Exposed Points in Lebesgue–Bochner and Hardy–Bochner Spaces

Wolfgang Hensgen

Universität Regensburg, NWF I-Mathematik, 93040 Regensburg, Germany

Submitted by John Horváth
Received December 1, 1994

INTRODUCTION AND SUMMARY

Extreme points of the unit ball of Lebesgue–Bochner spaces have been studied by Sundaresan [39], Johnson [24], and Greim [14]. After the work of Johnson [25] and Greim [15, 16], recently Hu and Lin [21] have succeeded in characterizing strongly exposed points of the ball. I study here the same problem for the intermediate notion of an exposed point which goes back to Straszewicz [38] (see Section 1 for definitions), and I do so also for Hardy–Bochner spaces.

Let X be a Banach space and exp_X the set of exposed points of the unit ball B_X, obviously contained in the unit sphere S_X. Let μ be an σ-finite measure. Adopting the terminology of Smith [37, p. 157], for $f \in S_{L^p(\mu; X)}$ to belong to $\text{exp}_{L^p(\mu; X)}$ the “natural condition” would be $f(t) \in \{f(t)\} \text{exp}_{B_X}$ a.e. $1 < p < \infty$, resp. $f(t) \in \text{exp}_{B_X}$ a.e. $p = \infty$ (the case $p = 1$ is trivial; see 1.12).

The natural condition is sufficient if X is separable and reflexive (2.3). (Note that in the realm of separable reflexive spaces X the notions of exposed and strongly exposed points of B_X do not coincide [30, p. 145].) The proof is an application of the Jankov–von Neumann measurable set(ation) theorem 1.5. Sufficiency also holds if X is an AL space (2.1), or an AM space, or smooth (2.3). If in the “natural condition” the set exp_{B_X} is replaced by the smaller set $(x \in \text{exp}_{B_X} : x$ is exposed by every support functional) then the resulting stronger condition is sufficient for arbitrary X (2.4). Geometrically, the exposed points of this special type can be characterized as those points of S_X which are not the end point of a line.
segment contained in \(S_X \). This time, the proof utilizes the Graf–Talagrand measurable selection theorem 1.6 which seems to have gone unnoticed in this context.

The natural condition is necessary (if \(p = \infty \), only for \(f \) to be exposed by an integral functional; see 1.9) if \(X \) is separable and reflexive (2.7), or if \(X \) is only separable but \(\mu \) is a regular Borel measure on a locally compact space (2.7'). Obviously, the proof of this is influenced by Johnson’s paper [24].

In particular, for \(1 < p < \infty \) and \(X \) separable and reflexive, the natural condition characterizes \(\exp B_{L^p(\mu; X)} \). I was informed by the referee that this result is also contained in Theorem 11 of the forthcoming paper by Hu and Lin [22]. Their proof is different. In a very recent note [20] Hu modified this proof, obtaining the necessity of the natural condition for separable \(X \) and arbitrary \(\mu \).

Turning to the case of Hardy–Bochner spaces \(H^p(X) \) in Section 3, the analogous theorems about sufficiency hold, where \(f \) is only supposed to satisfy the relevant condition on a set of positive measure (3.3), (3.4). The reason for this behaviour, as well as for the fact that no exposedness of the values of \(f \) is necessary for \(f \) to be exposed (3.7), is the identity theorem 3.1. For \(p = \infty \), the material of 3.4, 3.5, and 3.7 is contained in the author’s habilitation thesis [18].

In the appendix, independent of the rest of the paper, I give a complete proof of the result that \(B_{H^p(X)} \) has no strongly exposed point. If \(X = \mathbb{C} \), a proof has been sketched by Pelczyński [32, p. 42] working with peak sets in the spectrum of \(L^\infty \). For the vector case, I had to transfer the idea to the circle, simultaneously filling in the details which I found quite appealing.

1. PRELIMINARIES

(a) Geometry of the Unit Sphere

Let \(X \neq \{0\} \) be a real or complex Banach space with unit ball \(B_X \), sphere \(S_X \), dual \(X' \). \(\text{ext} B_X \) denotes the set of extreme points of \(B_X \).

1.1. Definitions. Let \(x \in S_X \).

1. \(x' \in S_{X'} \) with \(\langle x, x' \rangle = 1 \) is called a support functional of \(x \); \(\text{Supp} x := \{ x' \in S_{X'} : \langle x, x' \rangle = 1 \} \) (\(\neq \emptyset \) by Hahn–Banach).

2. \(x \) is called a smooth point of \(B_X \) (\(x \in \text{sm} B_X \)) if \(\text{Supp} x \) consists only of one point; if \(\text{sm} B_X = S_X \) then \(X \) is smooth.

3. If \(x \) admits of a support functional \(x' \) with \(\Re \langle y, x' \rangle < 1 \) \(\forall y \in B_X \setminus \{x\} \) then \(x \) is an exposed point of \(B_X \) (\(x \in \exp B_X \)), exposed by \(x' \); \(\text{Exp} x := \{ x' \in \text{Supp} x : x' \text{ exposes } x \} \).
4. In 3, \(x' \) strongly exposes \(x \) if \(x_n \in B_x, \langle x_n, x' \rangle \to 1 \) implies \(x_n \to x \) in norm.

5. \(x \) is a point of local uniform rotundity of \(B_x(x \in \text{lur } B_x) \) if \(x_n \in X, \| x_n \| \to 1 \), and \(\| (x + x_n)/2 \| \to 1 \) imply \(x_n \to x \).

1.2. Remarks. 1. \(\text{exp } B_x \subset \text{ext } B_x \).

2. \(X \) strictly convex (i.e., \(\text{ext } B_x = S_X \)) \(\Rightarrow \text{exp } B_x = S_X \) and \(\text{Exp } x = \text{Supp } x \forall x \in S_X \) [8, p. 23].

3. For \(x \in \text{exp } B_x \), \(\text{Exp } x \) is dense in \(\text{Supp } x \) (if \(x_0 \in \text{Exp } x, x_1 \in \text{Supp } x \) then \(\alpha x_0 + (1 - \alpha)x_1 \in \text{Exp } x, 0 < \alpha \leq 1 \)).

4. \(\text{Supp } x \) is weak\(^*\) compact \(\forall x \in S_X \).

5. By 3 and 4, for \(x \in \text{exp } B_x \), \(\text{Exp } x = \text{Supp } x \) iff \(\text{Exp } x \) is weak\(^*\) compact.

