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Abstract

We prove an isoperimetric inequality for the uniform measure on a uniformly convex body and for
a class of uniformly log-concave measures (that we introduce). These inequalities imply (up to univer-
sal constants) the log-Sobolev inequalities proved by Bobkov, Ledoux [S.G. Bobkov, M. Ledoux, From
Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (5)
(2000) 1028–1052] and the isoperimetric inequalities due to Bakry, Ledoux [D. Bakry, M. Ledoux, Lévy–
Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math. 123 (2)
(1996) 259–281] and Bobkov, Zegarliński [S.G. Bobkov, B. Zegarliński, Entropy bounds and isoperimetry,
Mem. Amer. Math. Soc. 176 (829) (2005), x+69]. We also recover a concentration inequality for uniformly
convex bodies, similar to that proved by Gromov, Milman [M. Gromov, V.D. Milman, Generalization of
the spherical isoperimetric inequality to uniformly convex Banach spaces, Compos. Math. 62 (3) (1987)
263–282].
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1. Introduction

Let V = (Rn,‖ · ‖) be a normed space, and let μ be a probability measure on V with density
f = exp(−g), g : Rn → R ∪ {+∞}. If g is convex, the function f and the measure μ are called
log-concave. Log-concave functions and measures boast many important properties (cf. Borell
[16], Bobkov [11], etc.)

In this note, we study more restricted classes of measures. Let

δ : R+ → R+ ∪ {+∞},
and consider the following condition:

g(x) + g(y)

2
− g

(
x + y

2

)
� δ

(‖x − y‖). (1.1)

Example 1.1. The log-concavity condition corresponds to δ ≡ 0.

By analogy with uniformly convex bodies (cf. Section 1.2.2), we define the modulus of con-
vexity δg,‖·‖ of g with respect to the norm ‖ · ‖ as

δg,‖·‖(t) := inf

{
g(x) + g(y)

2
−

(
x + y

2

)
; ‖x − y‖ � t and g(x), g(y) < ∞

}
.

If δg,‖·‖(t) > 0 for all t > 0, we say that f and μ are uniformly log-concave, and that g is
uniformly convex. Obviously, this notion does not depend on the choice of the norm ‖ · ‖.

It is easy to check that δg,‖·‖(t)/t is always a non-decreasing function of t ; therefore in the
sequel we consider measures μ satisfying (1.1) with respect to a function δ such that{

δ(t) > 0, t > 0,

t �→ δ(t)/t is non-decreasing.
(1.2)

Example 1.2. Let ‖ · ‖ = | · | be the Euclidean norm, and let δ(t) = t2/8. Then (1.1) holds iff
μ has log-concave density with respect to the standard Gaussian measure; in other words, if
μ satisfies the Bakry–Émery curvature–dimension condition CD(1,+∞) (cf. Bakry and Émery
[3]; recall that the usual log-concavity of μ is equivalent to CD(0,+∞)).

Remark 1.3. The condition (1.1) is translation invariant. Therefore one may extend it to measures
on an affine space An on which V acts by translations; note that both sides of (1.1) are still
defined. This point of view will be convenient in Section 2.

1.0. Assumptions and notation

Unless mentioned otherwise, the sets in this note are Borel subsets of Rn, and the measures
are Borel measures on Rn.

The Lipschitz norm of a map T : V1 → V2 between two normed spaces Vi = (Xi,‖ · ‖i ),
i = 1,2, is defined as

‖T ‖Lip = sup
‖T (x) − T (y)‖2

‖x − y‖1
. (1.3)
x,y∈X1,x 
=y
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T is called Lipschitz if ‖T ‖Lip < ∞. If

sup
x,y∈K,x 
=y

‖T (x) − T (y)‖2

‖x − y‖1
< +∞

for any compact subset K ⊂ X1, T is called locally Lipschitz.
A Borel map T :V1 → V2 is said to push a measure μ on V1 forward to a measure λ on V2

(notation: T∗μ = λ) if μ(T −1(B)) = λ(B) for every B ⊂ X2.
If μ is a probability measure on V = (X,‖ · ‖), the Minkowski boundary measure associated

with μ (and ‖ · ‖) is defined by

μ+
‖·‖(A) = lim inf

ε→0

μ(Aε,‖·‖) − μ(A)

ε
, A ⊂ X, (1.4)

where

Aε,‖·‖ = {
x ∈ X

∣∣ ∃y ∈ A, ‖x − y‖ < ε
}

is the ε-extension of A in the metric induced by ‖ · ‖. In addition, we denote:

μ̃(A) = min
(
μ(A),1 − μ(A)

)
for all A ⊂ X. Lastly, we denote the Lebesgue measure on Rn by mesn.

1.1. Isoperimetric inequalities

The first topic of this note is an isoperimetric inequality for μ. In the setting of Example 1.2
(and actually in a much more abstract one), Bakry and Ledoux proved [4] the following isoperi-
metric inequality.

Theorem (Bakry–Ledoux). If the measure μ satisfies (1.1) with ‖ · ‖ = | · | and δ(t) = t2/8, then
for any A ⊂ Rn

μ+
|·|(A) � φ

(
Φ−1(μ̃(A)

))
. (1.5)

Here as usual φ(t) = 1√
2π

exp(−t2/2) and Φ(t) = ∫ t

−∞ φ(s) ds.

This theorem is a generalisation of the isoperimetric inequality for the Gaussian measure,
proved by Sudakov, Tsirelson, and Borell [17,36]. In [12], Bobkov gave a proof of the Bakry–
Ledoux inequality using the localisation technique; the latter was introduced by Gromov and
Milman [26] and developed by Kannan, Lovász and Simonovits [28,32] (see also Gromov [25,
Section 3 1

2 .27]). We extend Bobkov’s approach to the general case (1.1) and prove:

Theorem 1.1. Suppose μ satisfies (1.1) and (1.2). Then

μ+
‖·‖(A) � Cδμ̃(A)γ

(
log

1

˜

)
for all A ⊂ Rn, (1.6)
μ(A)
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where

Cδ = e − 1

2e max(2δ(
∫ +∞

0 exp(−2δ(t)) dt),1)
,

γ (t) = t

δ−1(t/2)
, and μ̃(A) = min

(
μ(A),1 − μ(A)

)
.

Corollary 1.2. Let δ(t) = αtp for p � 2 and α > 0 in the setting of the previous theorem. Then

μ+
‖·‖(A) � cα1/pμ̃(A) log1−1/p 1

μ̃(A)
, (1.7)

where c > 0 is a universal constant (independent of p).

Remark 1.4. Note that p cannot be less than 2; this follows from a second-order Taylor expan-
sion of g in (1.1).

Remark 1.5. For p = 2, Corollary 1.2 recovers the Bakry–Ledoux theorem up to a universal
constant: indeed,

φ
(
Φ−1(t)

)
� C′t

√
log 1/t, 0 � t � 1/2.

Remark 1.6. In [11], Bobkov proved that the following inequality holds for any log-concave
measure μ and any r > 0:

μ+
‖·‖(A) � 1

2r

{
μ(A) log

1

μ(A)
+ (

1 − μ(A)
)

log
1

1 − μ(A)
+ logμ

{‖x‖ � r
}}

. (1.8)

In particular, (1.8) implies a non-trivial isoperimetric inequality for measures satisfying (1.1),
(1.2). However, this inequality would become weaker in higher dimension, whereas our results
are dimension-free.

1.2. Application: uniformly convex bodies

As before, let V = (Rn,‖ · ‖) be a normed space. The volume measure λ = λV on the unit
ball of V is defined by

λ = mesn|{‖x‖�1}
mesn({‖x‖ � 1}) ; (1.9)

it arises naturally in geometric applications.
We would like to prove an isoperimetric inequality for λ, with respect to the norm ‖ · ‖. It is

easy to see that λ never satisfies the condition (1.1) with δ > 0. Therefore we follow the approach
introduced by Bobkov and Ledoux [14] and define an auxiliary measure μ that satisfies (1.1).
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1.2.1. p-Uniformly convex bodies
Choose p � 2, and let μ be the measure with density

exp(−‖x‖p)


(1 + n/p)mesn({‖x‖ � 1}) , (1.10)

with respect to the Lebesgue measure.

Proposition (Bobkov–Ledoux). There exists a map S :V → V such that S∗μ = λ and ‖S‖Lip �
C(
(1 + n/p))−1/n, where C > 0 is a universal constant.

