◦ s : B → B is the

identity map. Often, the section s is written

E
� ↓↑ s

B.

Notice that s(b) ∈ �−1(b).
Given a family � : E −→ B and a map f : M → B we can construct a new family

f ∗E
↓ �f

M,

called the pull-back of � via f:

f ∗E = {(m, e) ∈ M × E | f (m) = �(e)}.
Intuitively, the fiber of �f over a point m ∈ M will be the fiber of � over f (m). An essential
property of this construction is that it is natural, up to isomorphism.

2.2.1. Vector bundles
A vector bundle of rank n is a family � : E → B of vector spaces over C of dimension

n which is locally trivial.2 By locally trivial we mean that there is on open cover {U�} of
B such that �−1(U�)�U� × Cn. Our vector bundle is uniquely determined by how these
trivial pieces glue together.

2 To be precise, more structure is needed: the clutching functions must take values in GL(n, C).



D. Ayala, R. Cavalieri / Expo. Math. 24 (2006) 307–335 311

A vector bundle of rank one is called a line bundle, as its fibers are (complex) lines.
Given two vector bundles

E1
�1 ↓
B

and
E2

�2 ↓
B

over the same base space, one can define their Whitney sum

E1�E2
� ↓
B,

where a fiber �−1(b) is the direct sum of the vector spaces �−1
1 (b)��−1

2 (b). It can be easily
verified that this family satisfies the local triviality condition.

Similarly, one can define the tensor product E1 ⊗ E2, the dual bundle E∗, the wedge
product

∧p
(E) and the bundle Hom(E1, E2) = (E2 ⊗ E∗

1 ).

2.2.2. Characteristic classes of bundles
For every vector bundle there is a natural section s0 : B → E defined by

s0(b) = (b, 0) ∈ {b} × Cn.

It is called the zero section, and it gives an embedding of B into E .
A natural question to ask is if there exists another section s : B → E which is disjoint

form the zero section, i.e. s(b) 
= s0(b) for all b ∈ B. The Euler class of this vector
bundle (e(E) ∈ An(B)) is defined to be the class of the self-intersection of the zero section:
it measures obstructions for the above question to be answered affirmatively. This means
that e(E) = 0 if and only if a never vanishing section exists. It easily follows from the
Poincaré–Hopf theorem that for a manifold M, the following formula holds:

e(T M) ∩ [M] = �(M).

That is, the degree of the Euler class of the tangent bundle is the Euler characteristic.
The Euler class of a vector bundle is the first and most important example of a whole

family of “special” cohomology classes associated to a bundle, called the Chern classes of
E . The kth Chern class of E , denoted ck(E), lives in Ak(B). In the literature you can find
a wealth of definitions for Chern classes, some more geometric, dealing with obstructions
to finding a certain number of linearly independent sections of the bundle, some purely
algebraic. Such formal definitions, as important as they are (because they assure us that
we are talking about something that actually exists!), are not particularly illuminating. In
concrete terms, what you really need to know is that Chern classes are cohomology classes
associated to a vector bundle that satisfy a series of really nice properties, which we are
about to recall.

Let E be a vector bundle of rank n:

identity: by definition, c0(E) = 1.
normalization: the nth Chern class of E is the Euler class:

cn(E) = e(E).
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vanishing: for all k > n, ck(E) = 0.
pull-back: Chern classes commute with pull-backs:

f ∗ck(E) = ck(f
∗E).

tensor products: if L1 and L2 are line bundles,

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

Whitney formula: for every extension of bundles

0 → E ′ → E → E ′′ → 0,

the kth Chern class of E can be computed in terms of the Chern classes of E ′ and E ′′, by the
following formula:

ck(E) =
∑

i+j=k

ci (E ′)cj (E ′′).

Using the above properties it is immediate to see:

(1) all the Chern classes of a trivial bundle vanish (except the 0th, of course);
(2) for a line bundle L, c1(L

∗) = −c1(L).

To show how to use these properties to work with Chern classes, we will now calculate the
first Chern class of the tautological line bundle over P1. The tautological line bundle is

S
� ↓
P1,

where S = {(p, l) ∈ C2 × P1 | p ∈ l}. It is called tautological because the fiber over a
point in P1 is the line that point represents.

Our tautological family fits into the short exact sequence of vector bundles over P1

0 → S → C2 × P1 → Q → 0
↘ ↓ ↙

P1

where Q is the bundle whose fiber over a line l ∈ P1 is the quotient vector space C2/l.
Notice that Q is also a line bundle. From the above sequence, we have that

0 = c1(C
2 × P1) = c1(S) + c1(Q). (1)

Since P1 is topologically a sphere, which has Euler characteristic 2, then

2 = c1(T P1) = c1(S∗) + c1(Q) = −c1(S) + c1(Q). (2)

The second equality in 2 holds because T P1 is the line bundle Hom(S, Q) = S∗ ⊗ Q.
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It now follows from (1) and (2) that c1(S) = −1.

2.3. Blowup

Let us begin by discussing the prototypical example of the blowup of a point on a surface:
first off, the blowup is a local construction and so we need only understand the local picture.

Consider the map

� : C2 → C

(x, y) �→ y/x.

This is a rational map and is not defined on the line {x = 0}. We may try to fix this by
modifying our target space to P1. Still, � cannot be defined at 0 := (0, 0). In fact, along
any line l through the origin, the limit of � at 0 is the slope of l. We would like to modify
C2 to a smooth surface birational to it, where the map � can be defined everywhere. We
would like points outside 0 to remain “untouched” and 0 to be replaced by a P1 whose
points represent all tangent directions at 0.

Here is how to do it: consider the graph of �, �� ⊂ C2 × P1. We have the commutative
diagram

�� ⊂ C2 × P1

(id, �) ↗↙ �1 ↓ �2

C2\{0} �−→ P1

The closure �� is what we are looking for. It is birational to C2; the left projection �1|��

is an isomorphism onto C2 − {0} and �−1
1 (0) = P1. We define the blowup of C2 at 0 as

Bl0(C2) := �� = �� ∪ P1; the projective line �−1
1 (0) is called the exceptional divisor

of the blowup and denoted E. We have obtained a new (smooth!) space by replacing, in a
particularly favorable way, a point with the projectivization of its normal bundle (Fig. 1).

