G. L. Ebert

We say that a spread S of PG(3, q) admits a regular elliptic cover if and only if S contains q - 1 pairwise disjoint reguli (necessarily covering all but two fixed lines of S). Clearly, any André spread satisfies this condition. In this paper, we construct an infinite family of non-André spreads admitting regular elliptic covers by replacing (q + 1)-nests of reguli in a regular spread. These are the only known non-André spreads to admit such a cover. The collineation groups of these spreads are also discussed in detail.

1. INTRODUCTION

In [7], (q + 1)-nests of reguli in a regular spread Ω were constructed for all odd prime powers q. Moreover, if U denotes the set of lines contained in the reguli of such a (q + 1)-nest, it was shown that U can, in fact, be realized as the line set of two different (q + 1)-nests as well as the line set of (q + 1)/2 (disjoint) reguli in a partial linear set. Clearly, this line set U can be replaced in Ω by simultaneously reversing the (q + 1)/2 reguli in the above linear set, thereby yielding an André spread. However, it was also remarked (without proof) in [7] that the (q + 1)-nests themselves are replaceable. That is, U can be replaced by judiciously choosing (q + 1)/2 lines from the opposite regulus of each regulus in the (q + 1)-nest in question. Hence, for a given prime power q, the same line set U in general can be replaced in three projectively inequivalent ways, only one of which yields an André spread. Examples for q = 7 were given in [7]. In this paper, we prove the above assertions on replacement and describe in detail the resulting spreads as well as their collineation groups. The two-dimensional translation planes corresponding to the non-André spreads so constructed (see [1] or [5]) appear to be new.

Finally and most interestingly, we prove here that the above non-André spreads admit two different regular elliptic covers which share (q-3)/2 reguli in a partial linear set. These are the only non-André spreads known to the author which admit a regular elliptic cover.

2. PRELIMINARY RESULTS

Let $\Sigma = PG(3, q)$ denote projective 3-space over the finite field GF(q). A spread of Σ is any collection of $q^2 + 1$ skew lines, necessarily partitioning the points of Σ . By the well known correspondence of André [1] or Bose [5], every such spread determines a two-dimensional translation plane, and conversely every two-dimensional translation plane arises from such a spread. A regulus of Σ is any set R of q + 1 skew lines such that any line transversal to three lines of R is transversal to all lines of R. The q + 1 lines transversal to R are pairwise skew, forming another regulus R^{opp} , called the opposite regulus to R. Any three skew lines of Σ uniquely determine a regulus, and a spread Ω of Σ is called regular iff the regulus determined by any three of its lines is contained in Ω . The translation plane corresponding to a regular spread is desarguesian, and hence to obtain non-desarguesian planes we must construct non-regular spreads.

Given any two lines of a regular spread Ω , the remaining $q^2 - 1$ lines of Ω can be partitioned into q - 1 pairwise disjoint reguli, called a *complete linear set* of reguli. Any subset of a complete linear set of reguli in Ω is called a *linear set*. Of course, there are many non-linear sets of pairwise disjoint reguli in Ω as well.

One method for constructing new spreads is to start with a regular spread and then replace some subset of lines by another partial spread covering the same set of points. The simplest example of this is reversing a regulus (i.e. replacing a regulus by its opposite regulus) in a regular spread, thereby obtaining a spread corresponding to a Hall plane (see [4]). Reversing each regulus of a linear set of (pairwise disjoint) reguli generates a spread corresponding to a two-dimensional André plane, while simultaneously reversing the reguli in any set of disjoint reguli yields what is called a *subregular spread* (see [4]).

In what follows, $q \ge 5$ will always denote an odd prime power. Following the terminology established in [8], if S is any spread of Σ , we say that S admits a *regular elliptic cover* provided that S contains q - 1 pairwise disjoint reguli (partitioning all but two fixed lines of S). Clearly, the regular spread as well as any André spread admits a regular elliptic cover. One motivating force behind this paper is the search for other spreads that admit such covers.

Let Ω be a regular spread of Σ . A *t-nest* of Ω is defined to be any collection N of t reguli in Ω such that each line of Ω is contained in exactly 0 or 2 reguli of N. Let U denote the set of lines contained in the reguli of the *t*-nest N. Then U (or N) is called *replaceable* iff there exists a partial spread V of Σ covering the same points as U and having no line in common with U. In [2] and [3], replaceable *t*-nests were constructed for t = q and t = q - 1. We shall soon see that replaceable (q + 1)-nests exist for all odd prime powers q, and the resulting spreads all admit regular elliptic covers.