It is clear that Lipschitz maps preserve isoperimetric inequalities, so we may first establish
one for μ. The condition (1.1) for μ, with δ(t) = αtp , reads as

‖x‖p + ‖y‖p

2
−

∥∥∥∥x + y

2

∥∥∥∥p

� α‖x − y‖p for all x, y ∈ Rn. (1.11)

This is one of the definitions of a p-uniformly convex norm (cf. Pisier [35]).

Example 1.7. The �q norm ‖ · ‖q , 1 < q < ∞, satisfies (1.11) with

p =
{

2, q < 2,

q, q � 2,
α =

{
q−1

4 , q < 2,

2−q, q � 2.

In fact, the same estimates holds for the space Lq . The case q � 2 is due to Clarkson [18] (see
also Hanner [27]), while the case q < 2 follows from an unpublished argument of Ball and Pisier
(see Ball, Carlen and Lieb [7]).

Therefore, if ‖ · ‖ is p-uniformly convex with coefficient α (that is, if (1.11) holds), we can
apply Corollary 1.2 and deduce (1.7). Combining with the Bobkov–Ledoux proposition above,
we obtain the following.

Theorem 1.3. Suppose the space V is p-uniformly convex with constant α (that is, satisfies
(1.11)); let λ be the uniform measure on the unit ball of ‖ · ‖ (as in (1.9)). Then for any A ⊂ Rn:

λ+
‖·‖(A) � Cα1/pn1/pλ̃(A) log1−1/p 1

λ̃(A)
, (1.12)

where C > 0 is a universal constant.

This theorem continues the study of isoperimetric properties of p-uniformly convex bodies by
Bobkov and Zegarliński [15, Chapter 14]. In particular, when λ(A) is not exponentially small in
the dimension, the inequality in Theorem 1.3 improves the bound in [15, Theorem 14.6]. Under
the same restriction, (1.12) improves (1.8) with r = 1 (which is however best possible in the class
of all convex bodies).
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Remark 1.8. Here, as well as in Theorem 1.6 below, one may use an isoperimetric inequality
due to Barthe [8] (which extends (1.8)) and get a better bound for exponentially small sets. We
do not pursue this point.

1.2.2. General uniformly convex bodies
We also generalise the above results to arbitrary uniformly convex spaces. Recall that the

modulus of convexity δV : [0,2] → [0,1] of a normed space V = (X,‖ · ‖) is defined as

δV (ε) = inf

{
1 −

∥∥∥∥x + y

2

∥∥∥∥; ‖x‖,‖y‖ � 1, ‖x − y‖ � ε

}
.

The space is called uniformly convex if δV (ε) > 0 for all ε > 0. From the works of Figiel [20],
Figiel, Pisier [21] and Pisier [35], it is known that if

δV (ε) � α′εp for all ε ∈ [0,2], (1.13)

then (1.11) holds with α = min(c,α′/2p), and that if (1.11) holds then (1.13) holds with α′ =
α/p (here c > 0 is a universal constant). A space is therefore p-uniformly convex if either (1.11)
or (1.13) hold, it is however important to specify which definition one uses if the dependence on
p is of interest.

In Section 4 we derive the following proposition from the results of Figiel, Pisier [21].

Proposition 1.4. For all x, y ∈ X such that ‖x‖2 + ‖y‖2 � 2, one has:

‖x‖2 + ‖y‖2

2
−

∥∥∥∥x + y

2

∥∥∥∥2

� cδV

(‖x − y‖
4

)
,

where c > 0 is a universal constant.

Returning to the case X = Rn, choose μ to be the probability measure with density

f (x) = 1

Z
exp

(
−n

c
‖4x‖2

)
1
{
‖x‖ � 1

4

}
(1.14)

with respect to the Lebesgue measure, where Z > 0 is a scaling factor. Proposition 1.4 clearly
implies that μ is uniformly log-concave, so we can apply Theorem 1.1 and deduce an isoperi-
metric inequality for μ. To transfer this inequality to the measure λV , we need to extend the
Bobkov–Ledoux proposition of the previous subsection. Our next observation, which may be of
independent interest, does precisely that.

Definition. A map T : Rn → Rn is called radial if it maps every ray to itself in a monotone way;
that is, if for every x 
= 0{

T (R+x) ⊂ R+x and

T |R+x : R+x → R+x preserves the order on R+x.
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Let dμ = f dmesn be an even log-concave probability measure (with log-concave density f ).
Denote

Kf =
{

x ∈ Rn; n

+∞∫
0

f (rx)rn−1 dr � 1

}
. (1.15)

It is not hard to see (cf. Proposition 3.1) that there exists a canonical radial map Tf pushing
forward μ to the restriction λ of the Lebesgue measure to Kf .

K. Ball showed [6] that Kf is a symmetric convex body; in other words, the unit ball of a
norm ‖ · ‖Kf

. In Section 3 we prove the following result (in a slightly more general form).

Theorem 1.5. Let dμ = f dmesn be an even log-concave probability measure (with log-concave
density f ); let λ denote the restriction of the Lebesgue measure on Kf , and let T = Tf denote
the canonical radial map such that T∗μ = λ. Then as a map T :V → V where V = (Rn,‖ ·‖Kf

),
we have ‖T ‖Lip � Cf (0)1/n, where C > 0 is a universal constant.

Remark 1.9. The Bobkov–Ledoux proposition above is a particular case of the last theorem (up
to another universal constant). We provide the details at the end of Section 3.2.

In Section 4 we apply Theorems 1.1 and 1.5 to deduce the following.

Theorem 1.6. Let V = (Rn,‖ ·‖) be a uniformly convex space, and let δ = δV denote its modulus
of convexity. Let λ = λV denote the uniform measure on the unit-ball of V (as in (1.9)) and let
A ⊂ Rn. Then

λ+
‖·‖(A) � c′Cn,δ

λ̃(A) log 1
λ̃(A)

δ−1( 1
2n

log 1
λ̃(A)

)
,

where

Cn,δ = e − 1

2e max(nδ(
∫ 1/4

0 exp(−2nδ(t)) dt),1)
, (1.16)

and c′ > 0 is a universal constant.

Note that when δ(t) = αtp (p � 2), Theorem 1.6 recovers Theorem 1.3 up to a universal
constant.

1.3. Connection to functional inequalities and concentration

In this subsection we study some corollaries of the isoperimetric inequalities of the form (1.6)
and (1.7).
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1.3.1. Concentration
It is well known that an isoperimetric inequality can be equivalently rewritten in global form.

It will be convenient to use this in the following formulation (see Bobkov and Zegarliński [15,
p. 46] for an equivalent form).

Proposition 1.7. Let μ be a probability measure on Rn satisfying

μ+
‖·‖(A) � μ̃(A)γ

(
log

1

μ̃(A)

)
(1.17)

for every Borel set A ⊂ Rn and some continuous function γ : [log 2,+∞) → R+. Then for any
Borel set B ⊂ Rn and any ε > 0

1 − μ(Bε,‖·‖) � exp
(−h−1

1−μ(B)(ε)
)
, (1.18)

where

ha(x) =
x∫

log 1/a

dy

γ (y)
; (1.19)

for y < log 2, γ (y) should be interpreted as γ (log 1
1−exp(−y)

).
Conversely, if μ satisfies (1.18) for any Borel set B ⊂ Rn, then (1.17) holds.

Corollary 1.8. Let μ be a measure on Rn such that for all A ⊂ Rn

μ+
‖·‖(A) � c0μ̃(A) log1−1/p 1

μ̃(A)
. (1.20)

Then for every B ⊂ Rn, μ(B) � 1/2, and every ε > 0,

1 − μ(Bε,‖·‖) � exp

{
−

[
log1/p 1

1 − μ(B)
+ c0ε

p

]p}
. (1.21)

In Section 5.1 we combine Proposition 1.7 and Corollary 1.8 with the results of the previous
subsections, to deduce a concentration inequality for uniformly convex bodies. Then we compare
this inequality with the Gromov–Milman theorem [26].

For completeness, we prove Proposition 1.7 in Section 5.2.

1.3.2. Functional inequalities
An isoperimetric inequality can be written in a functional form; this was brought forth by

Maz’ya, Federer and Fleming [19,33] in the early 1960s and later adapted by Bobkov and Houdré
[13] to the context of probability measures.