Although not needed later, it is interesting to compare the following geometric characterization with the definition of "extreme point": For \(x \in S_X \), \(\text{Exp } x = \text{Supp } x \) iff \(x \) is not the end point of a (non-trivial) line segment contained in \(S_X \). Paya observed that this is tantamount to \(x \in \text{lur } B_F \) for every finite-dimensional subspace \(F \subset X \) with \(x \in F \). Also, \(\text{Exp } x = \text{Supp } x \) does not imply \(x \in \text{sm } B_X \) and is incomparable with \(x \) being strongly exposed: in Lindenstrauss' example [30, p. 145] quoted in the Introduction, the critical point \(x \) is actually in \(\text{exp } B_X \cap \text{sm } B_X \) so that \(\text{Exp } x = \text{Supp } x \), but \(x \) is not strongly exposed.

1.3. Lemma. \(X \) separable \(\Rightarrow \text{sm } B_X \) is a \(G_b \) subset of \(S_X \).

Proof. It is a classical result of Mazur [31, Satz 2] that \(\text{sm } B_X \) is even a dense \(G_b \). To see only the \(G_b \) nature of \(\text{sm } B_X \), it suffices to observe that \(S_X \setminus \text{sm } B_X = \bigcup_{n \in \mathbb{N}} \{ x \in S_X : \max_{(x', y') \in K}(\Re \langle x, x' \rangle + \Re \langle x, y' \rangle) = 2 \} \), where \((K_n)_{n \in \mathbb{N}} \) is a \(w^* \times w^* \) compact exhaustion of \(B_X \times B_X \setminus \text{diagonal} \), and to use the continuity of the max functional on every \(C(K) \) space.

\(\mathcal{W}^*(S) \) denotes the collection of non-empty subsets of \(S \).

1.4. Lemma. The (weak\(^*\) compact valued) multifunction \(\text{Supp} \colon S_X \to \mathcal{W}^*(S_X) \) is norm-to-weak\(^*\) upper semi-continuous (u.s.c.). In particular, \(\text{Supp } | \text{sm } B_X \to S_X \) is norm-to-weak\(^*\) continuous.

Proof. The second statement is proved in [8, p. 22]. For the first one, following [13, 1.11] (and not [7, 4.2]), recall that if \(S, T \) are topological spaces, then \(F \colon S \to \mathcal{W}(T) \) is called u.s.c. if \(F^{-1}(A) := \{ s \in S : F(s) \cap A \neq 0 \} \) is closed in \(S \) for all closed sets \(A \subset T \). Let \(A \subset S_X \) be weak\(^*\) closed, and suppose \((x_n) \) is a sequence in \(S_X \), norm convergent to \(x \in S_X \), such that \(\exists x_n' \in \text{Supp}(x_n) \cap A \). Let \(x' \in B_{X'} \) be a weak\(^*\) cluster point of \((x_n') \); the computation in [8, p. 22] shows that \(\langle x, x' \rangle = 1 \), whence \(x' \in S_{X'} \).
whence \(x' \in A \). Altogether, \(x' \in \text{Supp}(x) \cap A \), and \(x \in \text{Supp}^{-1}(A) \). \(\text{Supp}^{-1}(A) \) is norm closed.

(b) **Measurable Selection Theorems**

I use here the excellent survey (with proofs) of Graf [13]. Recall that a Hausdorff space \(S \) is called analytic if it is the continuous image of a Polish space; \(\mathcal{B}_S \), resp. \(\mathcal{B}_S^\cdot \), denote the \(\sigma \)-algebras in \(S \) of Borel sets, resp. universally measurable sets (w.r.t. all finite measures).

1.5. **Theorem** (Jankov and von Neumann [13, 2.6]). Let \(p: R \to S \) be a continuous and surjective map between analytic spaces \(R, S \); then \(p \) admits a \(\mathcal{B}_S^u - \mathcal{B}_R \) measurable section \(s: S \to R \): \(p \circ s = \text{id}_S \).

Corollary [13, 2.7]. Let \(F: S \to \mathcal{B}_S^u(R) \) be a correspondence with analytic graph between analytic spaces \(S, R \); then \(F \) admits a \(\mathcal{B}_S^u - \mathcal{B}_R \) measurable selection \(f: S \to R \): \(f(s) \in F(s) \ \forall s \in S \).

1.6. **Theorem** (Graf and Talagrand [13, 4.16, 17]). Let \((S, \mathcal{A}, \nu) \) be a complete finite measure space, \(\mathcal{F} \subset \mathcal{A} \) a topology on \(S \) such that \((S, \mathcal{A}, \nu, \mathcal{F})\) admits a strong lifting (this is the case if \(S, \mathcal{F} \) is 2nd countable and \(\nu(U) > 0 \ \forall U \in \mathcal{F} \setminus \{\emptyset\} \)). Let \(R \) be a regular Hausdorff space and \(F: S \to \mathcal{B}_S^u(R) \) be an u.s.c. compact valued correspondence; then \(F \) admits an \(\mathcal{A} - \mathcal{B}_R \) measurable selection \(f: S \to R \): \(f(s) \in F(s) \ \forall s \in S \).

(c) **Dual of \(L^p(\mu; X) \), \(1 \leq p \leq \infty \)**

Let \((T, \Sigma, \mu)\) be a \(\sigma \)-finite measure space, \(1 \leq q \leq \infty \), and \(X \) a Banach space over \(\mathbb{K} \).

1.7. **Definitions and Remarks.** 1. \(g: T \to X' \) is weak* \(\mu \)-measurable: \(\Leftrightarrow \forall x \in X: \langle x, g \rangle : T \to \mathbb{K} \) is \(\mu \)-measurable. In this case, there exists in the vector lattice \(L^q(\mu) \) of \(\mu \)-measurable functions modulo \(\mu \)-null functions the supremum \(|g| = \sup_{x \in B} |\langle x, g \rangle| \). In general, \(|g(t)| \leq \|g(t)\| \) a.e. and the inequality may be strict. However, if \(g \) is (strongly) \(\mu \)-measurable, or if \(X \) is separable, then \(|g(t)| = \|g(t)\| \) a.e. [18, 1.3].

2. \(\mathcal{L}^q(\mu; X', X) := T \to X' \) weak* \(\mu \)-measurable: \(|g| \in L^q(\mu) \) is equipped with the seminorm \(\|g\|_q := \|g\|_q \). Finally, let \(L^q(\mu; X', X) := \mathcal{L}^q(\mu; X', X) / \|\cdot\|_q^\cdot(0) \). From now on, the letter \(\mu \) will often be omitted from notation.