In general, for Y ⊂ X a closed subvariety of codimension k�0, one can construct a new
space BlY (X) such that:

(1) BlY (X) is birational to X;
(2) points outside Y are untouched;
(3) a point in Y is replaced by Pk−1, representing the “normal” directions to Y at that point.

The total space of the blowup of C2 at 0 admits a natural map to the exceptional divisor,
consisting of projecting points along lines through the origin. This realizes Bl0(C2) → E

as a line bundle over P1. This is the tautological bundle, which does not have any global
sections besides the 0-section. It follows that the class E of the exceptional divisor admits
only one representative, namely E itself. It is therefore impossible to compute the self-
intersection EE by means of intersecting two transverse representatives of the class.

2.4. Jet bundles

Let L be a line bundle over a variety, X. Then the local sections of this line bundle form a
vector space. In fact, locally, such a section is just a complex-valued function on some open
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π 

P=(0,0)

E

BlPC2

Fig. 1. The blowup of C2 at the origin.

set in X. We will now describe a new vector bundle over X whose fiber over x ∈ X consists
of all Taylor expansions of these sections centered about x and truncated after degree k. To
see how the locally trivial charts of this bundle glue together is simply a matter of shifting
the center of a Taylor expansion. We call this bundle the kth jet bundle of L and denote it
by J kL. In particular J 0L = L.

Notice that the first jet bundle keeps track of all locally defined functions and
differential forms and so there is an obvious surjection J 1L → L. This gives us the short
exact sequence

0 → L ⊗ � → J 1L → L → 0

which will be an essential tool later on.
The previous statement is a particular case of what can be considered the “fundamental

theorem of jet bundles”.

Theorem 1. For all n�0, the sequence

0 → L ⊗ Symn � → J nL → J n−1L → 0 (3)

is exact.

For a slightly more rigorous and still enjoyable account of jet bundles, refer to [5].
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3. Moduli spaces

3.1. A “High School” example

What is the idea of a moduli space? A moduli space of geometric objects of a certain type
is a space which “encodes” information about collections of geometric objects of a given
type, in the sense that:

(1) points in the moduli space correspond bijectively to the desired geometric objects;
(2) the moduli space itself has an algebraic structure that respects how the objects can

organize themselves in families.

For example, suppose that we would like to consider the space of all circles in the plane.
Since a circle is uniquely the zero locus of a second degree polynomial of the form (x −
x0)

2 + (y − y0)
2 − r2, upon specifying the coordinates of the center and its radius, we have

completely identified the circle. Thus, the space of all circles in the plane can be represented
by M := R2 × R+. This is indeed much more than just a set-theoretic correspondence.

Consider the tautological family

U
↓ �

M,

where U := {((x0, y0), r, (x, y)) | (x − x0)
2 + (y − y0)

2 = r2} ⊂ M × R2 and � is the
projection onto the first factor. This family enjoys the following properties, that clarify the
vague point 2 above:

(1) for any family of circles in the plane p : E → B, there is a map m : B → M defined
by m(b) = p−1(b);

(2) to every map m : B → M there uniquely corresponds a family of circles parametrized
by B, i.e.

m∗U
p ↓
B

such that the fiber p−1(b) is the circle m(b).

This is the best that we could have hoped for. In this case we say that M is a fine moduli
space with U as its universal family.

Often, due to the presence of automorphisms of the parametrized objects, it is impossible
to achieve this perfect bijection between families of objects and morphisms to the moduli
space. If only property 1 holds we call the moduli space coarse.
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3.2. Moduli of n points on P1

Let us now consider the moduli space M0,n of all isomorphism classes of n-ordered
distinct marked points pi ∈ P1. The subscript 0 is to denote the genus of our curve P1.
Since the automorphism group Aut(P1)=PSL2(C) allows us to move any three points on
P1 to the ordered triple (0, 1, ∞), the space M0,n reduces to a single point for n�3.

Going one step up, M0,4 = P1 − {0, 1, ∞} : given a quadruple (p1, p2, p3, p4), we
can always perform the unique automorphism of P1 sending (p1, p2, p3) to (0, 1, ∞); the
isomorphism class of the quadruple is then determined by the image of the fourth point.

The general case is similar. Any n-tuple p = (p1, . . . , pn) is equivalent to a n-tuple of

the form (0, 1, ∞, �(p4), . . . ,�(pn)), where � is the unique automorphism of P1 sending
(p1, p2, p3) to (0, 1, ∞). This shows

M0,n =
n−3 times︷ ︸︸ ︷

M0,4 × · · · × M0,4 \{all diagonals}.
If we define Un := M0,n × P1, then the projection of Un onto the first factor gives rise to a
universal family

Un

� ↓↑ 	i

M0,n,

where the 	i’s are the universal sections:

• 	i (p) = (p, �(pi)) ∈ Un.

This family is tautological since the fiber over a moduli point, which is the class of a marked
curve, is the marked curve itself.

With Un as its universal family, M0,n becomes a fine moduli space for isomorphism
classes of n-ordered distinct marked points on P1.

This is all fine except M0,n is not compact for n�4. There are many reasons why com-
pactness is an extremely desirable property for moduli spaces. As an extremely practical
reason, proper (and if possible projective) varieties are much better behaved and under-
stood than noncompact ones. Also, a compact moduli space encodes information on how
our objects can degenerate in families. For example, what happens when p1 → p2 in M0,4?

In general there are many ways to compactify a space. A “good” compactification M of
a moduli space M should have the following properties:

(1) M should be itself a moduli space, parametrizing some natural generalization of the
objects of M.

(2) M should not be a horribly singular space.
(3) The boundary M\M should be a normal crossing divisor.
(4) It should be possible to describe boundary strata combinatorially in terms of simpler

objects. This point may appear mysterious, but it will be clarified by the examples of
stable curves and stable maps.