Let β denote a primitive element of $GF(q^2)$, $w = \beta^{q+1}$ a primitive element of GF(q), $\varepsilon = \beta^{(q+1)/2}$, and $\alpha = \beta^{q-1}$. We now define some lines of Σ by using co-ordinates of the underlying four-dimensional vector space. In particular, let $l_{\infty} = \langle (1, 0, 0, 0), (0, 1, 0, 0) \rangle$ and $l_{(x,y)} = \langle (x, wy, 1, 0), (y, x, 0, 1) \rangle$ for any $x, y \in GF(q)$. Then, as shown in [4], $\Omega = \{l_{\infty}\} \cup \{l_{(x,y)}: x, y \in GF(q)\}$ is a regular spread of Σ . Now let b denote any element of GF(q) such that b + 1 is a non-square of GF(q), and as in [7], let \mathbf{R}_0 denote the regulus of Ω corresponding to the circle

$$D_0 = \begin{pmatrix} 1 & 1 \\ b & -1 \end{pmatrix}$$

in the miquelian inversive plane M(q). Using the Bruck [4] correspondence between the points and circles of M(q) and the lines and reguli of Ω , it is easy to compute that $\mathbf{R}_0 = \{l_{(x,y)}: bx^2 - 2x - 1 = wby^2\}$ (see [3] or [7]).

Now let $a = (\alpha + \alpha^{-1})/2$ and $c = (\alpha - \alpha^{-1})/2\varepsilon$. Since $\alpha^q = \alpha^{-1}$ and $\varepsilon^q = -\varepsilon$, we see that a and c are (non-zero) elements of GF(q). Let T_1 denote the collineation of Σ induced by the matrix

[a	С	0	0٦
wc	а	0	0
0	0	1	0
Lo	0	0	1

acting on column vectors. Of course, matrices which are scalar multiples of one another induce the same collineation of Σ . A straightforward computation shows that $T_1: \langle (x, wy, 1, 0) \rangle \rightarrow \langle (\bar{x}, w\bar{y}, 1, 0) \rangle$ and $T_1: \langle (y, x, 0, 1) \rangle \rightarrow \langle (\bar{y}, \bar{x}, 0, 1) \rangle$, where $\bar{x} = ax + wcy$ and $\bar{y} = cx + ay$. If Θ denotes the collineation of M(q) given by $\Theta: z \rightarrow \alpha z$ for z in $GK(q^2) \cup \{\infty\}$ (see [7]), then expressing each element z of $GF(q^2)$ uniquely as $x + y\varepsilon$ for $x, y \in GF(q)$, we see that $\Theta: x + y\varepsilon \rightarrow \bar{x} + \bar{y}\varepsilon$. Since $T_1: l_{(x,y)} \rightarrow l_{(\bar{x},\bar{y})}$ and $T_1: l_{\infty} \rightarrow l_{\infty}$, we see that T_1 is a collineation of Ω that is a pre-image of Θ under the natural map $\operatorname{Aut}(\Omega) \rightarrow \operatorname{Aut}(M(q))$. Here we are explicitly using the Bruck correspondence $x + y\varepsilon \leftrightarrow l_{(x,y)}$. As shown in [7], the orbit $N = \{\mathbf{R}_0, \mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_q\}$ of \mathbf{R}_0 under T_1 (or equivalently the orbit of D_0 under Θ) is a (q + 1)-nest. Moreover, it is easily computed that $\mathbf{R}_i = \{l_{(x,y)}: bx^2 - a_ix - 1 = wby^2 - wc_iy\}$, where $a_i = \alpha^i + \alpha^{-i}$ and $c_i = (\alpha^i - \alpha^{-i})/\varepsilon$. In particular, $a_0 = 2$, $c_0 = 0$, $a_1 = 2a$, and $c_1 = 2c$.