Proposition (Bobkov–Houdré). Let μ be a probability measure on a normed space (Rn,‖ · ‖),
and let I : [0,1/2] → R+ be an increasing continuous function such that I (0) = 0. The following
are equivalent:
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1. For any Borel set A ⊂ Rn,

μ+
‖·‖(A) � I

(
μ̃(A)

)
. (1.22)

2. For any locally Lipschitz function F : Rn → [0,1] such that

μ{F = 1} � t ∈ (0,1/2) and μ{F = 0} � 1/2, (1.23)

we have ∫
‖∇F‖∗ dμ � I (t), (1.24)

where

‖∇F‖∗ = lim sup
y→x

|F(y) − F(x)|
‖y − x‖ .

Let us focus on the case I (t) = c0t log1/q 1/t , where 1/q = 1 − 1/p. We have the following:

Proposition 1.9. Suppose a probability measure μ on (Rn,‖ · ‖) satisfies

μ+
‖·‖(A) � c0μ̃(A) log1/q 1

μ̃(A)
(1.25)

for all A ⊂ Rn. Then:

1. For any locally Lipschitz function F : Rn → [0,1] satisfying (1.23), we have:∫
‖∇F‖∗ dμ � c0t log1/q 1/t. (1.26)

2. For any locally Lipschitz function F : Rn → [0,1] satisfying (1.23), we have:∫
‖∇F‖q∗ dμ � ccq

0 t log 1/t, (1.27)

where c > 0 is a universal constant.
3. For any locally Lipschitz function F : Rn → R+,∫

‖∇F‖q∗ dμ � c′cq

0

∫
Fq log

Fq∫
Fqdμ

dμ, (1.28)

where c′ > 0 is a universal constant.

Of course, part 1 follows from the previous proposition (and in fact, (1.26) is equivalent to
(1.17)). Then, part 1 implies part 2 via standard arguments that we reproduce for completeness
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in Section 5. Finally, part 2 is equivalent to part 3 (up to universal constants); this is a reformu-
lation of the arguments developed by Bobkov and Zegarliński [15, Chapter 5] in the language of
capacities put forth by Barthe and Roberto [9].

The inequality (1.28), called a q-log-Sobolev inequality, was studied by Bobkov and Ledoux
[14] and Bobkov and Zegarliński [15]. In particular, part 3 of the last proposition extends The-
orem 16.3 in [15]. Combining it with Theorems 1.1 and 1.3, we recover the q-log-Sobolev
inequalities proved by Bobkov and Ledoux in [14], up to universal constants.

2. An isoperimetric inequality

2.1. Reduction to one dimension

This subsection is based on an argument that was introduced by Gromov and Milman [26] to
reduce the spherical isoperimetric inequality to a certain one-dimensional fact; see also Gromov
[25, Section 3 1

2 .27] and Alesker [1]. The corresponding argument in the affine case was devel-
oped by Kannan, Lovász and Simonovits [28,32], who also coined the term ‘localisation lemma’;
a different approach was put forth by Fradelizi and Guédon [23,24].

We formulate the localisation lemma in terms of μ-needles, as put forth by S. Bobkov; this
corresponds to convex descendants in [25]. It will be natural to work in an n-dimensional affine
space An (cf. Remark 1.3).

Let V = (Rn,‖ · ‖) be a normed space acting by translations on an affine space An. Let μ be
a probability measure on An such that μ(H) = 0 for every affine hyperplane H ⊂ An.

Definition. A (probability) measure σ supported on an affine line L ⊂ An (and not on any point)
is called a μ-needle if

σ = lim
k→+∞μ|Ck

/μ(Ck)

is the weak limit of the scaled restrictions of μ to convex sets

C1 ⊃ C2 ⊃ C3 ⊃ · · · , μ(Ck) > 0.

If the measure μ admits a lower semicontinuous density f with respect to the Lebesgue
measure, the definition can be made more explicit (see [24,32]). We will only use the following
property (see e.g. [32, Lemma 2.5]).

Description of μ-needles. If ν is a μ-needle supported on L, then μ is absolutely continuous
with respect to the Lebesgue measure on L, and its density is equal to f |Lφ for some log-concave
function φ on L.

Localisation principle: global form. Let μ be a probability measure on An such that μ(H) = 0
for every affine hyperplane H ⊂ Rn; let a, b ∈ (0,1), ε > 0. If every μ-needle σ supported on an
affine line Lσ satisfies

σ(A′
ε) � b for every A′ ⊂ Lσ such that σ(A′) = a, (2.1)

then also
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μ(Aε) � b for every A ⊂ An such that μ(A) = a. (2.2)

This is essentially the first step in [32]. It will be more convenient to obtain an infinitesimal
form of this localisation principle. Given an isoperimetric inequality in the general form

μ+(A) � I
(
μ̃(A)

)
,

where I : [0,1/2] → R+ is a continuous function, we may of course write I (a) = aγ (log 1/a)

for some continuous function γ : R+ → R+, obtaining the form in (1.17). By Proposition 1.7,
a local isoperimetric inequality of the form (1.17) is equivalent to the global inequality (1.18).
Applying this twice, we deduce the following.

Localisation principle: local form. Let μ be a probability measure on An such that μ(H) = 0
for every affine hyperplane H ⊂ An, and let I : [0,1/2] → R+ denote a continuous function. If
every μ-needle σ supported on an affine line Lσ satisfies

σ+
‖·‖(A

′) � I
(
σ̃ (A′)

)
for every A′ ⊂ Lσ , (2.3)

then also

μ+
‖·‖(A) � I

(
μ̃(A)

)
for every A ⊂ An. (2.4)

To complete the reduction to one dimension, let us show that “if μ is uniformly log-concave,
its needles are also uniformly log-concave.” The following lemma extends [12], [25, Sec-
tion 3 1

2 .27, Example (e)].

Lemma 2.1. Let V = (Rn,‖ · ‖) be a normed space acting by translations on an affine space An,
and let δ : R+ → R+. If a measure μ on An satisfies the uniform log-concavity condition (1.1)
with respect to δ and ‖ · ‖, then every μ-needle σ supported on an affine line L ⊂ An satisfies
(1.1) with respect to δ and the restriction of ‖ · ‖ to the tangent space L − L.

Sketch of proof. Let f denote the density of μ with respect to the Lebesgue measure on An.
μ satisfies (1.1), hence f is in particular log-concave. The super-level sets of f are convex,
hence f is equivalent to a lower semi-continuous density. Therefore the description of needles
formulated above is valid.

Now, f |L satisfies (1.1) with respect to δ and ‖ · ‖L−L. Since φ satisfies (1.1) with respect to
δ′ ≡ 0, it follows that f |Lφ satisfies (1.1) with respect to δ + δ′ = δ and ‖ · ‖L−L. �

By the lemma, it is sufficient to prove Theorem 1.1 for n = 1. In this case, we only need the
following property of one-dimensional uniformly log-concave measures.

Lemma 2.2. Let V = (Rn,‖ · ‖), and assume that g :V → R ∪ {+∞} satisfies (1.1). Assume in
addition that a is a minimum point of g. Then

g(x) − g(a) � 2δ
(‖x − a‖), (2.5)

for all x ∈ Rn.
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Proof. If g(x) = +∞, the claim is trivial. Otherwise, apply (1.1) with y = a. Then

δ
(‖x − a‖) � g(x) − g(a)

2
+ g(a) − g

(
x + a

2

)
� g(x) − g(a)

2
,

where we used the fact that a is a minimum point of g in the last inequality. �
We will prove the isoperimetric inequality for one-dimensional measures μ with density f =

exp(−g), where g satisfies (2.5). Any norm on R1 is Euclidean, hence without loss of generality
‖ · ‖ = | · |. Therefore Theorem 1.1 is reduced to the following proposition (note the factor 2 that
we drop between (2.5) and (2.6) to simplify the notation).

Proposition 2.3. Let σ denote a probability measure on R with density f . Assume that f =
exp(−g), where g : R → R ∪ {+∞} is a convex function with minimum at 0 and such that

g(x) − g(0) � δ
(|x|) (2.6)

for all x ∈ R, and δ : R+ → R+ ∪ {+∞} satisfies (1.2). Then

σ+(A) � Cδσ̃ (A)γ

(
log

1

σ̃ (A)

)
(2.7)

for any A ⊂ R, where

Cδ = e − 1

2e max(δ(
∫ +∞

0 exp(−δ(t)) dt),1)
, γ (t) = t

δ−1(t)
.

2.2. Proof of the one-dimensional inequality

Before proceeding to the proof of Proposition 2.3, we collect several easy observations, using
the same notation as in the proposition.