In the case of rational n-pointed curves there is a definite winner among compactifications.
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(0,0)

(1,1)

(      ),

0
M0,4

U4

σ4

σ2

σ3

σ1

1

Fig. 2. First attempt at compactifying U4.

3.3. Moduli of rational stable curves

We will discuss the simple example of M0,4; this hopefully will, without submerging
us in combinatorial technicalities, provide intuition on the ideas and techniques used to
compactify the moduli spaces of n-pointed rational curves.

A natural first attempt would be to just allow the points to come together, i.e. enlarge the
collection of objects that we are considering from P1 with n-ordered distinct marked points
to P1 with n-ordered, not necessarily distinct, marked points.

However, this will not quite work. For instance, consider the families

Ct = (0, 1, ∞, t) and Dt = (0, t−1, ∞, 1).

For each t 
= 0, up to an automorphism of P1, Ct = Dt , thus corresponding to the same
point in M0,4. But for t = 0, C0 has p1 =p4 whereas D0 has p2 =p3. These configurations
are certainly not equivalent up to an automorphism of P1 and so should be considered as
distinct points in our compactification of M0,4. Thus, we have a family with two distinct
limit points (in technical terms we say that the space is nonseparated). This is not good.

Our failed attempt was not completely worthless though since it allowed us to understand
that we want the condition p1 =p4 to coincide with p2 =p3, and likewise for the other two
possible disjoint pairs. On the one hand this is very promising: 3 is the number of points
needed to compactify P1\{0, 1, ∞} to P1. On the other hand, it is now mysterious what
modular interpretation to give to this compactification.

To do so, let us turn carefully to our universal family, illustrated in Fig. 2. The natural
first step is to fill in the three points on the base, to complete U4 to P1 × P1 and extend the
sections by continuity.

We immediately notice a bothersome asymmetry in this picture: the point p4 is the only
one allowed to come together with all the other points: yet common sense, backed up by the
explicit example just presented, suggests that there should be democracy among the four
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Fig. 3. Stable marked trees.

points. This fails where the diagonal section 	4 intersects the three constant ones, i.e. at
the three points (0, 0), (1, 1), (∞, ∞). Let us blowup P1 × P1 at these three points. This
will make all the sections disjoint, and still preserve the smoothness and projectivity of our
universal family.

The fibers over the three exceptional points are P1 ∪Ei : nodal rational curves. These are
the new objects that we have to allow in order to obtain a good compactification of M0,4.

Let us finally put everything together, and state things carefully.

Definition 1. A tree of projective lines is a connected curve with the following properties:

(1) Each irreducible component is isomorphic to P1.
(2) The points of intersection of the components are ordinary double points.
(3) There are no closed circuits, i.e. if a node is removed then the curve becomes discon-

nected.

These three properties are equivalent to saying that the curve has arithmetic genus zero.
Each irreducible component will be called a twig. We will often draw a marked tree as in
Fig. 3, where each line represents a twig.

Definition 2. A marked tree is stable if every twig has at least three special points (marks
or nodes).

This stability condition is equivalent to the existence of no nontrivial automorphisms of
the tree that fix all of the marks.

Definition 3. M0,4�P1 is the moduli space of isomorphism classes of four-pointed stable
trees. It is a fine moduli space, with universal family U4 = Bl(P1 × P1).

These results generalize to larger n.

Fact. The space M0,n of n-pointed rational stable curves is a fine moduli space compact-
ifying M0,n. It is projective, and the universal family Un is obtained from Un via a finite
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pi
contraction

Fig. 4. Contracting a twig with only two nodes.

pk
pi

pk

contraction

Fig. 5. Contracting a twig with one node and one mark.

sequence of blowups. (In particular, all the diagonals need to be blown up in an appropriate
order.) For further details see [7] or [11,12].

One of the exciting features of this theory is that all these spaces are related to one another
by natural morphisms. Consider the map

�i : M0,n+1 → M0,n,

defined by forgetting the ith mark. It is obviously defined if the ith mark does not belong
to a twig with only three special points. If it does belong to such a twig, then our resulting
tree will no longer be stable. In this case, we must perform what is called contraction.

Contraction: We need to consider two cases:

(1) The remaining two special points are both nodes. We make the tree again stable by
contracting this twig so that the two nodes are now one (see Fig. 4).

(2) There is one other mark and one node on the twig in question. We make the tree stable
by forgetting the twig and placing the mark where the node used to be (Fig. 5).

We would like to construct a section 	i of the family

M0,n+1

�k ↓↑ 	i

M0,n

by defining the kth mark to coincide with ith one. It should trouble you that in doing so we
are not considering curves with distinct marked points, but we can get around this problem
by “sprouting” a new twig so that the node is now where the ith mark was. The kth and the
ith points now belong to this new twig.
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pk

pi

pk

pi

stabilization

Fig. 6. Stabilization.

This process of making stable a tree with two coinciding points is called stabilization
(Fig. 6).

Finally, we may now identify our universal family

Un

� ↓
M0,n

with the family

M0,n+1

�i ↓
M0,n

as follows.
The fiber �−1([(C, p1, . . . , pn)]) ⊂ Un is the marked curve itself. So any point p ∈ Un

belonging to the fiber over C is actually a point on the stable n-pointed tree C, and may
therefore be considered as an additional mark; stabilization may be necessary to ensure that
our new (n+1)-marked tree is stable. Vice versa, given an (n+1) pointed curve C′, we can
think of the (n + 1)st point as being a point on the n-marked curve obtained by forgetting
the last marked point (eventually contracting, if needed); this way C′ corresponds to a
point on the universal family Un. These constructions realize an isomorphism between Un

and M0,n+1.

3.3.1. The boundary
We define the boundary to be the complement of M0,n in M0,n. It consists of all nodal

stable curves.

Fact. The boundary is a union of irreducible components, corresponding to the different
possible ways of arranging the marks on the various twigs; the codimension of a boundary
component equals the number of nodes in the curves in that component. See [7] for more
details.