As a final piece of notation in this preliminary section, we let T_2 denote the collineation of Σ induced by the matrix

$$\begin{bmatrix} s & w^{-1}t & 0 & 0 \\ t & s & 0 & 0 \\ 0 & 0 & s & w^{-1}t \\ 0 & 0 & t & s \end{bmatrix}$$

acting on column vectors, where s and t are elements of GF(q) chosen so that the minimal polynomial of β over GF(q) has the form $f(x) = (x - s)^2 - w^{-1}t^2$ (see [2]). Then, as shown in [2], T_2 is a collineation of order q + 1 leaving invariant every line of the regular spread Ω by permuting its points in a cycle of length q + 1. It is also trivial to check that T_2 commutes with T_1 . Finally, observe that

$$\det\left(\begin{bmatrix}s & w^{-1}t\\t & s\end{bmatrix}\right) = s^2 - w^{-1}t^2 = \beta\beta^q = w$$

is a non-square of GF(q).

3. THE REPLACEMENT QUESTION

Let U denote the set of lines in the reguli of a (q + 1)-nest N constructed as in the previous section. Clearly, $|U| = (q + 1)^2/2$ as each line of U is contained in exactly two reguli of N. As shown in [7], U can also be realized as the line set of (q + 1)/2 (necessarily disjoint) reguli in a partial linear set of reguli in Ω with carriers $l_{(0,0)}$ and l_{∞} . Hence, U can certainly be replaced by simultaneously reversing each regulus in this partial linear set, thereby obtaining an André spread. In this section, we show that U can also be replaced with 'opposite half-reguli', one for each regulus of the original nest. We will always let \mathbb{R}^{opp} denote the opposite regulus to the regulus \mathbb{R} .

LEMMA 1. Let $q \ge 5$ denote an odd prime power. Using the notation established in the previous section, let L denote any line of $\mathbf{R}_0^{\text{opp}}$. Then the orbit of L under T_1 is a collection of q + 1 skew lines, one from $\mathbf{R}_i^{\text{opp}}$ for i = 0, 1, 2, ..., q.

PROOF. Since T_1 is a collineation of Σ of order q + 1, it suffices to show that $L \cap T_1^k(L) = \emptyset$ for $k = 1, 2, 3, \ldots, q$. By way of contradiction, suppose that P is a point of Σ incident with both L and $T_1^k(L)$ for some integer k, where $1 \le k \le q$. Then P lies on some line $l_{(x,y)}$ of \mathbb{R}_0 , where $x, y \in GF(q)$ with $bx^2 - 2x - 1 = wby^2$. Since b + 1 is a non-square of GF(q), a discriminant argument shows that $y \neq 0$. Using an appropriate power of the collineation T_2 , we may assume without loss of generality that $P = \langle (x, wy, 1, 0) \rangle$. Then L is the unique line of \mathbb{R}_0^{opp} passing through P, and a straightforward computation shows that $L = \langle (x, wy, 1, 0), (x + 1, wy, bx - 1, wby) \rangle$. Moreover, computations similar to those given in Section 2 show that a matrix representation for T_1^k looks like

where
$$\tilde{a} = (\alpha^k + \alpha^{-k})/2$$
 and $\tilde{c} = (\alpha^k - \alpha^{-k})/2\varepsilon$.

Since P lies on $T_1^k(L)$, $P = T_1^k(Q)$ for some point Q on L. Either Q = P or $Q = \langle \lambda(x, wy, 1, 0) + (x + 1, wy, bx - 1, wby) \rangle$ for some $\lambda \in GF(q)$. In the first case, we obtain

2	Γ ã	ĩ	0	ר0	$\begin{bmatrix} x \end{bmatrix}$	1	$\begin{bmatrix} x \end{bmatrix}$	
Ì	wõ	ã	0	0	wy 1		wy	
İ	0	0	1	0	1	~	1	,
ĺ		0	0	1	L 0 _			

where \sim denotes that the two column vectors are GF(q)-scalar multiples of one another. This implies that

$$\begin{cases} (\tilde{a}-1)x + w\tilde{c}y = 0\\ \tilde{c}x + (\tilde{a}-1)y = 0 \end{cases}.$$

Solving simultaneously and using the fact that $y \neq 0$ as above, we obtain $w\tilde{c}^2 = (\tilde{a} - 1)^2$. Since w is a non-square in GF(q), this forces $\tilde{c} = 0$ and hence $\tilde{a} = 1$. Hence T_1^k is the identity collineation, contradicting $1 \leq k \leq q$. In the second case, we similarly obtain

$$\begin{bmatrix} \lambda + bx - 1 \\ wby \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

contradicting the facts that $w \neq 0$, $y \neq 0$, and $b \neq 0$. \Box

THEOREM 2. Let $q \ge 5$ denote an odd prime power, and let U denote the line set of a (q+1)-nest $N = \{\mathbf{R}_0, \mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_q\}$ constructed as above. Then a replacement partial spread V for U in Ω exists which consists of (q+1)/2 lines from \mathbf{R}_i^{opp} for $i = 0, 1, 2, \dots, q$. Such a V can be viewed as the union of (q+1)/2 T₁-orbits of size q+1 or as q+1 T_2^2 -orbits of size (q+1)/2.