1.8. Now let \(1 \leq p \leq \infty \), \(1/p + 1/q = 1 \). For \(f \in L^p(X) \), \(g \in L^q(X', X) \), the expression \(\langle f(\cdot), g(\cdot) \rangle = \langle f, g \rangle \) well-defined a member of \(L^1 \) and \(\|f, g\| \leq \|f\|_p \|g\|_q \) a.e. [17, (0.55)].

1.9. **Theorem.** The mapping \(L^q(X', X) \to L^p(X) \), \(g \to \langle f(\cdot), g(\cdot) \rangle d\mu \) is an isometry, surjective if \(1 \leq p < \infty \). Moreover, \(g \in L^q(X', X) \) admits of a representative, call it again \(g \in L^q(X', X) \) with \(\|g(\cdot)\| = \|g(t)\| \) a.e.
Proof. For the representation of $L^p(X')$ ($1 \leq p < \infty$), see [2, 10, 23, 36]. The isometric nature of the map in question ($p = \infty$) was noted in [29], cf. [19, 1.5]. The last assertion can e.g. be deduced from [10, Sect. 13, Theorem 5]; cf. [18, 1.4].

The functionals on $L^p(X)$ given by an $L^1(X', X)$ function are called integral.

(d) Miscellaneous

1.10. General Measure Spaces. I did not pursue systematically the case of not necessarily σ-finite measures μ. For $p < \infty$ this is not a real restriction, because of the following argument in which μ is arbitrary. Let $f \in S_{L^p(T, \Sigma, \mu; X')}$, then $T_f := \{ t \in T : f(t) \neq 0 \} \in \Sigma$ (defined up to a μ-null set) has σ-finite μ-measure. Let $\Sigma_{T_f} := T_f \cap \Sigma$ and $\mu_0 := \mu|_{\Sigma_{T_f}}$, then $f \in L^p(T_f, \Sigma_{T_f}, \mu_0; X) \subset L^p(T, \Sigma, \mu; X)$ canonically.

Claim. $f \in \text{exp } B_{L^p(T, \mu; X)}$ \iff $f \in \text{exp } B_{L^p(T_f, \mu_0; X')}$. This follows from a more general consideration:

1.11. Let $Z_0 \subset Z$ be an inclusion of Banach spaces, then always $Z_0 \cap \text{exp } B_Z \subset \text{exp } B_{Z_0}$. Equality holds if Z_0 is complemented in Z by a strictly contractive projection $P : Z \rightarrow Z_0$ (i.e., $\|Pz\| < \|z\| \forall z \in Z \setminus Z_0$), e.g., an L^p-projection, $1 \leq p < \infty$. (If $x_0 \in S_X$ is exposed by $x'_0 \in S_{X'}$, then as a member of S_X, x_0 is exposed by $P'x'_0 \in S_{X'}$.) From now on let (T, Σ, μ) be a σ-finite measure space.

1.12. The case $p = 1$. This is easily settled: A function $f \in S_{L^1(X)}$ is in $\text{exp } B_{L^1(X)}$ iff there exists a μ-atom $A \in \Sigma$ such that $f = (1/\mu A)1_A X$ where $x \in \text{exp } B_X$ ($\mu A < \infty$ since μ is σ-finite).

For the proof, note first that if $f \in \text{ext } B_{L^1(X)}$ then f is of the form given with $x \in S_X$ [39, Proposition 1]. Now both implications follow from 1.11, applied to the range of the isometric embedding $X \rightarrow L^1(X)$, $x \mapsto (1/\mu A)1_A X$.

On the other hand, even in the scalar case “there is no good characterization of the exposed points of B_H” [12, p. 159] (see [40], however). From now on always $1 < p \leq \infty$.

2. EXPOSED POINTS IN $L^p(X)$

(a) Sufficient Conditions

The following basic lemma is the analogue of [25, Theorem 1], cf. also [6, Theorem 6]. Recall $T_f := \{ f \neq 0 \}$.
2.1. **Lemma.** (a) Let $1 < p < \infty$, $f \in S_{L^1(X)}$, $g : T_f \to X'$ weak*-measurable with $g(t) \in \text{Exp}(f(t)/\|f(t)\|)$ a.e. on T_f. Then $g' : T \to X'$,

$$g'(t) := \begin{cases} \|f(t)\|^{p-1} g(t), & t \in T_f \\ 0 & t \notin T_f \end{cases}$$

defines a member of the unit sphere of $L^p(X', X) = L^p(X'Y)$ which exposes f \((1/p + 1/q) = 1\).

(b) Let $f \in S_{L^1(X)}$ with $\|f(t)\| = 1$ a.e., $g : T \to X'$ weak*-measurable with $g(t) \in \text{Exp}(f(t))$ a.e. Choose and fix a measurable, everywhere positive function u on T with $|u| \, d\mu = 1$. Then $g' : T \to X'$, $g' := ug$ defines a member of the unit sphere of $L^1(X', X) \subset L^1(X'Y)$ which exposes f.

Proof. (a(i)) $\|g(t)\| = 1$ a.e. on T_f, hence $\|g'(t)\| \leq \|f(t)\|^{p-1}$ a.e. on T, hence $|g'| \leq |f|^{p-1}$ since $|f| = \|f(t)\|$ is measurable (see 1.7). Thus $\int |g'|^q \, d\mu \leq \int |f|^q \, d\mu = 1$ so that $g' \in B_{L^1(X', X)}$.

(ii) $\langle f', g' \rangle \, d\mu = \int_{T_f} \|f(t)\|^{p-1} \langle f(t), g(t) \rangle \, d\mu = \int_{T_f} \|f(t)\| \, d\mu = 1$; hence $\|g'\|_q = 1$ (hence $|g'| = |f|^{p-1}$) and g' supports f.

(iii) g' exposes f: Suppose that also $f' \in S_{L^1(X)}$ with (see 1.8) $1 = \int |\langle f', g' \rangle| \, d\mu \leq \int |f'| \, |g'| \, d\mu \leq \|f'\|_p \|g'\|_q = 1$. It follows first that $\langle f', g' \rangle = |\langle f', g' \rangle|$ (\(*\)). Second, $\int |f'| \, |g'| \, d\mu = 1 = \int |f| \, |g'| \, d\mu$, so smoothness of $L^1(\mu)$ implies $|f'| = |f|$. For $t \in T_f = T_{f'}$, $\langle f'(t), g'(t) \rangle = 1$. Because $g(t)$ exposes $f(t)/\|f(t)\|$ this implies $f'(t)/\|f'(t)\| = f(t)/\|f(t)\|$, hence $f'(t) = f(t)$.