The codimension 1 boundary strata of M0,n, called the boundary divisors, are in one-to-
one correspondence with all ways of partitioning [n] = A ∪ B with the cardinality of both
A and B strictly greater than 1.

A somewhat special class of boundary divisors consists of those with only two marked
points on a twig. Together, these components are sometimes called the soft boundary and
denoted by Di,j . We can think of Di,j as the image of the ith section, 	i , of the jth forgetful
map, �j (or vice versa).
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Fig. 7. Irreducible components of the boundary of M0,4.
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Fig. 8. Boundary cycles of M0,5.

There is plenty more to be said about the spaces M0,n, their relationships, and their
boundaries, but we will leave our treatment of M0,n here, suggesting [7] as an excellent
reference for beginners. In Figs. 7 and 8 we draw all boundary strata for M0,4 and M0,5.

3.4. Moduli of rational stable maps

Let us now move on to the moduli spaces of greatest interest for solving the bitangent
problem. We would like to study, in general, rational curves in projective space. The char-
acteristic property of an irreducible rational curve is that it can be parametrized by the
projective line, P1. For this reason, it is natural to study maps � : P1 → Pr .
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When we talk about the degree of such a map we mean the degree of �∗[P1] as in
homology. Be careful, the degree of the map may be different from the degree of the image
curve! For example the map

� : P1 → P2

(x0 : x1) �→ (x2
0 : x2

1 : 0)

has degree two, but its image is a line.
Define W(r, d) as the space of all maps from P1 to Pr of degree d. A map in W(r, d) is

specified, up to a constant, by r + 1 binary forms of degree d that do not all vanish at any
point. It can then be seen that dim W(r, d) = (r + 1)(d + 1) − 1.

We also have the family

W(r, d) × P1 
→ Pr

↓
W(r, d),

where 
(�, x) = �(x). This family is tautological in the sense that the fiber over the map �
is the map 
|{�}×P1 = �. In fact, this is a universal family. Thus, W(r, d) is a fine moduli

space for maps P1 → Pr of degree d.
However, W(r, d) is not the moduli space that we would like to study. For one, it is not

compact. For another, reparametrizations of the source curve are considered as different
points in W(r, d). To fix the latter problem, let us simply consider the space M0,0(P

r , d) :=
W(r, d)/Aut(P1). For a detailed account on why this quotient is indeed a space, see Harris
and Morrison [8, Chapter 5].

Another way to eliminate automorphisms is to consider n-pointed maps (maps
� : C → Pr with an n-marked source C � P1). It should be no surprise that there is
a fine moduli space M0,n(P

r , d) for isomorphism classes of n-pointed maps P1 → Pr of
degree d, namely M0,n × W(r, d). But we still have not dealt with the noncompactness of
this moduli space. The idea is to parallel the construction that led us to stable curves.

Definition 4. An n-pointed stable map is a map � : C → Pr , where:

(1) C is a n-marked tree.
(2) Every twig in C mapped to a point must have at least three special points on it.

Fact. Moduli spaces of n-pointed rational stable maps to Pr of degree d (denoted M0,n

(Pr , d)) can be constructed; they compactify the moduli spaces of smooth maps. It is
straightforward to verify that an n-pointed map is stable if and only if it has only a fi-
nite number of automorphisms. Unfortunately, there is no way to eliminate all nontrivial
automorphism. Details can be found in [7].

Example. An element � ∈ M0,2(P
2, 2) that is the double cover of a line, marking the

ramification points, admits a nontrivial automorphism exchanging the two covers. This
allows us to construct a nontrivial family of maps �t that maps constantly to one point in
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the moduli space. Consider:

�t : [0, 1]/{0 = 1} × P1 −→ P2,

(t, (x0 : x1)) �→ (0 : x2
0 : e2�it x2

1 ).

Because of this phenomenon there is no universal family associated to the spaces M0,n

(Pr , d), and the corresponding moduli spaces are only coarse.

Since M0,n(P
r , d) is dense in M0,n(P

r , d), the latter has dimension

(r + 1)(d + 1) − 1 + (n − 3) = rd + r + d + n − 3.

Example. In particular, M0,n(P
r , 0) = M0,n × Pr .

There are some useful maps among the spaces M0,n(P
r , d). For instance, as with the

spaces M0,n, we have the forgetful maps �i defined by simply forgetting the ith mark and
the sections, 	j , of the family

M0,n+1(P
r , d)

�i ↓↑ 	j

M0,n(P
r , d)

defined by declaring the jth and the ith mark to coincide. Contraction and stabilization are
performed to make these maps defined everywhere.

In addition, there are evaluation maps

�i : M0,n(P
r , d) → Pr

defined by �i (�) = �(pi) where pi is the ith mark on the source curve C.
The forgetful and evaluation morphisms allow us to identify M0,n+1(P

r , d) as a tauto-
logical family for M0,n(P

r , d):

M0,n+1(P
r , d)

�n+1−→ Pr

�n+1 ↓
M0,n(P

r , d).

This way we can think of points of M0,n+1(P
r , d) either as n+1-pointed maps or as points

on an n-marked curve mapped to Pr . Being comfortable with this identification comes in
very handy when making computations.

3.4.1. The boundary
The boundary consists of maps whose domains are reducible curves. In fact, its descrip-

tion is very similar to that of M0,n. Boundary strata are determined now not only by the
combinatorial data of the arrangement of the marks, but also by the degree the maps restrict
to on each twig.

Boundary divisors are in one to one correspondence with all ways of partitioning [n] =
A ∪ B and d = dA + dB such that:

• #A�2 if dA = 0;
• #B �2 if dB = 0.



324 D. Ayala, R. Cavalieri / Expo. Math. 24 (2006) 307–335

3.5. Psi classes

Consider a family of curves admitting a section.

C
� ↓↑ 	

B.