PROOF. If L denotes any line of $\mathbf{R}_0^{\text{opp}}$, Lemma 1 implies that the orbit of L under T_1 consists of q + 1 skew lines, one from each R_i^{opp} . Letting T_2^2 act on such an orbit, we obtain (q + 1)/2 T_1 -orbits containing $(q + 1)^2/2$ lines of $\bigcup_{i=0}^{q} \mathbf{R}_i^{\text{opp}}$. Since $|U| = (q + 1)^2/2$ and $U = \bigcup_{i=0}^{q} \mathbf{R}_i$, it suffices to show that no two of the lines generated as above meet. Since T_1 and T_2 commute, the generated line set V may be viewed either as (q + 1)/2 T_1 -orbits or q + 1 T_2^2 -orbits.

By way of contradiction, suppose that $T_2^k T_1^i(L) \cap L \neq \emptyset$ for some integers *i* and *k*, where $1 \le i$, $k \le q$ and *k* is even. (Note that $k \ne 0$ by Lemma 1 and $i \ne 0$ by definition of T_2 .) That is, suppose there is a point *P* on *L* such that $P = T_2^k(Q)$ for some point *Q* on $T_1^i(L)$. Now *P* lies on some line $l_{(x,y)}$ of \mathbf{R}_0 . As in the proof of Lemma 1, $y \ne 0$ and we may assume that $P = \langle (x, wy, 1, 0) \rangle$ and hence $L = \langle (x, wy, 1, 0), (x + 1, wy, bx 1, wby) \rangle$. Now $Q = T_1^i(R)$ for some *R* on *L*. But *R* also lies on $l_{(\bar{x},\bar{y})}$ for some line $l_{(\bar{x},\bar{y})}$ of \mathbf{R}_0 . Since $P = T_2^k(Q)$ and T_2 leaves invariant every line of Ω , *Q* lies on $l_{(x,y)}$. Thus $T_1^i: l_{(\bar{x},\bar{y})} \rightarrow l_{(x,y)}$. Previous computations now imply that $x = \tilde{a}\bar{x} + w\bar{c}\bar{y}$ and $y = \bar{c}\bar{x} + \bar{a}\bar{y}$, where $\tilde{a} = (\alpha^i + \alpha^{-i})/2$ and $\tilde{c} = (\alpha^i - \alpha^{-i})/2\varepsilon$. Solving simultaneously, we obtain $x + y\varepsilon = \alpha^i(\bar{x} + \bar{y}\varepsilon)$ and $x - y\varepsilon = \alpha^{-i}(\bar{x} - \bar{y}\varepsilon)$. Hence, $x^2 - wy^2 = \bar{x}^2 - w\bar{y}^2$. Since $l_{(x,y)}$ and $l_{(\bar{x},\bar{y})}$ are both lines of \mathbf{R}_0 , this implies that $(2x + 1)/b = (2\bar{x} + 1)/b$ and hence $\bar{x} = x$. Therefore, $\bar{y}^2 = y^2$, implying $\bar{y} = -y$ as $i \ne 0$. Thus, $R = L \cap l_{(\bar{x},\bar{y})} = L \cap l_{(x,-y)} = \langle (x + 1, wy, bx - 1, wby) \rangle$, the last equality holding by a direct computation.