(b) Similar but simpler.

Corollary 1. Let $f \in S_{L^1(X)}$ satisfy the “natural condition” $f_1(t) := \langle f(t)/\|f(t)\| \rangle \in \text{Exp} B_{X}$ a.e. on T_f (resp. $f(t) \in \text{Exp} B_X$ a.e. on T if $p = \infty$). If f_1 is (a.e.) countably valued (in particular, if $\text{Exp} B_{X}$ is countable) then $f \in \text{Exp} B_{L^1(X)}$ (exposed by an integral functional if $p = \infty$).

Corollary 2. If $X = L^1(v)$, v arbitrary, then the natural condition is sufficient.

Proof. If $X = L^1(v; \mathbb{R})$ and v is σ-finite then $\text{Exp} B_{X}$ is countable (1.12) and Corollary 1 applies. If $X = L^1(v; \mathbb{C})$ (v σ-finite) then $\text{Exp} B_{X}$ is “countable up to multiplication by a unimodular scalar” from which it is also easy to conclude. Finally, the case of an arbitrary v can be reduced to the σ-finite case by means of 1.11.

2.2. **Lemma.** Let X be a separable and reflexive Banach space. Then $\text{Exp} B_{X}$ is weakly analytic and there is a selection $s : \text{Exp} B_{X} \to S_{X'}$ of Exp, measurable $\mathcal{B}_{\text{Exp} B_{X}}$ to $\mathcal{B}_{S_{X}}$ (note that Borel (norm) = Borel (weak)).
Proof. The set of exposing functionals $\bigcup_{x \in S_X} \text{Exp} \ x$ is exactly $sm \ B_{X'}$, because X is reflexive. By separability and Lemma 1.3, this set is a G_δ in $S_{X'}$, hence Polish. Since $\text{Exp} B_X$ is the range of the norm-to-weak continuous (1.4) map $\text{Supp} \sm \ B_{X'} \to S_{X'}$, the first assertion follows. The desired selection s is simply a section of this last map which exists with the asserted measurability by 1.5.

The weak analytic nature of $\text{Exp} B_X$ is also a special case of [4, 1.12] (which, naturally is more difficult to prove). As noted in [26, p. 254], it follows by a formal argument that $\text{Exp} B_X$ is even strongly analytic (X separable reflexive). For pathological examples of sets of exposed points see [28, 6.10; 26].

2.3. Theorem. Let $f \in S_{L^p(X)}$ satisfy the “natural condition” $f_\delta(t) := f(t)/|f(t)| \in \text{Exp} B_X$ a.e. on T_f ($1 < p < \infty$), resp. $f(t) \in \text{Exp} B_X$ a.e. on T ($p = \infty$). Then $f \in \text{Exp} B_{L^p(X)}$ (exposed by an integral functional if $p = \infty$) in each of the following cases:

(i) X separable and reflexive

(ii) X smooth

(iii) $X = C(K)$ (in particular, $X = L^p(\nu)$, ν arbitrary)

Proof. In each case there exists a selection s: $\text{Exp} B_X \to S_{X'}$ of Exp, measurable \mathfrak{B}_μ to \mathfrak{B}_w. See 2.2 in Case i and 1.4 in Case ii. In Case iii, if K supports no (regular) probability then $\text{Exp} B_X = \emptyset$ [33, Proposition 2] and there is nothing to prove. Suppose that K supports a probability m, then s: $\text{Exp} B_X = \{ x \in C(K): |x| = 1 \text{ on } K \} \to S_{X'}$, $s(x) := \hat{x}m$ is the desired selection [loc. cit.].

Now assume w.l.o.g. that $f_\delta(t) \in \text{Exp} B_X$ for all $t \in T_f$ (resp. $f(t) \in \text{Exp} B_X$ for all $t \in T$ if $p = \infty$). Regardless of $p \in [1, \infty]$, define $g: T_f \to X'$, $g(t) := s(f_\delta(t))$. The function f_δ is measurable Σ_μ to $\mathfrak{B}_{\text{Exp} B_X}$, hence also Σ_μ^μ to $\mathfrak{B}_{\mu \text{Exp} B_X}$ (superscripts denote completion). As a σ-finite measure, μ is equivalent to a finite measure. The latter also holds for $\mu \circ f_\delta^{-1}$, so that $\mathfrak{B}_{\mu \circ f_\delta^{-1}} \supseteq \mathfrak{B}_\mu$, and the measurability of s stated above is enough to conclude that g is measurable Σ_μ to $\mathfrak{B}_{(L^p)^\mu}$, in particular g is weak* μ-measurable. By construction, $g(t) \in \text{Exp} f_\delta(t)$ on T_f and Lemma 2.1 completes.

Since in an AM space X without unit, $\text{ext} B_X = \emptyset$ ($e, x \in B_X \Rightarrow e \leq |x| = |e|$, $e \in B_X$), so that $|x| \leq |e|$ if $e \in \text{ext} B_X$, the case of an arbitrary AM space is settled.

2.4. Theorem. Let X be an arbitrary Banach space and $f \in S_{L^p(X)}$. For $1 < p < \infty$, suppose that a.e. on T_f, $f_\delta(t) := f(t)/|f(t)| \in \text{Exp} B_X$ with $\text{Exp} f_\delta(t) = \text{Supp} f_\delta(t)$. For $p = \infty$, suppose that a.e. on T, $f(t) \in \text{Exp} B_X$ with $\text{Exp} f(t) = \text{Supp} f(t)$.
with \(\text{Exp } f(t) = \text{Supp } f(t) \). Then \(f \in \exp B_{L^p(X)} \) (exposed by an integral functional if \(p = \infty \)).

Proof. Choose the representative \(f \) so that \(f_1(T) \subset \{ x \in \exp B_X : \exp x = \text{Supp } x \} \) is separable. Let \(\mu_1 \) be a finite measure on \(\Sigma \) equivalent to \(\mu \). As a Borel measure on the second countable space \(f_1(T) \), the image \(v := \mu_1 \circ f_1^{-1} \) has a support \(S \) (complement of the union of all open \(\nu \)-null sets). Redefining \(f(t) \) to be 0 on the \(\mu \)-null set \(T_f \setminus f_1^{-1}(S) \), I can assume from the outset that \(S = f_1(T) \). For later application, I record that \(f_1 : (T, \Sigma^y_f) \to (S, \frak{B}_S^y) \) is measurable.