We can define the cotangent line bundle, L	, as the line bundle on B whose fiber at a point
b ∈ B is the cotangent space of Cb = �−1(b) at the point 	(b). We call the � class of the
family the first Chern class of this line bundle. Observe that, for a trivial family of curves
with a constant section, the � class vanishes.

This construction can be extended in a natural way to the moduli space M0,n(P
r , d).

Informally, we have a sheaf on the tautological familyM0,n+1(P
r , d)whose local sections

away from nodes are differential forms on the curves. We obtain it by considering 1-forms
on the tautological family and quotienting by forms that are pulled back from the moduli
space. This sheaf is called the relative dualizing sheaf,3 and denoted by ��n+1 .

Consider now the ith tautological section 	i . If we restrict ��n+1 to this section, we obtain
a line bundle on the moduli space whose fibers are naturally identified with the cotangent
spaces of the curves at the ith marked point. Then we can define the class:

�i := c1(	
∗
i ��n+1) ∈ A1(M0,n(P

r , d)).

The construction of �i is natural in the sense that if we have a family of pointed stable
maps, inducing a morphism to the moduli space, the �i class of the family is the pull-back
of the �i class on the moduli space.

It may seem that there is no difference between the information carried by�i ∈ A1(M0,n+1
(Pr , d)) and �i ∈ A1(M0,n(P

r , d)). We have a natural map between these two spaces, the
tautological family �n+1 : M0,n+1(P

r , d) → M0,n(P
r , d). It may seem that Li,n+1 :=

	∗
i ��n+1 and �∗

n+1Li,n are the same line bundle, thus yielding the relation �i = �∗
n+1�i . In

reality, this is almost true. Surely these line bundles agree off the component Di,n+1 of the
soft boundary. From this consideration, we conclude

Li,n+1 = �∗
n+1Li,n ⊗ O(mDi,n+1) (4)

for some integer m.
Next, observe that Li,n+1 restricted to Di,n+1 is a trivial line bundle: we are looking at

curves with a twig having only three special points; the node, the ith and the (n+1)st mark.
By an automorphism of the twig, we can assume that the node is at 0 and the two marks
are at 1 and ∞. Therefore, this line bundle restricted to Di,n+1 is the cotangent space at a
single unchanging point of P1. This implies

ODi,n+1 = Li,n+1|Di,n+1

= (�∗
n+1Li,n ⊗ O(mDi,n+1))|Di,n+1 = Li,n ⊗ O(mDi,n+1)|Di,n+1 .

3 The word relative refers to the fact that we are quotienting by everything coming from downstairs. In other
words, we are constructing a sheaf on the universal family of the moduli space by “gluing” together sheaves
defined on the curves.
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By the adjunction formula [1, p. 146], the line bundle O(Di,n+1)|Di,n+1 is the normal bundle
of the divisor Di,n+1.

But the normal directions to a section in the moduli space are precisely the tangent
directions to the fibers. Hence O(Di,n+1)|Di,n+1 is the dual to the relative cotangent bundle
Li,n. It follows that m must be 1.

Finally, by taking Chern classes in (3), we can deduce the fundamental relation:

�i = �∗
n+1�i + Di,n+1. (5)

The above pull-back relation can be used to describe explicitly � classes for moduli spaces
of rational stable curves in terms of boundary strata. A closed formula can be found in [9].

4. Counting bitangents

4.1. The strategy

We now have all the necessary machinery to tackle our problem of counting bitangents.
Before we start digging deep into details and computations, let us outline our strategy.

Let Z := {f = 0} be a projective plane curve of degree d:

• we consider the moduli space M0,2(P
2, 1), of two-pointed, rational stable maps of

degree one;
• we construct a jet bundle on this space with the property that the zero set of a section

of this bundle consists of stable maps having at least second order contact with Z at the
image of the ith marked point; we name this cycle i (Z);

• we represent i (Z) in the Chow ring in terms of � classes and other natural classes;
• we step by step compute the intersection 1(Z)2(Z);
• we identify and clean up some garbage that lives in that intersection and corresponds to

maps that are not bitangents;
• finally, we have counted two-pointed maps that are tangent to Z at each mark; we just

need to divide by 2, since we are not interested in the ordering of the marks.

Easy enough? Now let us start over slowly and do everything carefully.

4.2. M0,1(P
2, 1)

This space has dimension 3, and it is explicitly realized by the following incidence
relation:

M0,1(P
2, 1) = {(p, l) ∈ P2 × P̌2 | p ∈ l} =: I ⊂ P2 × P̌2.
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There are two projections of I onto P2 and P̌2, that we will denote q and q̌. The latter
makes I into a tautological family of lines in P2:

P1 −→ I
↓ q̌

P̌2.

This family is tautological in the sense that the fiber over l ∈ P̌2 is l itself.
A fiber over p ∈ P2 under q is the pencil of lines in P2 passing through p and so this

projection also gives rise to a P1 bundle over P2. Observe that q is precisely the evaluation
map �x .

Notation. We denote by x the unique mark in the space of one-pointed maps, and add
the subscript x to any entity (class, map, etc.) related to it. We do so to keep track of
the conceptual difference from the marked points on the two-pointed maps, which will be
numbered 1 and 2.

Definition 5. We identify and name two natural divisors on M0,1(P
2, 1).

�(p) : Let us look at the hyperplane divisor p̌ ⊂ P̌2 of all lines passing through a point p,
and consider the cycle of its pull-back q̌∗(p̌) := �(p).

�x(l) : Similarly, we look at the hyperplane divisor l ⊂ P2 and define �x(l) := q∗(l) as its
pull-back under q.

In general, define �x(Z) := q∗(Z) = �∗
x(Z) as the cycle of maps whose mark is sent

into Z.
There is only one class of a line and only one of a point in A∗(P2), hence �x := [�x(l)]

and � := [�(p)] are independent of l and p, respectively.

Since M0,1(P
2, 1) is a P1 bundle over P2, it follows that � and �x , i.e. the pull-backs of

hyperplane divisors in the base and in the fiber, generate A1(M0,1(P
2, 1)). It is therefore

useful to know all intersections of the two classes.
It is a good exercise to construct a picture verifying each of the following statements

about classes.