Lemma 2.4. The function γ is non-decreasing. The function xγ (log 1
x
) is strictly increasing on

[0,1/e].
Proof. The first part follows since δ(x)/x is non-decreasing by our assumption (1.2). For the
second part, write

xγ

(
log

1

x

)
= x log 1

x

δ−1(log 1
x
)
,

so the claim follows since δ (and hence δ−1) is non-decreasing, whereas x log 1
x

is increasing on
[0,1/e]. �

Now denote:

Mδ =
∞∫

exp
(−δ(x)

)
dx.
0
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Lemma 2.5.

exp
(−g(0)

)
� (2Mδ)

−1.

Proof. Using
∫

f (x)dx = 1 and (2.6) we have:

1 =
∫
R

exp
(−g(x)

)
dx � exp

(−g(0)
)∫

R

exp
(−δ

(|x|)dx. �

Lemma 2.6. If g is a convex function on R with minimum at 0, then for all x > 0,

∞∫
x

exp
(−g(y)

)
dy � x

g(x) − g(0)
exp

(−g(x)
)
.

Proof. By convexity, it follows that for all y � x,

g(y) � g(x) − g(0)

x
(y − x) + g(x).

Using this to bound
∫ ∞
x

exp(−g(y)) dy from above, the claim follows. �
Given a finite measure μ on R, we denote by m(μ) its median, i.e. (any) number m for which

μ((−∞,m]) � μ(R)/2 and μ([m,∞)) � μ(R)/2.

Lemma 2.7. For any finite log-concave measure dμ = f dx on R,

f
(
m(μ)

)
� 1

2
max
x∈R

f (x). (2.8)

Proof. Without loss of generality, assume m = m(μ) > 0, f (0) = maxf and f (m) < f (0).
Then f is non-increasing on R+. Replace μ with μ|R+ . Then the left-hand side of (2.8) may
only decrease, whereas the right-hand side retains its value.

Now replace f by a log-affine function f1 on R+ such that f1(0) = f (0) and f1(m) = f (m).
In other words f1(x) = exp(−ax + b)|R+ , and our assumptions imply that a > 0. Setting dμ1 =
f1dx, μ1 is a finite measure. Then f1 � f on [0,m] and f1 � f on [m,+∞); hence m(μ1) �
m(μ) and f (m(μ)) = f1(m(μ)) � f1(m(μ1)).

Finally,

f1
(
m(μ1)

) = 1

2
max
x∈R+

f1(x);

this concludes the proof. �
Proof of Proposition 2.3. By a general result of Bobkov [10, Proposition 2.1] on extremal
isoperimetric sets of log-concave densities, it is enough to verify (2.7) on sets A of the form
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(−∞, a] and [b,∞). Given a point x ∈ R, denote A = [x,∞) if x � 0 and A = (−∞, x] if
x < 0. We will show that the set A satisfies

σ+(A) � Cδσ̃ (A)γ

(
log

1

σ̃ (A)

)
,

and this will conclude the proof. Assume without loss of generality that x � 0, since our hy-
potheses are symmetric about the origin.

First, recall that by another result of Bobkov [11, Proposition 4.1], a log-concave probabil-
ity measure μ with density f on R always satisfies the following Cheeger-type isoperimetric
inequality:

μ+(A) � 2f (m)min
(
μ(A),1 − μ(A)

)
,

where m is the median of μ. Together with Lemma 2.7, this implies

σ+(A) � exp
(−g(0)

)
σ̃ (A). (2.9)

Loosely speaking, this Cheeger-type inequality will take care of the case when σ̃ (A) is large. The
case when σ̃ (A) is small will be handled by Lemma 2.6, which, together with the assumption
(2.6) and the fact that δ is increasing, imply that for any x > 0,

σ(A) =
∞∫

x

exp
(−g(y)

)
dy � δ−1(g(x) − g(0))

g(x) − g(0)
exp

(−g(x)
)
.

Recalling the definition of γ and denoting σ+
max = exp(−g(0)), this means

σ(A) � σ+(A)

γ (g(x) − g(0))
= σ+(A)

γ (log σ+
max

σ+(A)
)
. (2.10)

This inequality is almost what we need, and the rest of the proof will be dedicated to replacing
σ+ with σ inside the γ function.

More formally, we distinguish between five cases.

1. σ̃ (A) � cδ , where cδ � 1/e depends solely on δ and will be determined later. In this case, by
(2.9) and Lemma 2.5,

σ+(A) � exp
(−g(0)

)
σ̃ (A) � 1

2Mδ

σ̃ (A).

The function γ is non-decreasing by Lemma 2.4, therefore

σ+(A) � 1

2Mδγ (log 1
cδ

)
σ̃ (A)γ

(
log

1

σ̃ (A)

)
.
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2. 1 − σ(A) = σ̃ (A) < cδ and g(x) − g(0) < log 1
cδ

. Using (2.6):

σ(A) �
∞∫

0

exp
(−g(y)

)
dy � exp

(−g(0)
) ∞∫

0

exp
(−δ(y)

)
dy,

and since g(x) − g(0) < log 1
cδ

we conclude that

1 − cδ < σ(A) � 1

cδ

exp
(−g(x)

)
Mδ = Mδ

cδ

σ+(A).

By Lemma 2.4, xγ (log 1
x
) is monotone increasing on [0,1/e]. Since σ̃ (A) < cδ � 1/e, we

conclude that

σ+(A) �
(1 − cδ)cδγ (log 1

cδ
)

Mδγ (log 1
cδ

)
� (1 − cδ)

Mδγ (log 1
cδ

)
σ̃ (A)γ

(
log

1

σ̃ (A)

)
.

3. σ(A) = σ̃ (A) < cδ and g(x) − g(0) < log 1
cδ

. As in part 2,

1 − σ(A) =
0∫

−∞
exp

(−g(y)
)
dy +

x∫
0

exp
(−g(y)

)
dy

� exp
(−g(0)

)
Mδ + exp

(−g(0)
)
x � 1

cδ

exp
(−g(x)

)
(Mδ + x).

Using (2.6) and the inequality g(x) − g(0) < log 1
cδ

,

x � δ−1(g(x) − g(0)
)
� δ−1

(
log

1

cδ

)
.

Hence

1 − cδ � 1 − σ(A) �
Mδ + δ−1(log 1

cδ
)

cδ

σ+(A).

Now choose

cδ := min
(
1/e, exp

(−δ(Mδ)
))

, (2.11)

which yields

σ+(A) � (1 − cδ)cδ

2δ−1(log 1 )
= (1 − cδ)cδγ (log 1

cδ
)

2 log 1
.

cδ cδ
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By the monotonicity of xγ (log 1
x
) as in part 2, we conclude that

σ+(A) � (1 − cδ)

2 log 1
cδ

σ̃ (A)γ

(
log

1

σ̃ (A)

)
.

4. σ̃ (A) < cδ , g(x) − g(0) � log 1
cδ

and σ+(A)
γ (g(x)−g(0))

� 1/e. Since γ is non-decreasing,

σ+(A) � 1

e
γ
(
g(x) − g(0)

)
� 1

ecδ

cδγ

(
log

1

cδ

)
.

Using the monotonicity of xγ (log 1
x
) as in part 2, we conclude that

σ+(A) � 1

ecδ

σ̃ (A)γ

(
log

1

σ̃ (A)

)
.

5. σ̃ (A) < cδ , g(x) − g(0) � log 1
cδ

and σ+(A)
γ (g(x)−g(0))

< 1/e. Recall that by (2.10):

σ(A) � σ+(A)

γ (g(x) − g(0))
<

1

e
,

implying in particular that σ̃ (A) = σ(A). We will show

σ+(A) � Dδ

σ+(A)

γ (g(x) − g(0))
γ

(
log

γ (g(x) − g(0))

σ+(A)

)
, (2.12)

which by the monotonicity of xγ (log 1
x
) on [0,1/e] will imply

σ+(A) � Dδσ̃ (A)γ

(
log

1

σ̃ (A)

)
. (2.13)

Denote Vx = g(x) − g(0). Then (2.12) is equivalent to showing

γ (Vx(1 + log γ (Vx )
exp(−g(0))

Vx
))

γ (Vx)
� 1/Dδ.

Recall that γ is non-decreasing and note that γ (x)
x

= 1
δ−1(x)

is non-increasing. Requiring that
Dδ � 1, it is therefore enough to show

1 +
log γ (Vx)

exp(−g(0))

Vx

� 1/Dδ.