Theorem 1.6 can be applied to the measure space \((S, \frak{B}_S^y, \nu)\), the norm topology \(\frak{T} \) on \(S \), the regular Hausdorff space \((S_{\frak{T}}, \text{weak}^*)\), and the multifunction \(\text{Exp} | S = \text{Supp } | S \to \frak{B}(S_{\frak{T}}) \) which is u.s.c. and compact valued after 1.4. So there is a selection \(s : S \to S_{\frak{T}} \) of this multifunction, measurable \(\frak{B}_S^y \to \frak{B}(S_{\frak{T}}, \text{weak}^*) \). The composition \(g := s \circ f_1 ; T_f \to S_{\frak{T}} \) is measurable \(\Sigma^y_f \to \frak{B}(S_{\frak{T}}, \text{weak}^*) \) and the proof finishes as before.

Remarks. 1. If \(X \) is separable, then \((S_{\frak{T}}, \text{weak}^*)\) is Polish and the classical selection theorem of Castaing and Kuratowski–Ryll–Nardzewski [13, 2.1] is sufficient for the proof.

2. The additional assumption “\(\text{Exp } f_1(t) = \text{Supp } f_1(t) \) a.e. on \(T_f \)” is satisfied in the following two cases:
 (i) \(f_1(t) \in \text{sm } B_X \) a.e. on \(T_f \). Of course, no selection is needed in this case.
 (ii) \(X \) is strictly convex (by 1.2.2). For \(1 < p < \infty \), this yields only the well known implication that \(X \) strictly convex \(\Rightarrow L^p(X) \) strictly convex.

2.5. Lemma. Let \(X \) be a separable Banach space and \(A \) be a \(\text{w}^* \)-analytic subset of \(\{ x' \in S_{\frak{T}} : x' \text{ supports more than one } x \in S_{\frak{T}} \} = B \). Then there exist two functions \(s_1, s_2 : A \to S_{\frak{T}} \), measurable \(\frak{B}_{(A, \text{w}^*)} \) to \(\frak{B}_{S_{\frak{T}}} \), with \(s_1(x') \neq s_2(x') \) and \(\langle s_1(x'), x' \rangle = \langle s_2(x'), x' \rangle \forall x' \in A \).

Proof. The correspondence \(F: (A, \text{w}^*) \to \frak{B}(S_X) \), \(x' \mapsto X \cap \text{Supp } x' \) has closed graph. By [24, Lemma 1], the correspondence \((A, \text{w}^*) \to \frak{B}(S_X \times S_X) \), \(x' \mapsto F(x') \times F(x') \setminus \text{diagonal} \) has Borelian graph. After Corollary 1.5, there exists a selection \(s = (s_1, s_2) \) of this correspondence with the asserted measurability.

2.6. Note. \(f \in \exp B_{L^p(X)} \Rightarrow \| f(t) \| = 1 \) a.e. (this holds already if only \(f \in \text{ext } B_{L^p(X)} \) [14]).

2.7. Theorem. Let \(X \) be separable and reflexive and \(f \in \exp B_{L^p(X)} \), exposed by an integral functional if \(p = \infty \). Then \(f(t) \in \| f(t) \| \exp B_X \) a.e.
Thus by (2.3), (2.7), for X separable and reflexive, $1 < p < \infty$, the “natural condition” [37, p. 157] \(f(t) \leq ||f(t)|| \exp B_X \) a.e. characterizes the exposed points of \(B_{L^p(X)} \).

2.7. Theorem. Let \(X \) be only separable, but \(\mu \) be a regular Borel measure on a locally compact space \(T \). Then the conclusion of 2.7 holds, too.

Proof. Simultaneous for 2.7 and 2.7. The assertion is that \(f_j(t) := \frac{f(t)}{||f(t)||} \in \exp B_X \) a.e. on \(T_1 \). Let \(g \in S_{l_{\infty}(X)} \), \((1/p + 1/q = 1)\) expose \(f \). It follows that \(g(t) \neq 0 \) a.e. on \(T_1 \). After 1.9, I can assume that \(|g(t)| = ||g(t)|| \) a.e. Let \(g_j(t) := g(t)/||g(t)|| \) defined (a.e.) on \(T_1 \).

The usual string of inequalities (see iii in the proof of 2.1) yields \(\langle f, g \rangle = |f||g| \) a.e., so \(g_j(t) \) supports \(f_j(t) \) a.e. on \(T_1 \). I claim that \(g_j(t) \) exposes \(f_j(t) \) a.e. on \(T_1 \). Suppose not, then there exists a set \(T_0 \subseteq T_1 \), \(0 < \mu T_0 < \infty \), such that \(g_j(T_0) \subset B \), the set of Lemma 2.5. Let \(\mu_0 := \mu|T_0 \to S_X \) is measurable \(\Sigma_{T_1}^{\mu_0} \) to \(\Sigma_{(S_{l_{\infty}(X)}^{\mu_0})} \), since \(X \) is separable.

Now in the case of 2.7, \(B = S_X \setminus B_X \) is Borel (norm = weak*) after 1.3, so in 2.5 let \(A := B \) and set \(T_1 := T_0 \). In case of 2.7, by Luzin’s theorem [9, Sect. 15.8] there exists a compact set \(T_1 \subseteq T_0 \), \(\mu T_1 \geq 0 \), such that \(g_j|T_1 \to B, B_X^{\mu_0} \) are measurable \(\Sigma_{T_1}^{\mu_0} \) to \(\Sigma_{(S_{l_{\infty}(X)}^{\mu_0})} \). Putting \(\Sigma_{T_1}^{\mu_0} := \mu|T_1 \to A \) is measurable \(\Sigma_{T_1}^{\mu_0} \) to \(\Sigma_{(S_{l_{\infty}(X)}^{\mu_0})} \), since \(X \) is separable.