• �x = [{(p′, l′) | p′ ∈ l, l′ ∈ p̌′ with l fixed}],
• � = [{(p′, l′) | l′ ∈ p̌, p′ ∈ l′ with p fixed}],
• �2

x = [{(p, l′) | l′ ∈ p̌ with p fixed}],
• ��x = [{(p′, l′) | p′ ∈ l, l ∈ p̌ with p and l fixed}],
• �2 = [{(p′, l) | p′ ∈ l with l fixed}],
• ��2

x =[{(p, l′) | l ∈ p̌∩ p̌0 with p, p0 fixed}]=pt since there is exactly one line passing
through two distinct points,

• �x�
2 = [{(p′, l) | p′ ∈ l ∩ l0 with l, l0 fixed}] = pt since there is exactly one point in the

intersections of two distinct lines,
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Fig. 9. �x� = �2
x + �2.

• �3
x = [{(p′, l′) | l′ ∈ p̌1 ∩ p̌2 ∩ p̌3, p

′ ∈ l′ with p1, p2, p3 fixed}] = 0 since in general
three points do not lie on a common line,

• �3 = [{(p′, l′) | p′ ∈ l1 ∩ l2 ∩ l3, p
′ ∈ l′ with l1, l2, l3 fixed}] = 0 since in general three

lines do not share a common point.

The following two lemmas prove identities that will be crucial for our later computations.

Lemma 1.

�x� = �2
x + �2. (6)

Proof. We construct a one-parameter family of cycles, parametrized by [0, 1], with the
left-hand side of our identity as one endpoint of this family and the right-hand side as the
other.

To choose a representative of the class �x�, one must specify a fixed point p and a fixed
line l. Let us fix l once and for all and let pt be a path in P2 such that pt ∈ l if and only if
t = 0. Our one parameter family �t is defined as follows:

�t = {(p′, l′) | p′ ∈ l, l ∈ p̌t }.
Notice that [�t ] = �x� for t 
= 0 (Fig. 9).

We now examine what happens as t → 0.

p′ 
= p0: necessarily, l′ = l and our resulting one-dimensional class is parametrized solely
by p′ ∈ l and is therefore �2.

p′ = p0: Then l′ is only required to be in p̌0 and so such l′’s in p̌0 parametrize our resulting
one-dimensional class. We have arrived at �2

x .

We now have that �0 = �2
x + �2, which allows us to conclude (6). �
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Lemma 2.

�x = � − 2�x . (7)

Proof. As �x ∈ A1(M0,1(P
2, 1)), it is possible to express �x =a�+b�x for some integers

a and b. Let us determine these two integers.

(a) Intersecting �x with �2
x we obtain

�x�
2
x = a��2

x + b�3
x = a.

Consider 	∗
x��2 restricted to �2

x = {(p, l′) | p is fixed and l′ ∈ p̌}. It is the line bundle
over �2

x whose fiber over a point (p, l′) ∈ �2
x is the cotangent space of l′ at the fixed

point p.
It is worth convincing yourself that this is the dual of the tautological line bundle

S
↓ �

P1 = {l ⊂ P2 | p ∈ l} = �2
x.

We computed (Section 2.2.2) that c1(S) = −1 and so a = 1.
(b) Similarly, b is the product �x�

2. To find this intersection we must consider the line
bundle 	∗

x�� restricted to �2 ={p ∈ l | l is fixed}. A fiber of this line bundle over a point
p ∈ l is the cotangent space of our fixed l at p. This is simply the cotangent bundle of l.
Since l = P1 = S2 has Euler characteristic 2, then the degree of the first Chern class of
the cotangent bundle is −2. We thus have that b = −2. �

4.3. M0,2(P
2, 1)

First off note that dim M0,2(P
2, 1) = 4. The description of M0,2(P

2, 1) is slightly more
complicated largely due to the existence of its only boundary divisor which we call �
(Fig. 10).

For a two-pointed map � not in the boundary, �(p1) 
= �(p2). Since we are consider-
ing maps of degree 1, i.e. isomorphisms of lines, �(p1) and �(p2) completely determine
(up to reparametrization)j our map �. It follows that

M0,2(P
2, 1)\� = P2 × P2\�.

On �, �(p1) = �(p2): for any line l through p, there is a map in � that contracts the twig
with the marks to p and maps the other twig isomorphically to l.

So for our description to be complete, we need to replace (p, p) ∈ � ⊂ P2 × P2 with a
P1 worth of maps. We arrive at

M0,2(P
2, 1) = Bl�(P2 × P2).

Consider the tautological families

M0,2(P
2, 1)

�1 ↓↓ �2

M0,1(P
2, 1).
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Fig. 10. The boundary divisor in M0,2(P2, 1).

Both families have a natural common section 	 := 	1 = 	2. The image of 	 is the unique
boundary divisor � in M0,2(P

2, 1).
Define �i (Z) := �∗

i (Z). It is easy to check the following identities:

(1) 	∗(�x(Z)) = ��1(Z) = ��2(Z).
(2) 	∗(�i (Z)) = �.
(3) �∗

i �x(Z) = �i (Z).

4.4. Tangency conditions

Let us define �i (Z) ∈ A∗(M0,n(P
2, 1)) as the cycle of maps tangent to a plane curve

Z = {f = 0} at the image of the ith marked point. Formally,

�i (Z) = {� ∈ M0,n(P
2, 1)|�∗f vanishes at pi with multiplicity �2}.

We now want to obtain an expression for �x(Z) ∈ A∗(M0,1(P
2, 1)) in terms of �x , �,

and �x .
Consider the tautological family

M0,2(P
2, 1)

�2−→ P2

	 ↑↓ �2 ↗ �x

M0,1(P
2, 1).