Denoting Bδ := 1/Dδ − 1, the latter is equivalent to

γ (Vx) � exp(BδVx) exp
(−g(0)

)
,
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which from the definition of γ is equivalent to

δ
(
Vx exp(−BδVx) exp

(
g(0)

))
� Vx.

The maximum of the function z �→ z exp(−Bδz) is equal to 1/(eBδ), hence it is enough to
require that

δ

(
exp(g(0))

eBδ

)
� Vx.

We have assumed that Vx = g(x)−g(0) � log 1
cδ

; therefore by the definition (2.11) of cδ the
following condition will suffice:

exp(g(0))

eBδ

� Mδ. (2.14)

By Lemma 2.5, (2.14) holds for Bδ = 2/e (independent of δ in fact!). To conclude, (2.13) is
satisfied with Dδ = e

e+2 .

Summing up all the five requirements for the constant Cδ in the conclusion of the proposition,
we see that we can choose:

Cδ � min

(
1

2Mδγ (log 1
cδ

)
,

(1 − cδ)

Mδγ (log 1
cδ

)
,
(1 − cδ)

2 log 1
cδ

,
1

ecδ

,
e

e + 2

)
.

From the definition (2.11) of cδ , we see that log 1
cδ

= max(δ(Mδ),1) and that γ (log 1
cδ

) �
max(δ(Mδ),1)/Mδ . It is then not hard to check that we can choose:

Cδ := e − 1

2e max(δ(Mδ),1)
,

as claimed. �
2.3. A simpler proof with further assumptions

Note that the uniform convexity (1.1) of g was not used in the statement and proof of
Proposition 2.3. We remark here that by using this property, we obtain a simpler proof of a one-
dimensional isoperimetric inequality, which may be used to complete the proof of Theorem 1.1
in place of Proposition 2.3. The key observation is the following.

Lemma 2.8. Suppose g : (R, | · |) → R ∪ {+∞} satisfies (1.1), i.e.:

g(x) + g(y)

2
− g

(
x + y

2

)
� δ

(|x − y|) � 0, x, y ∈ R. (2.15)

Then for any x0 ∈ R,

g(x) � g(x0) + g′(x0)(x − x0) + 2δ
(|x − x0|

)
, (2.16)
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where g′(x0) is any value between g′
l (x0) and g′

r (x0), the left and right derivatives at x0, respec-
tively.

Proof. Immediate by applying Lemma 2.2 to the function g − g′(x0)(x − x0), which attains its
minimum at x0. �
Proposition 2.9. Let σ be a probability measure on R such that

dσ(x) = exp
(−g(x)

)
dx,

where g satisfies (2.15). Then

σ+(A) � σ̃ (A)ψ−1
(

1

2σ̃ (A)

)
, A ⊂ R, (2.17)

where

ψ(t) = tφ(t), φ(t) =
+∞∫
0

exp
(
tx − 2δ(x)

)
dx. (2.18)

Proof. As before, by a general result of Bobkov [10, Proposition 2.1] on extremal isoperimetric
sets of log-concave densities, it is enough to verify (2.17) on sets A of the form (−∞, x0] and
[x0,∞). By symmetry, we may restrict ourselves to sets [x0,+∞), σ([x0,∞)) = a � 1/2.

Denote a+ = exp(−g(x0)). By (2.16),

a =
∞∫

x0

exp
(−g(x)

)
dx � a+φ

(−g′(x0)
)
, (2.19)

and similarly

1/2 � 1 − a � a+φ
(
g′(x0)

)
. (2.20)

Now consider two cases.

Case 1: g′(x0) > 0. By (2.18), φ(−g′(x0)) � 1/g′(x0); hence g′(x0) � a+/a using (2.19) and
a+φ(a+/a) � a+φ(g′(x0)) � 1/2 using (2.20). Therefore

ψ
(
a+/a

) = (
a+/a

)
φ
(
a+/a

)
� 1/2a,

which implies (2.17).

Case 2: g′(x0) � 0. By (2.20), a+φ(0) � a+φ(g′(x0)) � 1/2, hence

a+ � 1
. (2.21)
2φ(0)
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Next, since φ is monotone, φ( 1
2aφ(0)

) � φ(0), hence ψ( 1
2aφ(0)

) � 1
2a

, and we conclude by (2.21)
that

a+ � 1

2φ(0)
� aψ−1

(
1

2a

)
. �

Remark 2.1. It is easy to verify that the function φ defined in (2.18) is log-convex, i.e. logφ is
convex.

Remark 2.2. Note that when δ(t) = ctp (p � 2), the inequalities obtained in Propositions 2.3
and 2.9 are equivalent, up to universal constants.

3. Lipschitz maps

This section is dedicated to the proof of an extended form of Theorem 1.5.

Proposition 3.1. Let μ be a finite absolutely continuous measure on Rn. There exists a μ-a.e.
unique radial map T that pushes μ forward to the restriction of the Lebesgue measure to some
star-shaped set K ⊂ Rn.

If dμ = f dmesn, we may choose K = Kf and T = Tf , where

Kf = {
x ∈ Rn;v(x) � 1

}
,

v(x) =
(

n

+∞∫
0

f (rx)rn−1 dx

)− 1
n

, (3.1)

and Tf is given by Tf (0) = 0 and

Tf (x) =
( ∫ 1

0 f (rx)rn−1 dr∫ ∞
0 f (rx)rn−1 dr

) 1
n x

v(x)
, x 
= 0. (3.2)

Proof. Let T : Rn → Rn be a radial map pushing μ forward to the Lebesgue measure restricted
to a star-shaped body K . Define

w(x) = inf
{
t > 0; t−1x ∈ K

}
.

Then the restriction of T to a ray R+x, w(x) = 1, has the form:

rx �→ u(x, r)x, r > 0.

Passing to polar coordinates and using the Fubini theorem, we see that T∗μ is equal to the restric-
tion of mesn to K iff, for almost every ray R+x, w(x) = 1, the map u(x, ·) pushes f (rx)rn−1 dr

forward to 1[0,1]rn−1 dr ; that is, if

1∫
φ(r)rn−1 dr =

∞∫
φ
(
u(x, r)

)
f (rx)rn−1 dr (3.3)
0 0
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for any test function φ ∈ C0(R+). Setting φ = 1[0,T ] in (3.3) and letting T → ∞, we see that

1

n
=

∞∫
0

f (rx)rn−1 dr. (3.4)

Hence v(x) = 1 for (almost) every x such that w(x) = 1. Both v and w are homogeneous func-
tions, hence v(x) = w(x) for μ-a.e. x ∈ Rn.

Now use φ = 1[0,u(x,s)] in (3.3). Since u(x, ·) is monotone, we deduce:

u(x, s)n = n

s∫
0

f (rx)rn−1 dr =
∫ s

0 f (rx)rn−1 dr∫ ∞
0 f (rx)rn−1 dr

,

at every point of continuity s of u(x, ·). Therefore

T (sx) =
( ∫ s

0 f (rx)rn−1 dr∫ ∞
0 f (rx)rn−1 dr

)1/n

x, v(x) = 1, (3.5)

which is equivalent to (3.2). �
Remark 3.1. Note that in particular, mesn(Kf ) = mesn(K) = μ(Rn).

The following proposition was proved by K. Ball [6] for even log-concave functions and
extended by Klartag [29, Theorem 2.2] to general log-concave functions.

Proposition (Ball). If f is a log-concave function on Rn, then Kf is a convex body.

Note that we do not assume at this stage that f is even. Therefore Kf may not necessarily be
symmetric about the origin, so formally we can not identify it with the unit-ball of some norm
‖ · ‖Kf

. Nevertheless, we denote:

‖x‖Kf
=

(
n

∞∫
0

f (rx)rn−1 dr

)− 1
n

. (3.6)

By the above proposition, this is a convex function on Rn, which is in addition homogeneous.
By definition (3.1), we have:

Kf = {
x ∈ Rn; ‖x‖Kf

� 1
}
.