As $Q \neq P$ and Q lies on $l_{(x,y)}$, we may write $Q = \langle (y, x, 0, 1) + \lambda(x, wy, 1, 0) \rangle$ for some $\lambda \in GF(q)$. A straightforward induction shows that the matrix representation for

 T_2^k has the form

$$\begin{bmatrix} e & w^{-1}f & 0 & 0 \\ f & e & 0 & 0 \\ 0 & 0 & e & w^{-1}f \\ 0 & 0 & f & e \end{bmatrix}$$

for some $e, f \in GF(q)$. Since $k \neq 0$, we necessarily have $f \neq 0$. Now, $T_2^k(Q) = P$ implies that $f\lambda + e = 0$. Moreover, since k is even, a simple determinant argument shows that $e^2 - w^{-1}f^2$ must be a non-zero square in GF(q). Substituting $e = -f\lambda$ and using the fact that w is a non-square, we see that $w\lambda^2 - 1$ must be a non-square in GF(q). But $Q = T_1^i(R)$ implies that $\langle (y + \lambda x, x + \lambda wy, \lambda, 1) \rangle = \langle (\tilde{a}(x + 1) + \tilde{c}wy, \tilde{c}w(x + 1) + \tilde{a}wy, bx - 1, wby) \rangle$ and hence $\lambda = (bx - 1)/wby$. Thus $w\lambda^2 - 1 = w[(bx - 1)^2 - wb^2y^2]/w^2b^2y^2 = (b + 1)/wb^2y^2$ since $l_{(x,y)} \in \mathbb{R}_0$ implies that $wby^2 = bx^2 - 2x - 1$. Hence, $w\lambda^2 - 1$ is a square in GF(q) as b + 1 and w are both non-squares, contradicting the previous assertion on its quadratic character. This proves the result. \Box

Using the notation of Theorem 2, it was pointed out in [7] that there is a companion (q+1)-nest $\bar{N} = \{\bar{\mathbf{R}}_0, \bar{\mathbf{R}}_1, \bar{\mathbf{R}}_2, \ldots, \bar{\mathbf{R}}_q\}$ to N, the line set of which is also U. An argument analogous to that given in Theorem 2 shows that \bar{N} is also replaceable. That is, there exists a replacement set \bar{V} for U consisting of (q+1)/2 lines from $\bar{\mathbf{R}}_i^{\text{opp}}$ for $i=0, 1, 2, \ldots, q$. Once again, \bar{V} can be viewed as the union of (q+1)/2 T_1 -orbits or q+1 T_2^2 -orbits (see [7]) for examples). Thus, we have the following result.

COROLLARY 3. Let $q \ge 5$ denote an odd prime power, and let $b \in GF(q)$ be chosen so that b+1 is a non-square in GF(q). Let U denote the line set of a (q+1)-nest generated as in Section 2. The U is replaceable in three ways. The resulting spreads are projectively inequivalent, in general, one being an André spread.

It should be noted that choosing another $b \in GF(q)$ will in general yield different spreads. Once again, see [7] for examples.

4. REGULI AND COVERS

In this section, we discuss the reguli contained in a spread $\mathbf{S} = (\Omega \setminus U) \cup V$ obtained by replacing the line set U of a (q + 1)-nest as indicated in Theorem 2. As pointed out in [7], the lines of $\Omega \setminus U$ are partitioned into two fixed lines, namely $l_{(0,0)}$ and l_{∞} , and (q-3)/2 orbits of size q + 1 under T_1 . These orbits are, in fact, reguli in a (partial) linear set of Ω with carriers $l_{(0,0)}$ and l_{∞} . Thus, **S** contains at least (q-3)/2 reguli. The following results are concerned with reguli contained in V. First, we need a technical lemma.

LEMMA 4. Let β be a primitive element of $GF(q^2)$, $\alpha = \beta^{q-1}$, and $w = \beta^{q+1}$. Let $s, t \in GF(q)$ be chosen so that $f(x) = (x - s)^2 - w^{-1}t^2$ is the minimal polynomial of β over GF(q). Let $a = (\alpha + \alpha^{-1})/2$ and $c = (\alpha - \alpha^{-1})/2\varepsilon$, and let

$$M_1 = \begin{bmatrix} a & c \\ wc & a \end{bmatrix} \quad and \quad M_2 = \begin{bmatrix} s & w^{-1}t \\ t & s \end{bmatrix}.$$

Then either $M_1M_2^2$ or $M_1M_2^{-2}$ is a diagonal 2×2 matrix.