Let us pull-back the line bundle O(Z) via �2, and consider the first jet bundle J 1
�2

�∗
2O(Z)

relative to �2. Relative here means that we quotient out by everything that can be pulled
back from M0,1(P

2, 1). Let Z be defined by the vanishing of the polynomial f, and let us
consider the zero locus of the section � := �∗

2f + (�1
�2

�∗
2f ) dt ∈ �(J 1

�2
�∗

2O(Z)); what

we obtain is the locus of maps in M0,2(P
2, 1) such that the pull-back of f at the second
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marked point vanishes to second order. If we interpret M0,2(P
2, 1) as the universal family

for M0,1(P
2, 1),4 it follows that to obtain �x(Z), the locus in M0,1(P

2, 1) of lines tangent
to Z at the unique marked point, we need to pull-back via the section 	.

In formulas, this translates to

�x(Z) = e(	∗J 1
�2

�∗
2O(Z)).

Since the rank of the bundle in question is 2, the Euler class is the second Chern class.
To calculate c2(	∗J 1

�2
�∗

2O(Z)) we use the following short exact sequence discussed in
Section 2.4:

0 → �∗
2O(Z) ⊗ ��2 → J 1

�2
�∗

2O(Z) → �∗
2O(Z) → 0.

Notice that the first and last terms of this sequence are line bundles. We then want to consider
the pull-back along 	 of this exact sequence. Using the Whitney formula, we now have that

�x(Z) = c1(	
∗�∗

2O(Z))c1(	
∗�∗

2O(Z) ⊗ 	∗��2) = d�x(d�x + �x)

in M0,1(P
2, 1).

The last equality follows from the two facts:

• [Z]=dH ∈ A1(P2), where H is the hyperplane class generating A∗(P2) and d =deg f ;
• �x = �2	, and �x is by definition �∗

x(H).

Now we want to consider the case when we have more than one marked point: let us say we
want to compute 1(Z) in M0,2(P

2, 1). The obvious guess is 1(Z)= d�1(d�1 +�1). We
need to be careful, though: for maps in ��1(Z) ⊂ d�1(d�1 +�1), the whole twig containing
the two marks is mapped to Z. So, for � such a map, �∗f vanishes identically along the
contracting twig and thus to all orders. We do not want to consider these maps as tangents
to Z.

Fact. This simple correction works. The formula in M0,2(P
2, 1) is

�1(Z) = d�1(d�1 + �1 − �). (8)

Lastly, note that ��1(Z) = 	∗�x(Z).

Remark. It would be nice to use higher-order jet bundles to describe cycles of maps having
higher-order contact with our curve Z. Unfortunately, in general it is quite difficult, as fairly
complicated problems of excess intersection arise.

For our application, we only need to push our luck a little further: we need to describe

the cycle �(3)
x (Z) of inflection tangents to Z. Luckily, thanks to the fact that M0,1(P

2, 1)

has no boundary, the argument carries through: �(3)
x (Z) can be computed as the Euler class

4 This is true because one-pointed maps of degree one have no nontrivial automorphisms!
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of the bundle E′ := 	∗J 2
�2

�∗
2O(Z). Here, rank E′ = 3. By the exact sequence (3) and the

Whitney formula:

�(3)
x (Z) = c3(E

′) = �x(Z)(�x(Z) + �x)(�x(Z) + 2�x).

Using our previous calculations,

�(3)
x (Z) = (3d2 − 6d)pt. (9)

We will abuse notation from now on and leave off the class of a point in our calculations.
When writing a dimension zero class we will simply write its integral over the fundamental
class.

4.5. The computation

Let us finally get down to business. We define in general

�Z(m1p1 + m2p2) ⊂ M0,2(P
2, 1)

as the cycle of maps �, such that �∗Z�m1p1 + m2p2. Note that �Z(2p1) = �1(Z).
Our ultimate goal is to compute �Z(2p1 + 2p2), i.e. the class of maps in M0,2(P

2, 1)

which are tangent to Z at both p1 and p2.
Note that dim �Z(2p1 + 2p2) = 0 since we are imposing 4 independent conditions in a

space of dimension 4. This tells us that our enumerative problem makes sense.
On first thought, one might suggest �Z(2p1 + 2p2) = �1(Z)�2(Z). After all, �1(Z) is

the class of all maps tangent to Z at p1 and similarly for �2(Z) at p2 so their intersection
seems to be what we are after. However, one must be careful: for example, ��1(Z) is in
this intersection and we do not want to consider such maps.

We will proceed in two steps and obtain �Z(2p1 +2p2) from �1(Z)�2(Z) by “throwing
away the spurious maps”.

Step 1: We consider the intersection �1(Z)�2(Z), consisting of all maps tangent to Z at
p1 that intersect Z at p2. What we get are two parts:

• �Z(2p1 + p2), in which p1 and p2 do not lie on the same twig of degree zero;
• ��1(Z)=	∗�x(Z), corresponding to maps with both marked points on a degree 0 twig.

Set theoretically,

�2(Z)1(Z) = �Z(2p1 + p2) ∪ 	∗x(Z).

The correct multiplicities are 1 and 2, respectively, giving:

�Z(2p1 + p2) = �2(Z)�1(Z) − 2	∗�x(Z).

Step 2: We now intersect �Z(2p1 +p2) with �2(Z)+�2 −�. This imposes second order
vanishing at the second marked point.

Again, this intersection gives one part with multiplicity 1, which is not on the boundary �,
and another part with multiplicity 2 in �. The first is what we are looking for: �Z(2p1+2p2).
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To find the other part, remember we are already working inside �Z(2p1 + p2), so to lie in
� means p2 → p1. We thus obtain ��Z(3p1) = ��(3)

1 with multiplicity 2.

Note: To explain these multiplicities rigorously is a subtle business which we will not go
into here. The intuition behind these 2’s is that the boundary contribution can be carried by
either of the classes we are intersecting, and hence shows up twice in the intersection. The
reader interested in how to carry out these computation can consult [13].