In addition, we denote

K̂f = Kf ∩ −Kf

which is now a convex body symmetric about the origin, and we associate with it the correspond-
ing norm ‖ · ‖K̂f

.
We can now state the following result, which extends Theorem 1.5.
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Theorem 3.2. Let f denote a log-concave function on Rn with barycenter at the origin such that
0 <

∫
f (x)dx < ∞. Let μ denote the measure with density f , and let λ denote the restriction of

the Lebesgue measure to Kf . Denote by T = Tf the canonical radial map (given by (3.2)) such
that T∗μ = λ, and let u : (Rn,‖ · ‖K̂f

) → [0,1] be defined by

T (x) = u(x)
x

‖x‖Kf

for x 
= 0 and u(0) = 0. Then ‖u‖Lip � Cf (0)1/n, where C > 0 is a universal constant.

When f is in addition even, K̂f = Kf and ‖ · ‖Kf
is indeed a norm. Theorem 1.5 is then

deduced from Theorem 3.2 using the following lemma, which was essentially proved by Bobkov
and Ledoux [14].

Lemma 3.3. Let V = (X,‖ · ‖) denote a normed space, and let T : V → V be the map defined
by T (0) = 0 and

T (x) = u(x)
x

‖x‖
for x 
= 0, where u :X → R+ has a finite Lipschitz constant and satisfies u(0) = 0. Then

‖T ‖Lip � 3‖u‖Lip.

Proof. Let x, y ∈ X. By continuity, we may assume that x, y 
= 0. Then

∥∥T (x) − T (y)
∥∥ =

∥∥∥∥u(x)
x

‖x‖ − u(y)
y

‖y‖
∥∥∥∥

�
∥∥∥∥u(x)

x

‖x‖ − u(x)
y

‖y‖
∥∥∥∥ +

∥∥∥∥u(x)
y

‖y‖ − u(y)
y

‖y‖
∥∥∥∥

= ∣∣u(x) − u(0)
∣∣∥∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥∥ + ∣∣u(x) − u(y)

∣∣
� ‖u‖Lip‖x‖

(∥∥∥∥ x

‖x‖ − y

‖x‖
∥∥∥∥ +

∥∥∥∥ y

‖x‖ − y

‖y‖
∥∥∥∥)

+ ‖u‖Lip‖x − y‖

= ‖u‖Lip‖x‖‖y‖
∣∣∣∣ 1

‖x‖ − 1

‖y‖
∣∣∣∣ + 2‖u‖Lip‖x − y‖ � 3‖u‖Lip‖x − y‖. �

For the proof of Theorem 3.2, we need to compile several known results about log-concave
functions.

3.1. Additional preliminaries

Another convex body associated to a log-concave function f on Rn was put forth by
B. Klartag and V. Milman [30]. Assume that f (0) > 0, we define the (convex) body K0

f as
the set

K0
f = {

x ∈ Rn; f (x) � f (0) exp(−n)
}
. (3.7)
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We will use a relation between Kf and K0
f that was proved (under slightly different assumptions)

by Klartag and Milman [30, Lemmata 2.1, 2.2].

Proposition 3.4 (Klartag–Milman). Let f be a log-concave density on Rn, and assume that
f (0) > 0. Then

Kf ⊂ Cn

(
sup
x

f (x)
) 1

n
K0

f ,

where Cn > 1 and Cn → 1 as n → ∞. Moreover, if f attains its maximum at 0, then

f (0)
1
n K0

f ⊂ DnKf ,

where Dn > 2 and Dn → 2 as n → ∞.

The next lemma is a one dimensional computation for log-concave functions. For even func-
tions, this fact goes back to Ball [5], and Milman and Pajor [34]. For arbitrary log-concave
functions, this was extended by Klartag [29, Lemma 2.6] as follows.

Lemma 3.5. Let f : R+ → R+ denote a non-constant log-concave function, and let n � 1. As-
sume that f (0) = 1 and that

sup
x

f (x) � exp(n). (3.8)

Then

C1 � n
n+1
n

e(n + 1)
�

∫ ∞
0 f (r)rn dr

(
∫ ∞

0 f (r)rn−1 dr)
n+1
n

� n!
((n − 1)!) n+1

n

� C2,

where C1,C2 > 0 are universal constants. In fact, the assumption (3.8) is not needed for the
right-hand side of the inequality.

The last proposition we need is due to M. Fradelizi [22, Theorem 4].

Proposition 3.6 (Fradelizi). Let f denote a log-concave density on Rn such that 0 <
∫

f (x)dx <

+∞, and let x0 denote its barycenter. Then

g(x0) � exp(−n) sup
x∈Rn

g(x).

3.2. Proof of Theorem 3.2

By (3.2), T (x) = u(x) x
‖x‖Kf

for x 
= 0, where u is given by

u(x) =
( ∫ 1

0 rn−1f (rx) dr∫ ∞
0 rn−1f (rx) dr

) 1
n

(3.9)

for x 
= 0 and u(0) = 0. We thus verify that u is continuous at 0.
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Step 1: Reduction to smooth f .

Define, for ε > 0, fε := f ∗ ε−nG(x/ε), where G is the standard Gaussian density on Rn and
∗ denotes convolution. Clearly fε is a smooth function with barycenter at 0. By the Prékopa–
Leindler theorem, fε is log-concave, as the convolution of two log-concave functions.

Let με denote the measure with density fε , λε the Lebesgue measure on Kfε , and let Tε

denote the map radially pushing forward the measure με onto λε . Let uε be defined by

Tε(x) = uε(x)
x

‖x‖Kfε

,

with uε(0) = 0. Given x, y ∈ Rn, it is clear from (3.9) and (3.6) that uε(x) → u(x), uε(y) →
u(y), ‖x − y‖Kfε

→ ‖x − y‖Kf
and ‖x − y‖K̂fε

→ ‖x − y‖K̂f
as ε tends to 0. If we assume that

‖uε‖Lip � Cfε(0)1/n, we have∣∣uε(x) − uε(y)
∣∣ � Cfε(0)1/n‖x − y‖K̂fε

.

Passing to the limit as ε → 0, it follows that∣∣u(x) − u(y)
∣∣ � Cf (0)1/n‖x − y‖K̂f

,

and we conclude that ‖u‖Lip � Cf (0)1/n. It is therefore enough to restrict our discussion to
smooth functions.

Step 2: Proof for smooth functions with f (0) = 1.

Assume that f (0) = 1.
Note that since f and thus u are assumed to be smooth,

‖u‖Lip = sup
x∈Rn

∥∥∇u(x)
∥∥∗

K̂f
,

where ‖ · ‖∗̂
Kf

= suph∈K̂f
〈·, h〉 is the dual norm to ‖ · ‖K̂f

.

Fixing x ∈ Rn, x 
= 0, we will show that ‖∇u(x)‖∗̂
Kf

� C for some universal constant C > 0.

Write f = exp(−g), and denote for short,

A =
1∫

0

rn−1f (rx) dr and B =
∞∫

1

rn−1f (rx) dr.

Note that

u = (
A/(A + B)

)1/n
,

∇A = −
1∫
rnf (rx)∇g(rx) dr, and
0
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∇B = −
∞∫

1

rnf (rx)∇g(rx) dr.

By Proposition 3.6, since f (0) = 1 and 0 is the barycenter of f , then supx f (x) � exp(n). This
clearly implies that A � exp(n)/n, and that g(x) � −n. Denote also

A∗ =
1∫

0

rnf (rx)
∥∥∇g(rx)

∥∥∗
K̂f

dr and B∗ =
∞∫

1

rnf (rx)‖∇g(rx)‖∗̂
Kf

dr.

Then by (3.9)

∥∥∇u(x)
∥∥∗

K̂f
= 1

n

(
A

A + B

) 1
n
−1 ‖∇A(A + B) − A(∇A + ∇B)‖∗̂

Kf

(A + B)2

� 1

n

(
A

A + B

) 1
n A∗B + AB∗

A(A + B)

� 1

n

A∗

A
+ 1

n

(
A

A + B

) 1
n A∗ + B∗

A + B

� 1

n

A∗

A
+ e

n

A∗ + B∗

(A + B)
n+1
n

. (3.10)

Note that by the convexity of g, for all x, y ∈ Rn

g(y) � g(x) + 〈∇g(x), y − x
〉
.

Recall the definition (3.7), stating that y ∈ K0
f iff g(y) � n + g(0) = n, and also recall that

g(x) � −n. This implies that for y ∈ K0
f ,

〈∇g(x), y
〉
�

〈∇g(x), x
〉 + g(y) − g(x) �

〈∇g(x), x
〉 + 2n.

By Proposition 3.4 K̂f ⊂ Kf ⊂ DK0
f , where D = C(supx f (x))1/n � Ce for some universal

C > 1; hence

∥∥∇g(x)
∥∥∗̂ � D

(〈∇g(x), x
〉 + 2n

)
.