PROOF. M_2 is invertible since w^{-1} is a non-square of GF(q). By definition of the polynomial f, we have $\beta^2 = 2s\beta - (s^2 - w^{-1}t^2)$. However, since β and β^q are the two roots of f, we have $s^2 - w^{-1}t^2 = \beta\beta^q = w$ and $2s = \beta + \beta^q$. Thus, $\beta^2 = 2s\beta - w$ and, using the Frobenious automorphism of $GF(q^2)$, we have $\beta^{2q} = 2s\beta^q - w$. Therefore, $\beta^{2q} + \beta^2 = 2s(\beta + \beta^q) - 2w = 4s^2 - 2w$. Hence, letting $\varepsilon = \beta^{(q+1)/2}$ as before, $[(\beta^q - \beta)\varepsilon]^2 = (\beta^{2q} - 2w + \beta^2)w = 4w(s^2 - w) = 4t^2$. Since $\beta + \beta^q = 2s$, we have $1 + \alpha = 1 + \beta^{q-1} = 2s/\beta$ and therefore $1 + \alpha^{-1} = 1 + \alpha^q = 2s/\beta^q$. Subtracting these equations, we obtain $2c\varepsilon = \alpha - \alpha^{-1} = 2s(\beta^q - \beta)/w$ and hence $c^2w^4 = s(\beta^q - \beta)\varepsilon = 4s^2t^2$ from our previous calculation.

Using the fact that $\alpha = a + c\varepsilon$ and $\alpha^{-1} = a - c\varepsilon$, we have $\alpha^2 = wc^2 + 1$. Also, $s^2 - w^{-1}t^2 = w$ as above, and hence $ws^2 - t^2 = w^2$. A simple computation now shows that $[cw(s^2 + w^{-1}t^2) - 2ast][cw(s^2 + w^{-1}t^2) + 2ast] = 0$ iff $c^2w^4 = 4s^2t^2$, which is always true by our work in the previous paragraph. Since

$$M_1 M_2^2 = \begin{bmatrix} a(s^2 + w^{-1}t^2) + 2cst & 2aw^{-1}st + c(s^2 + w^{-1}t^2) \\ cs(s^2 + w^{-1}t^2) + 2ast & 2cst + a(s^2 + w^{-1}t^2) \end{bmatrix}$$

and

$$M_1 M_2^{-2} = w^{-2} \begin{bmatrix} a(s^2 + w^{-1}t^2) - 2cst & c(s^2 + w^{-1}t^2) - 2aw^{-1}st \\ cs(s^2 + w^{-1}t^2) - 2ast & a(s^2 + w^{-1}t^2) - 2cst \end{bmatrix}$$

it follows immediately that one of $M_1M_2^2$ and $M_1M_2^{-2}$ is necessarily a diagonal matrix. \Box

With a little more work, it can be shown that $M_1M_2^2$ is diagonal when $t = -(\beta^q - \beta)\varepsilon/2$, while $M_1M_2^{-2}$ is diagonal when $t = (\beta^q - \beta)\varepsilon/2$. However, we will not need this stronger result here.

THEOREM 5. Let $q \ge 5$ denote an odd prime power, and let $\mathbf{S} = (\Omega \setminus U) \cup V$ denote a spread of Σ obtained by replacing the line set of a (q + 1)-nest as indicated in Theorem 2. Then the $(q + 1)^2/2$ lines of V can be partitioned in two different ways as (q + 1)/2 (disjoint) reguli.

PROOF. As shown in the proof of Theorem 2, V can be partitioned as (q + 1)/2 orbits of size q + 1 under T_1 . We claim that each of these T_1 -orbits is a regulus. Let $x, y \in GF(q)$ with $wby^2 = bx^2 - 2x - 1$, and let $L = \langle (x, wy, 1, 0), (x + 1, wy, bx - 1, wby) \rangle$. Then $L \in \mathbb{R}_0^{\text{opp}}$ as before. In order to show that the T_1 -orbit of L is a regulus, we first consider a collineation T_0 of Σ induced by the matrix

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ w & 1 & 0 & 0 \\ 0 & 0 & 1 & e \\ 0 & 0 & 1 & f \end{bmatrix}$$

acting on column vectors, where $e, f \in GF(q)$ with $e \neq f$. A straightforward computation shows that $T_0: L \to \langle (x + wy, wx + wy, 1, 1), (x + 1 + wy, wx + w + wy, bx - 1 + weby, bx - 1 + wfby) \rangle$. Recalling that $\Omega = \{l_{\infty}\} \cup \{l_{(\bar{x},\bar{y})}: \bar{x}, \bar{y} \in GF(q)\}$, where $l_{(\bar{x},\bar{y})} = \langle (\bar{x}, w\bar{y}, 1, 0), (\bar{y}, \bar{x}, 0, 1) \rangle$, another straightforward (but lengthy) computation shows that if we choose e = -(2wy + 1)/w(2x + 1) and f = -(2y + 1)/(2x + 1), then $T_0(L) \in \Omega$. It should be noted that $2x + 1 \neq 0$ since $wby^2 = bx^2 - 2x - 1$ and w is a non-square of GF(q). It should also be remarked that $T_0(L) \neq l_{(0,0)}$ and $T_0(L) \neq l_{\infty}$.