With the two functions \(s_j: A \to S_X \) of 2.5, \(j = 1, 2 \), define \(f_j(t) := \langle f(t), s_j(g(t)) \rangle \) for \(t \in T_1 \), and \(f_j(t) := f(t) \) for \(t \in T \setminus T_1 \). These functions are measurable \(\Sigma_{T_1}^{\mu_0} \) to \(\Sigma_{(S_{l_{\infty}(X)}^{\mu_0})} \) and \(||f_j(t)|| = ||f(t)|| \) for all \(t \), hence (Pettis) \(f_j \in S_{L^p(X)} \). Moreover, \(\int_{T_1} \langle f_j(t), g(t) \rangle d\mu(t) = \int_{T_1} ||f(t)|| \cdot ||g(t)|| \cdot \langle s_j(g_j(t), g_j(t)) \rangle d\mu(t) = \int_{T_1} ||f|| \cdot ||g|| d\mu = \int_{T_1} f_j \langle f, g \rangle d\mu = \int_{T_1} \langle f_j, g \rangle d\mu = 1 \). Since \(f_j(t) \neq f(t) \) on \(T_1 \), \(g_j(t) \) cannot expose \(f_j \), a contradiction.

3. EXPOSED POINTS IN \(\mathbb{H}^p(X) \)

From now on, \(\mathbb{K} = \mathbb{C} \), \(T \) is the unit circle, \(\Sigma = \Sigma_{T} \), \(d\mu = d\theta/2\pi \) normalized Lebesgue measure. Let \(\mathbb{H}^p(X) := \{ f \in L^p(X) : \hat{f}(n) = 0 \ \forall n < 0 \} \) be the subspace of functions of “analytic type.” The theory of exposed points in this Hardy–Bochner space is governed by the following vector-valued identity theorem, a trivial consequence of its scalar counterpart [34, 17.18]:

3.1. Fact. If \(f \in \mathbb{H}^p(X) \), \(1 \leq p \leq \infty \), vanishes on a set of positive measure then \(f = 0 \). (In other words, \(T_1 = T \) unless \(f = 0 \).)

Most proofs in this section are similar to those of Section 2 so their style is terse.
(a) **Sufficient Conditions**

3.2. **Lemma.** (a) Let \(1 < p < \infty\), \(f \in S_{\mathbb{H}^r(X)}\), \(T_0 \in \Sigma\), \(\mu T_0 > 0\), \(g': T_0 \to X'\) weak* \(\mu\)-measurable with \(g(t) \in \text{Exp}(f(t)/\|f(t)\|)\) a.e. on \(T_0\). Then \(g': T \to X'\),

\[
g'(t) := \begin{cases}
\frac{\|f(t)\|^{p-1}}{\|f1_{T_0}\|_p^p} g(t), & t \in T_0 \\
0, & t \notin T_0
\end{cases}
\]

defines a member of \(L^p(X',X)(1/p + 1/q = 1)\) which as a functional on \(\mathbb{H}^r(X)\) is in \(\text{Exp}\ f\).

(b) Let \(f \in S_{\mathbb{H}^r(X)}\) with \(\|f(t)\| = 1\) a.e. on \(T_0 \in \Sigma\), \(\mu T_0 > 0\), \(g': T_0 \to X'\) weak* \(\mu\)-measurable with \(g(t) \in \text{Exp} f(t)\) a.e. on \(T_0\). Then \(g': T \to X'\),

\[
g'(t) := \begin{cases}
\frac{1}{\mu T_0} g(t), & t \in T_0 \\
0, & t \notin T_0
\end{cases}
\]

defines a member of \(L^1(X',X)\) which as a functional on \(\mathbb{H}^r(X)\) is in \(\text{Exp}\ f\).

Proof. (a) Repeat the arguments of the proof of 2.1 to obtain step by step

(i) \(|g'| \leq |f|^{p-1} 1_{T_0}/\|f1_{T_0}\|_{L^p}^p\), hence \(g' \in B_{L^p(X',X)}\);
(ii) \(\langle f, g' \rangle d \mu = 1\) hence \(g' \in \text{Supp} f\), \(\|g'\|_{L^q} = 1\), and \(|g'| = |f|^{p-1} 1_{T_0}/\|f1_{T_0}\|_{L^p}^p\).
(iii) if also \(f' \in S_{\mathbb{H}^r(X)}\) with \(\langle f', g' \rangle d \mu = 1\) then \(\langle f', g' \rangle = \|f'\|g'\|_{L^p} = \|f\|g\|_{L^p}\) and \(|f'| = |f|\), hence a.e. on \(T_0\): \(\langle f'(t)/\|f'(t)\|, g(t) \rangle = 1\) a.e. on \(T_0\): \(f'(t) = f(t)\). The identity theorem 3.1 yields \(f' = f\).

(b) Similar but simpler.

Corollaries analogous to those of 2.1 hold. In particular, for \(L^1(\nu)\) spaces, the “natural condition on a set of positive measure” is sufficient.

The functionals on \(\mathbb{H}^r(X)\) given by an \(L^1(X',X)\) function are again called integral.

3.3. **Theorem.** Let \(X\) be in one of the classes (i), (ii), (iii) of 2.3, and \(f \in S_{\mathbb{H}^r(X)}\). If, on a set of positive measure, \(f(t) \in \|f(t)\|\exp B_X (1 < p < \infty)\), resp. \(f(t) \in \exp B_X (p = \infty)\) then \(f \in \exp B_{\mathbb{H}^r(X)} (\text{exposed by an integral functional if } p = \infty)\).

Proof. Let \(T_0\) be such a set of positive measure. Then the proof is identical with that of 2.3, replacing \(T_f\) by \(T_0\) and 2.1 by 3.2.

3.4. Theorem. Let \(X \) be an arbitrary Banach space and \(f \in S_{H^p(X)} \). For \(1 < p < \infty \), suppose that, on a set of positive measure, \(f_1(t) := f(t)/\|f(t)\| \in \exp B_X \) with \(\exp f_1(t) = \text{Supp} f_1(t) \). For \(p = \infty \), suppose that, on a set of positive measure, \(f(t) \in \exp B_X \) with \(\exp f(t) = \text{Supp} f(t) \). Then \(f \in \exp B_{H^p(X)} \) (exposed by an integral functional if \(p = \infty \)).

Proof. As for 2.4, with the same modifications as above.

Of course, the Remarks of 2.4 apply mutatis mutandis. In particular, if \(X \) is strictly convex, \(f \in S_{H^p(X)} \), \(\|f(t)\| = 1 \) on a set of positive measure, then \(f \in \exp B_{H^p(X)} \), exposed by an integral functional. In the scalar case this is due to Fisher [11].

(b) Necessary Conditions; Counterexamples

3.5. Theorem (Amar and Lederer for \(X = \mathbb{C} \) [1]). If \(f \in \exp B_{H^p(X)} \) then \(\|f(t)\| = 1 \) on a set of positive measure.

Proof. The scalar proof given by Khavin [27, 13], working entirely on \(T \), can be used verbatim.