Kf
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We will use this rough estimate to bound A∗ and B∗ from above. More generally, for 0 � a <

b � ∞,

1

D

b∫
a

rnf (rx)
∥∥∇g(rx)

∥∥∗
K̂f

dr �
b∫

a

rnf (rx)
(〈∇g(rx), rx

〉 + 2n
)
dr

= d

dt

∣∣∣∣
t=1

(
−

b∫
a

rnf (trx) dr

)
+ 2n

b∫
a

rnf (rx) dr

= d

dt

∣∣∣∣
t=1

(
−t−(n+1)

bt∫
at

rnf (rx) dr

)
+ 2n

b∫
a

rnf (rx) dr

= (3n + 1)

b∫
a

rnf (rx) dr + an+1f (ax) − bn+1f (bx).

(3.11)

Of course the last term is interpreted as 0 when b = ∞. With this bound in mind, let

A′ =
1∫

0

rnf (rx) dr and B ′ =
∞∫

1

rnf (rx) dr.

Applying (3.11), we see that

A∗/D � (3n + 1)A′ − f (x);
(A∗ + B∗)/D � (3n + 1)(A′ + B ′).

Hence by (3.10),

∥∥∇u(x)
∥∥∗

K̂f
� (3n + 1)D

n

(
A′

A
+ e

A′ + B ′

(A + B)
n+1
n

)
.

Obviously A′ � A since r � 1 in the integrand of A′. By Lemma 3.5 (that is applicable since
f (0) = 1) we have:

A′ + B ′ =
∞∫

0

rnf (xr) dr � C

( ∞∫
0

rn−1f (xr) dr

) n+1
n

= C(A + B)
n+1
n ,

where C > 0 is some universal constant. It follows that

‖u‖Lip = sup
x∈Rn

∥∥∇u(x)
∥∥∗

K̂f
� 4D(1 + eC).
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Step 3: Proof for general smooth functions.

We have shown the assertion of the theorem for smooth functions f with f (0) = 1. In the
general case, obviously f (0) > 0, since the barycenter of the log-concave f is at the origin. Let
us push forward f (x)dx by the map S(x) = f (0)1/nx to obtain f ′(x) dx, where

f ′(x) = f (0)−1f
(
f (0)−1/nx

)
.

Clearly Kf ′ is a homothetic copy of Kf , and since

mesn(Kf ′) =
∫

f ′(x) dx =
∫

f (x)dx = mesn(Kf ),

we see that Kf ′ = Kf . Let T denote the radial map pushing forward f ′(x) dx to the restriction
of the Lebesgue measure on Kf , denoted λ. Let u′ : (Rn,‖ · ‖Kf

) → [0,1] be defined by

T ′(x) = u′(x)
x

‖x‖Kf

,

and u′(0) = 0. Since f ′(0) = 1 and f ′ is smooth, Step 2 implies that ‖u′‖Lip � C. Obviously
T = T ′ ◦ S (e.g. by uniqueness of the radial map pushing forward f (x)dx onto λ), and hence
u = u′ ◦ S. This implies

‖u‖Lip = ‖u′‖Lipf (0)1/n � Cf (0)1/n,

and concludes the proof. �
Remark 3.2. Of course the proof uses the fact that the barycenter of f is at the origin in a very
indirect way. In fact, it is clear from the proof that we may use any log-concave function f for
which

f (0) � D−n sup
x∈Rn

f (x),

for some D � 1, yielding ‖u‖Lip � C(D)f (0)1/n, where C(D) is a constant depending on D.

As an immediate corollary of Theorem 1.5, we obtain the Bobkov–Ledoux proposition from
the introduction, although the direct route taken by Bobkov and Ledoux in [14] is simpler in this
case and recovers a better universal constant in the bound.

Proof of the Bobkov–Ledoux proposition. It is easy to see that the Lipschitz constant of S as
a map acting on (Rn,‖ · ‖) is invariant to scaling of the Lebesgue measure, so we may assume
that mesn(K) = 1. By Theorem 1.5,

‖S‖Lip � Cf (0)1/n = C
(1 + n/p)−1/n. �
We will see in the next section how Theorem 1.5 may be used to transfer isoperimetric in-

equalities from log-concave measures to uniform measures on convex bodies.
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4. General uniformly convex bodies

In this section we give a proof of Proposition 1.4 and provide the details that lead to Theo-
rem 1.6.

Let δ = δV denote the modulus of convexity of a normed space V = (X,‖ · ‖). It is known that
δ is not necessarily a convex function; we denote by δ̃ the maximal convex function majorated
by δ. We summarise several known facts about δ and δ̃ (see Lindenstrauss and Tsafriri [31,
Proposition 1.e.6, Lemmata 1.e.7, 1.e.8]).

Lemma 4.1.

1. δ(t)/t is non-decreasing on [0,2].
2. δ(t/2) � δ̃(t) � δ(t) for all t ∈ [0,2].
3. There exists a constant C � 1 such that δ̃(t)/t2 � Cδ̃(s)/s2, for all 0 � t � s � 2.

The following crucial fact is due to Figiel and Pisier [21] (see also [31, Lemma 1.e.10]).

Proposition 4.2 (Figiel–Pisier). Let x, y ∈ X such that ‖x‖2 + ‖y‖2 = 2. Then

‖x + y‖2 � 4 − 4δ
(‖x − y‖/2

)
.

Proposition 1.4 is an easy corollary of these lemmata.

Proof of Proposition 1.4. Let x, y ∈ X such that ‖x‖2 + ‖y‖2 � 2, and denote s2 := (‖x‖2 +
‖y‖2)/2 � 1. If s = 0 then ‖x‖ = ‖y‖ = 0 and the claim is trivial. Otherwise, denote x′ = x/s

and y′ = y/s, so that ‖x′‖2 + ‖y′‖2 = 2. Hence by Proposition 4.2:∥∥∥∥x′ + y′

2

∥∥∥∥2

� 1 − δ

(‖x′ − y′‖
2

)
,

or equivalently: ∥∥∥∥x + y

2

∥∥∥∥2

� s2 − s2δ

(‖x − y‖
2s

)
.

Now, s � 1; hence by Lemma 4.1 we have for any t ∈ [0,2s]:
s2δ(t/s) � s2δ̃(t/s) � cδ̃(t) � cδ(t/2),

where c > 0 is a universal constant. Applying this for

t = ‖x − y‖
2

� ‖x‖ + ‖y‖
2

� s,

we conclude that ∥∥∥∥x + y

2

∥∥∥∥2

� ‖x‖2 + ‖y‖2

2
− cδ

(‖x − y‖
4

)
, (4.1)

as required. �
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Remark 4.1. Using ‖x‖ = ‖y‖ = 1 in (4.1), we see that δV (ε) � c
2δ(ε/4) for any function δ

satisfying (4.1), so Proposition 1.4 is in fact a characterization (up to universal constants) of the
modulus of convexity δV .

Now we can fill the details in the proof of Theorem 1.6. Assume that V = (Rn,‖ · ‖) is a
uniformly convex space, and let δ = δV denote its modulus of convexity as before. Scale the
Lebesgue measure on Rn so that mesn{‖x‖ � 1} = 1, since the statement of Theorem 1.6 is
invariant to this scaling. Now denote by μ the probability measure with density

f (x) = 1

Z
exp

(−n/c‖4x‖2)1
(‖x‖ � 1/4

)
with respect to the Lebesgue measure, where c > 0 is the constant from Proposition 1.4. Here
Z > 0 is a scaling factor so that μ be indeed a probability measure. Integrating on level sets of
‖ · ‖, it is clear that

Z =
∫
Rn

exp

(
−1

c
n‖4x‖2

)
1
(

‖x‖ � 1

4

)
dx

= n

1/4∫
0

exp

(
−16

c
ns2

)
sn−1 ds,

and in particular Z1/n � c′ > 0.
Write f = exp(−g), with g : Rn → R ∪ {+∞}. Proposition 1.4 then implies that g is uni-

formly convex, and satisfies

g(x) + g(y)

2
− g

(
x + y

2

)
� nδ1

(‖x − y‖),
where δ1 coincides with δ on [0,1/4] and δ1(t) = +∞ for t > 1/4. Since δ(t)/t is non-
decreasing by Lemma 4.1, so is δ1(t)/t , and assumption (1.2) is fulfilled. We can therefore apply
Theorem 1.1, and deduce an isoperimetric inequality for μ on V :

μ+
‖·‖(A) � Cn,δμ̃(A)γn

(
log

1

μ̃(A)

)
for all A ⊂ Rn,

where Cn,δ is given by (1.16) and

γn(t) = t

δ−1
1 (t/(2n))

.