Finally, we have identified

�Z(2p1 + 2p2) = − 2	∗�(3)
x (Z) + (z�2 + �2 − �)�Z(2p1 + p2)

= − 2	∗�(3)
x + �1(Z)�2(Z) − 2	∗�x(Z)(z�2 + �2 − �). (10)

Now all that stands in our way of calculating bitangents are substitutions and computations.
Before we move on, take a second to remember or derive the following easy facts, that

we will use in the forthcoming computations:

(a) ��2
x = �2�x = 1,

(b) ��x = �2
x + �2,

(c) �x = � − 2�x ,
(d) �3

i = 0,
(e) �1 = �∗

2�x + �,
(f) ��i = 0,
(g) �2 = −��∗

i �x ,
(h) ��1 = ��2,
(i) 	∗�x(Z) = ��1(Z) = ��2(Z),
(j) �1�

∗
2� = �∗

2(��x) for any class � ∈ A∗(M0,1(P
2, 1)).

Let us expand the first term in (9), 	∗�(3)
x . We have already found �(3)

x (Z)= (3d2 − 6d)

in M0,1(P
2, 1). Since pushing forward preserves dimension and 	i is injective, thus sending

the class of a point to the class of a point, then our first term becomes

	∗�(3)
x = 3d2 − 6d .

Now for the second and third terms.

�1(Z)�2(Z) = d�1(d�1 + �1 − �)d�2(d�2 + �2 − �)

= d4(�2
1�

2
2) + d3(�2

1�2�2 + �1�
2
2�1) + d2(�1�2�1�2 + �2

1�
2),

	∗�x(Z)(d�2 + �2 − �) = �((d�x)(d�1 + �1 − �))(d�2 + �2 − �)

= − 2d2(�2
1�

2) + d(�1�
3).

We must now compute each intersection in the above expressions.5

• �2
1�

2
2=1, as seen from the Fig. 11 illustrating the fact that there is exactly one line passing

through two prescribed points.

5 The little numbers over the equal signs refer to the identities from page 35 that are used at each step.
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p2

p1

l′

l′

p1

p2

p2

p1

=
l

′

′

Fig. 11. The intersection �2
1�

2
2.

l
l

p2

p1
p1

p1

=

l′

′

′

p2′

Fig. 12. The intersection �2
1�

∗
1(�2).

• �2
1�

2 (f )= �2
1�(−�∗

2�x)
(i)= −��∗

2(�
2
x�x)

(b+c)= −��∗
2(a) = −�[fiber].

But � is the image of a section, hence it intersects all fibers transversely.

Thus, �2
1�

2 = −1.

• �1�
3 (f )= −�1�

2�∗
2�x

(f )= �1�(�∗
2�x)

2 =�1�(�∗
2�

2
x)

(i)= ��∗
2(�

2
x�x)

(a+b+c)= ��∗
2(−3)=−3.

• �2
1�2�2

(d)= �2
1�2(�

∗
1�x + �)

(i)= �2
1�

∗
1(�x�x)

(a+b)= �2
1�

∗
1(�

2 − �2
x).

Notice first of all that �2
1�

∗
1�

2
x = �2

1�
2
2 = 1, as shown in Fig. 11.

Next, we claim that �2
1�

∗
1�

2 = 0. In fact �2
1 is the class of all two-pointed lines passing

through a fixed point, where the first mark is at the fixed point while the second mark is
free to move.

Intersecting with �∗
1(�

2) means to require that our fixed point intersects our fixed line
transversely, which is to say that they do not intersect at all. This is illustrated in Fig. 12.

Thus, �2
1�2�2 = −1; by symmetry, we also have �2

2�1�1 = −1.



334 D. Ayala, R. Cavalieri / Expo. Math. 24 (2006) 307–335

• Finally,

�1�2�1�2
(d)= �1(�

∗
2�x + �)�2(�

∗
1�x + �)

(i)= (�∗
2(�x�x) + ��1)(�

∗
1(�x�x + ��2)

(a+b)= �∗
1(�

2 − �2
x)�

∗
2(�

2 − �2
x)

+ ��2�
∗
1(�

2 − �2
x) + ��1�

∗
2(�

2 − �2
x) + �2�2

1

= �∗
1(�

2)�∗
2(�

2) − �∗
1(�

2)�∗
2(�

2
x) − �∗

1(�
2
x)�

∗
2(�

2) + �∗
1(�

2
x)�

∗
2(�

2
x)

+ ��∗
1(�

2�x) + ��∗
2(�

2�x) + �2
x�

2.

Via our previous calculations, the last three terms can be easily seen as 1, 1, and −1,
respectively. So we must now find the first four terms above. We do so by recalling pictures.

�∗
1(�

2) is the class of a fixed line and all ordered pairs of points on it.

To intersect two such classes is to require that our line is fixed as two transverse lines,
which is impossible. Thus �∗

1(�
2)�∗

2(�
2) = 0.

�∗
1(�

2
x) = �2

2, and notice that now symmetry implies that �2
2�

∗
2(�

2) = �2
1�

∗
1(�

2) = 0, as
shown in Fig. 12. Similarly, �∗

2(�
2
x)�

∗
1(�

2) = 0.

Lastly, let us intersect �∗
2(�

2
x) with �∗

1(�
2
x). But it is clear that �∗

2(�
2
x)�

∗
1(�

2
x) = �2

1�
2
2, and

we have shown in Fig. 11 that this intersection is 1.
We have then found

�1�2�1�2 = 0 + 0 + 0 + 1 + 1 + 1 − 1 = 2.

Putting this all together, we have now calculated

�Z(2p1 + 2p2) = − 2(3d2 − 6d) + (d4 − 2d3 + d2) − 2(−2d2 − 3d)

= d4 − 2d3 − 9d2 + 18d

= d(d − 2)(d − 3)(d + 3).

After the dust has settled, we now know that a generic plane curve Z of degree d has

NB(d) = 1

2
d4 − d3 − 9

2
d2 + 9d

bitangents. Remember we are dividing by 2 because we do not care about the order of the
marked points.

Notice that for d = 2 and d = 3 we get that there are no bitangents as should be the case.
For d = 4 we find 28 bitangents, the first interesting result.
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