3.6. Corollary. Let \(X \) be strictly convex, \(f \in S_{H^p(X)} \). TFAE:

1. \(f \in \exp B_{H^p(X)} \), exposed by an integral functional
2. \(f \in \exp B_{H^p(X)} \)
3. \(f \) is supported by an integral functional
4. \(\|f(t)\| = 1 \) on a set of positive measure.

Proof. In view of 3.4 (remark) and 3.5, only \(3 \rightarrow 4 \) remains to be shown. No strict convexity is needed for this implication. Let \(\varphi' \in S_{H^p(X)} \) be an integral support functional of \(f \). By a proximinality argument (F. and M. Riesz plus weak* compactness, see [18, 2.4 Remark 2]) one can prove that there exists a \(g \in L^1(X', X) \) of unit norm representing \(\varphi \). (Actually, every norm-preserving extension of \(\varphi \) over \(L^1(X) \) is again integral, by Gleason and Whitney, see [18, Theorem 2.4; 19, 2.6].) Then the relations \(\langle f, g \rangle \leq |f||g| \leq |g| \) a.e. and \(\int \langle f, g \rangle \, d\mu = 1 = \int |g| \, d\mu \) imply \(\langle f, g \rangle = |g| \) a.e. By 1.9 I assume w.l.o.g. that \(|g(t)| = \|g(t)\| \) a.e. Since \(g \neq 0 \), this entails \(\langle f(t), g(t)/\|g(t)\| \rangle = 1 \) on a set of positive measure, hence \(\|f(t)\| = 1 \) on this set.

3.7. No condition of the type of 2.7 (exposedness of the values of \(f \)) is necessary for \(f \in \mathbb{H}^p(X) \) to be exposed. In fact, I give examples of \(f \in \exp B_{H^p(X)} \) (exposed by an integral functional if \(p = \infty \)) such that for a.e. \(t \in T : \|f(t)\| = 1 \) but \(f(t) \) is not even an extreme point of \(B_X \).

Example 1. The easiest construction is to take \(X := l^2(2) := (C^2, \|\cdot\|_2) \), to decompose \(T = T_1 \cup T_2 \) with \(T_i \in \Sigma, \mu T_i > 0, i = 1, 2 \), and to
define f_i as the outer function [34, 17.16] of modulus $|f_i| = 1_{T_i} + \frac{1}{2}1_{T\setminus T_i}$, $i = 1, 2$. Putting $f = (f_1, f_2)$, clearly $\|f(t)\| = 1$ and $f(t) \notin \text{ext } B_{\ell_1^\infty}$ a.e.

To see that f is an exposed point of $B_{\mathcal{H}(X)}$ ($1 < p \leq \infty$), exposed by an integral functional if $p = \infty$, define $g_i := \int f_i 1_{T_i}$ and $g : T \to l^1(2) = X'$, $g = (g_1, g_2)$. Then $g(t) \in \text{Supp } f(t)$ a.e. on T. Let $g' : T \to X'$ be defined as in Lemma 3.2. An inspection of its proof reveals that this last Supp relation suffices to conclude that $g' \in \text{Supp } f$, and that if also $f' \in S_{\mathcal{H}(X)}$ with $\langle f', g' \rangle \,d\mu = 1$ then $|f'| = |f|$ (= 1 a.e.) and $\langle f'(t), g(t) \rangle = 1$ a.e. on T. This means $f_1^2g_1 + f_2^2g_2 = 1$ a.e. on T, so that a.e. on T_i: $f_i^2 = f_i$, $i = 1, 2$. The identity theorem 3.1 yields $f_i' = f_i$ a.e. on T and $f' = f$. Thus g' exposes f.

Example 2. A variant of Example 1, where now $X := c_0$, is also interesting, since a priori it is not even clear that $B_{\mathcal{H}(c_0)}$ possesses extreme points at all. (ex $B_{c_0} = \emptyset$; moreover $\mathcal{H}(c_0)$ is not a dual space since c_0 does not embed complementably into any dual space [35, 32].)

Write $T = \bigcup_{n \in \mathbb{N}} T_n$, where $T_n \in \Sigma$, $\mu T_n > 0$. Let $f_n \in H^\infty$ be the outer function of modulus on the boundary $|f_n| = 1_{T_n} + (1/n)1_{T \setminus T_n}$, then $f := (f_n)_{n \in \mathbb{N}} \in \mathcal{H}(c_0)$ (by Pettis' theorem), $\|f(e''t)\| = 1$ a.e., and $f(e''t) \notin \text{ext } B_{c_0} = \emptyset$. To see that f is exposed, define $g_n := \int f_n 1_{T_n}$, $g := (g_n)_{n \in \mathbb{N}} \in L^p(T)$, and proceed as before to prove that g exposes f ($1 < p \leq \infty$).

APPENDIX: STRONGLY EXPOSED POINTS IN $\mathcal{H}^p(X)$

This section, independent of the rest of the paper, is devoted to the proof of

A.1. Theorem. $B_{\mathcal{H}(X)}$ has no strongly exposed point.

In the scalar case, a sketch of proof has been given by Pełczyński [32, p. 42], working via Gel'fand transform with peak sets in the spectrum Δ of $L^\infty(\mu)$. This technique is not available in the vector-valued situation, because $L^\infty(\mu; X)$ cannot be identified with $C(\Delta; X)$. So the proof of A.1 to follow consists of simultaneously filling in the details into Pełczyński's sketch and transferring it to the circle T.

A.2. Definition-Theorem [29, 5, 3]. A functional $\varphi \in L^\infty(X)'$ is concentrated on a set $T_0 \in \Sigma : \varphi(f) = \varphi(1_{T_0} f)$ $\forall f \in L^\infty(X)$, and singular if concentrated on sets of arbitrarily small measure. Every $\varphi \in L^\infty(X)'$ is the sum of an integral (see 1.9) and a singular functional.
A.3. Lemma. Let D be the open unit disc and $E := \{re^{i\theta} \in D : 0 \leq r \leq 1, |\theta| \leq (1 - r)^2\}$. Then

(i) E is a compact subset of $D \cup \{1\}$

(ii) $\|z^n - 1\|_E \to 1(n \to \infty)$ (\$\|\cdot\|_E$: sup norm over E).

Remark. (ii) does not follow from (i) alone, even if E is contained in a non-tangential approach region at 1 given by $|\theta| \leq c(1 - r)$, $c > 0$ fixed. To see this, consider the set $E := \{r_n e^{i\theta_n} : n \in \mathbb{N}\} \cup \{1\}$ where $r_n = 1 - 1/n$, $\theta_n = \pi/n$.