We would now like to transfer this isoperimetric inequality to λV , the uniform probability
measure on KV = {‖x‖ � 1}, via a radial Lipschitz map. Clearly, Kf is a homothetic copy
of KV , and since

mesn(Kf ) =
∫

f (x)dx = 1 = mesn(KV ),
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it follows that Kf = KV . Note also that

f (0)1/n = Z−1/n � (c′)−1.

Applying Theorem 1.5, it follows that the Lipschitz constant of the radial map pushing forward
μ onto λV is bounded by a universal constant. Because of the truncation in the definition of δ1,
this only implies the statement of Theorem 1.6 for sets A such that

λ̃(A) � exp
(−2δ(1/4)n

)
.

Now suppose

λ̃(A) < exp
(−2δ(1/4)n

)
.

Then

δ−1
(

1

2n
log

1

λ̃(A)

)
� 1/4,

and hence by Bobkov’s inequality (1.8) with r = 1

λ+
‖·‖(A) � 1

2
λ̃(A) log

1

λ̃(A)
� c′Cn,δ

λ̃(A) log 1
λ̃(A)

δ−1( 1
2n

log 1
λ̃(A)

)

with, say, c′ = e/(4(e − 1)).
This concludes the proof of Theorem 1.6.

5. Concentration and functional inequalities

5.1. Concentration of measure on uniformly convex bodies

In this subsection, we discuss the connection between our results and the following Gromov–
Milman inequality [26], that we cite in the form of Arias-de-Reyna, Ball, and Villa [2].

Theorem (Gromov–Milman). Let V = (Rn,‖ · ‖) be a normed space, let δ = δV be its modulus
of convexity, and let λ be the uniform measure on the unit ball of V . Then

1 − λ(Bε,‖·‖) � 1

λ(B)
exp

(−2nδ(ε)
)

for all B ⊂ Rn. (5.1)

In particular, if δ(ε) � α′εp , then

1 − λ(Bε,‖·‖) � 1

λ(B)
exp

(−2α′nεp
)

for all B ⊂ Rn. (5.2)
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Let us compare this to our results. First assume δ(ε) � α′εp; then (1.11) holds with α = α′/2p

(as mentioned in Section 1.2.2). Therefore by Theorem 1.3

λ+
‖·‖(A) � C′(α′)1/pn1/pλ̃(A) log1−1/p 1

λ̃(A)
for all B ⊂ Rn, (5.3)

where C′ is a universal constant. Hence by Corollary 1.8,

1 − λ(Bε,‖·‖) � exp

{
−

[
log1/p 1

1 − λ(B)
+ c(α′)1/pn1/pε

p

]p}
. (5.4)

The right-hand side in (5.4) is at most

(
1 − λ(B)

)
exp

{
−C′(α′)1/pn1/p log1−1/p 1

1 − λ(B)
ε

}
< 1 − λ(B);

hence (5.4) yields a meaningful bound for any ε > 0, whereas (5.2) is meaningful for

ε �
{

1

2α′n
log

1

λ(B)(1 − λ(B))

}1/p

.

On the other hand, for larger ε the right-hand side of (5.4) behaves like

exp

{
−C′p

pp
α′nεp

}
;

that is, we lose a factor pp in the exponent.
The preceding discussion can be extended to arbitrary moduli of convexity. In the general

case, Theorem 1.6 yields

λ+
‖·‖(A) � C′

n,δ

λ̃(A) log 1
λ̃(A)

δ−1( 1
2n

log 1
λ̃(A)

)
; (5.5)

hence by Proposition 1.7

1 − λ(Bε,‖·‖) � exp
{−h−1

1−λ(B)(ε)
}
, (5.6)

where

ha(x) =
x∫

log 1/a

δ−1(y/2n)dy

C′
n,δy

.

By Lemma 4.1 we can assume without loss of generality that δ is convex (and δ−1 is concave).
Then,
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ha(x) =
x∫

log 1/a

dy

C′
n,δy

∫ x

log 1/a
δ−1(y/2n)dy

C′
n,δy∫ x

log 1/a
dy

C′
n,δy

�
x∫

log 1/a

dy

C′
n,δy

δ−1
{

1

2n

∫ x

log 1/a
dy

C′
n,δ∫ x

log 1/a
dy

C′
n,δy

}

= logx − log log 1/a

C′
n,δ

δ−1
{

1

2n

x − log 1/a

logx − log log 1/a

}
.

Now, t �→ δ−1(t)/t is decreasing, hence

ha(x) � 1

C′
n,δ

δ−1
{

1

2n
(x − log 1/a)

}
if x � e log 1/a. (5.7)

On the other hand,

ha(e log 1/a) =
e log 1/a∫

log 1/a

δ−1(y/2n)dy

C′
n,δy

� e − 1

eC′
n,δ

δ−1
{

e log 1/a

2n

}
;

hence for ε � e−1
eC′

n,δ

δ−1{ e log 1/a
2n

}, x = h−1
a (ε) � e log 1/a, and (5.7) implies

h−1
a (ε) � 2nδ

(
C′

n,δε
) + log 1/a.

We conclude by (5.6) that

1 − λ(Bε,‖·‖) �
(
1 − λ(B)

)
exp

{−2nδ
(
C′

n,δε
)}

. (5.8)

Again, (5.8) is better than (5.1) for small ε; if

ε � e − 1

eC′
n,δ

δ−1
{

e log 1/a

2n

}
the inequalities (5.1) and (5.8) are similar, whereas for larger ε an inequality of type (5.8) can
only be deduced from (5.5) under additional regularity assumptions on δ.

5.2. Proofs

It remains to prove Propositions 1.7 and 1.9.

Proof of Proposition 1.7. Let B ⊂ Rn be a Borel set such that

a = 1 − μ(B) � 1/2;

the proof easily extends to the complementary case a > 1/2.
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Denote f (t) = 1 − μ(Bt ). Our assumptions then read:

f (0) = a; df/dt (t) � −f (t)γ
(− logf (t)

)
(where strictly speaking df/dt should be the upper left derivative). Setting g = − logf ,

g(0) = log 1/a; dg/dt � γ ◦ g,

and if h = g−1,

h(log 1/a) = 0 and dh/dt � 1/(γ ).

Therefore

h(x) �
x∫

log 1/a

dy

γ (y)
= ha(x),

and

f (t) = exp
(−h−1(t)

)
� exp

(−h−1
a (t)

)
,

as required.
The converse direction is obvious. �

Proof of Proposition 1.9. Let us show that part 1 implies part 2. Let F be a function satisfying
(1.23). Assume for simplicity that the distribution of F has no atoms except for 0 and 1 and that
μ{F = 0} = 1/2, μ{F = 1} = t = 1/2k . Choose

0 = u1 < u2 < · · · < uk = 1

so that

μ{ui < F < ui+1} = 1/2i+1.

Then ∫
‖∇F‖q∗ dμ =

∑ ∫
ui<F�ui+1

‖∇F‖q∗ dμ

�
∑ 1

2i+1

{
2i+1

∫
ui<F<ui+1

‖∇F‖∗ dμ

}q

by Jensen’s inequality. Now, let us apply part 1 to the function

Fi = max

(
0,min

(
1,

F − ui

))
.

ui+1 − ui
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Since μ{Fi = 1} = μ{F � ui+1} = 1/2i+1, we obtain∫
ui<F<ui+1

‖∇F‖∗ dμ � cc0(ui+1 − ui)
log1/q 2i+1

2i+1
.

Therefore ∫
‖∇F‖q∗ dμ �

∑ 1

2i+1

{
cc0(ui+1 − ui) log1/q 2i+1}q

� c′′cq

0

∑
(ui+1 − ui)

q i + 1

2i+1

� c′′cq

0

(∑
(ui+1 − ui)

)q/[∑(
2i+1

i + 1

)p/q]q/p

according to Hölder’s inequality. Finally,

k∑
i=1

(
2i+1

i + 1

)p/q

� C
(
2k/k

)p/q

and thence ∫
‖∇F‖q∗ dμ � c′′′cq

0
k

2k
� c′cq

0 t log 1/t. �
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