Proof (of the Lemma). (i) Clear. (ii) $0 \in E \Rightarrow \lim_{n \to \infty} z^n - 1 \|_E \geq 1$. To establish $\lim_{n \to \infty} z^n - 1 \|_E = 1$, note first that by a simple geometric consideration, if $z = re^{i\theta} \in \overline{D}$ with $|\theta| \leq \pi/3$ then $|z^n - 1| \leq 1$. For $z = re^{i\theta} \in E$ with $|\theta| \geq \pi/3$ we have $\pi/3/n \leq |\theta| \leq (1 - r)^2 \Rightarrow r \leq 1 - \sqrt{\frac{\pi}{3}} / \sqrt{n} \Rightarrow |z^n - 1| = r^n \leq (1 - \sqrt{\frac{\pi}{3}} / \sqrt{n})^n \to 0 (n \to \infty)$. The assertion follows. \qed

A.4. Lemma. Given a Borel set $F \subset T$, $\mu F > 0$ there exists a function $f_F \in B_{H^\infty}$ such that

(a) $\|f_F(e^{i\theta})\|_\infty < 1$ a.e. on T

(b) $\|f_F 1_T\|_\infty < 1$

(c) $\|f_F 1_F\|_\infty = 1$

(d) $\|f_F^n - 1\|_\infty \to 1 (n \to \infty)$.

Proof. I use freely the identification, via radial boundary values, of H^∞ ($= \mathcal{H}^\infty(\mathbb{C})$) with the space of bounded holomorphic functions on D [34]. I can obviously assume $\mu F < 1$.

Let $h \in B_{H^\infty}$ be the outer function [34, 17.16] of modulus $|h| = 1_F + \frac{1}{2} 1_{T \setminus F}$ a.e. on T. Choose any point $e^{i\theta_0}$ (of F) where $\lim_{r \to 1} |h(re^{i\theta_0})| = 1$; after multiplication of h with a unimodular constant I can assume $\lim_{r \to 1} h(re^{i\theta_0}) = 1$. Let E be the set of A.3. By the Riemann–Caratheodory mapping theorem (the relatively easy statement [34, 14.19] suffices), there exists a homeomorphism $g: \overline{D} \to E$, $g|D \to E$ biholomorphic, $g(1) = 1$. Let $f_F := g \circ h \in B_{H^\infty}$, then a.e. on T: $\lim_{r \to 1} f_F(re^{i\theta}) = g(\lim_{r \to 1} h(re^{i\theta}))$ or $f_F(e^{i\theta}) = g(h(e^{i\theta}))$ for short.

(a) Thus, a.e. on T, $f_F(e^{i\theta}) \in E$, hence $= 1$ or of modulus < 1. By the identity theorem [34, 17.18], the first event cannot happen on a set of positive measure.

(b) Almost everywhere on $T \setminus F$ we have $|h(e^{i\theta})| = \frac{1}{2}$; since $g(\frac{1}{2} T) \subset D$ is compact, b follows.

(c) $\lim_{r \to 1} f_F(re^{i\theta}) = g(1) = 1$, hence, computing $\|f_F\|_\infty$ on D, $\|f_F\|_\infty = 1$ and $\|f_F 1_F\|_\infty = 1$ in view of b.
The range of \(f_F \) is contained in \(E \), hence \(\lim_{n \to \infty} \| f_F^n - 1 \|= 1 \). Since e.g. \(|f_F(0)| < 1 \), the relation \(\lim \geq 1 \) is trivial.

Proof of A.1. Let \(f \in S_{\text{H}(X)} \) be given, along with \(\varphi \in S_{\text{H}(X')}, \varphi(f) = 1 \). Use the same letter \(f \) for a fixed Hahn–Banach extension of \(\varphi \) over \(L^A(X) \), and decompose it into integral part (given by \(g \in L^A(X', X) \)) and singular part \(\varphi_s \) (see A.2). By definition of singularity, there exists a Borel set \(F \subseteq T, \mu F > 0 \), such that \(\varphi_s \) is concentrated on \(T \setminus F \) and \(\| f(e^{it}) \| \geq \frac{1}{2} \) a.e. on \(F \) (actually, I could assume \(\| f(e^{it}) \| = 1 \) in view of 3.5 but I do not need this). With \(f_F \) from A.4 put \(\gamma_n := \|1 - f_F^n\|_\infty \to 1 \), \(n \to \infty \) and \(f_n := (1/\gamma_n)f(1 - f_F^n) \in B_{\text{H}(X)} \). Then on the one hand, \(\varphi(f_n) = \langle f, f_n, g \rangle \ d\mu + \varphi_s(f_n) = (1/\gamma_n)\langle f, f_F^n, g \rangle \ d\mu + (1/\gamma_n)\varphi_s(f) \). Here the first summand tends to \(\langle f, g \rangle \ d\mu \) (A.4a) and dominated convergence. The second summand equals \((1/\gamma_n)\varphi_s(1_{T \setminus F}(1 - f_F^n)) \to \varphi_s(1_{T \setminus F}f) = \varphi_s(f) \) (A.4b). Thus \(\varphi(f_n) \to \varphi(f) \). On the other hand, \(\| f - f^n \|= (1/\gamma_n)\| f(1 - f_F^n) - \gamma_n f \|_\infty = (1/\gamma_n)\| f_F^n - (1 - \gamma_n)f \|_\infty \geq (1/\gamma_n)\| f \|_\infty \). Since \(\| f \|_\infty \leq 1 \), the relation \(\lim \geq 1 \) is trivial. Thus \(\varphi(f_n) \to \varphi(f) \). Then on the other hand, \(\| f - f^n \|= (1/\gamma_n)\| f(1 - f_F^n) - \gamma_n f \|_\infty = (1/\gamma_n)\| f_F^n - (1 - \gamma_n)f \|_\infty \geq (1/\gamma_n)\| f \|_\infty \). Since \(\| f \|_\infty \leq 1 \), the relation \(\lim \geq 1 \) does not tend to \(f \), and \(f \) is not strongly exposed by \(\varphi \).

REFERENCES

37. M. A. Smith, Rotundity and extremity in $l^n(X)$ and $L^p(\mu, X)$, in “Geometry of Normed Linear Spaces,” (R. G. Bartle et al., Eds.), pp. 143–162, Contemporary Math., Vol. 52, AMS, Providence, 1986.