Hence, $T_0(L) = l_{(\bar{x},\bar{y})}$ for some $\bar{x}, \bar{y} \in GF(q)$ (not both zero), and thus $T_1^i(T_0(L)) = l_{(\bar{x},\bar{y})}$, where $\bar{x} + \bar{y}\varepsilon = \alpha^i(\bar{x} + \bar{y}\varepsilon)$. Therefore, $\{T_1^i(T_0(L)): i = 0, 1, 2, ..., q\}$ is a regulus

of Σ , namely the regulus corresponding to the circle $\{(\bar{x} + \bar{y}\varepsilon)\alpha^i: i = 0, 1, 2, ..., q\}$ in the miquelian plane M(q). But T_1 and T_0 commute, and hence the T_1 -orbit of L is also a regulus. Since the other T_1 -orbits comprising V in the proof of Theorem 2 are obtained by letting T_2^2 act on the T_1 -orbit just discussed, we see that V is partitioned in this fashion into (q + 1)/2 reguli.

We now claim that V can be partitioned in yet another way into (q + 1)/2 reguli. Using the notation of Lemma 4, we let T denote $T_1T_2^2$ or $T_1T_2^{-2}$ accordingly as $M_1M_2^2$ or $M_1M_2^{-2}$ is diagonal. Thus, T is represented by a matrix of the form

$$\begin{bmatrix} \lambda I & 0 \\ 0 & A \end{bmatrix}$$

for some $0 \neq \lambda \in GF(q)$, where $A = M_2^2$ or $A = M_2^{-2}$. It is easy to see that any collineation \overline{T} represented by a matrix of the form

$$\begin{bmatrix} 1 & e & 0 & 0 \\ 1 & f & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & w & 1 \end{bmatrix}$$

where $e, f \in GF(q)$ with $e \neq f$, commutes with T. Choosing $L \in \mathbf{R}_0^{opp}$ as above and proceeding as in the previous case, it is not hard to show that distinct elements e and fof GF(q) may be chosen so that $\overline{T}(L) \in \Omega \setminus \{l_{(0,0)}, l_{\infty}\}$. Since T_2 leaves invariant each line of Ω , T is a collineation of Ω , the action of which on the lines of Ω is the same as that of T_1 . Hence, an argument analogous to that given above shows that the orbit of Lunder T is some regulus \mathbf{R} , and this regulus is contained in V. Once again, \mathbf{R} contains one line from \mathbf{R}_i^{opp} for $i = 0, 1, 2, \ldots, q$. Finally, it is easy to see that the images of \mathbf{R} under powers of T_2^2 are also reguli contained in V, and, in fact, V is partitioned by these (q+1)/2 images. Clearly, the reguli in these two partitions of V are all distinct. \Box

COROLLARY 6. Using the notation of Theorem 5, $\mathbf{S} = (\Omega \setminus U) \cup V$ contains at least (3q-1)/2 reguli.

COROLLARY 7. Using the notation of Theorem 5, $\mathbf{S} = (\Omega \setminus U) \cup V$ admits two different regular elliptic covers. These covers share (q-3)/2 reguli in a (partial) linear set of Ω . Given either of these two covers, there is some collineation of \mathbf{S} (either T_1 or T) such that each regulus in the cover is a line orbit under this collineation.

It should be noted that for all examples checked with $q \ge 7$, **S** contained exactly (3q-1)/2 reguli, and we conjecture this always to be true. See [7] for some interesting examples when q = 5. We also believe that the only reguli contained in U are the (q + 1)/2 reguli from the (partial) linear set with carriers $l_{(0,0)}$ and l_{∞} as well as the 2(q+1) reguli from the (q+1)-nest N and its companion nest \overline{N} (see the discussion following Theorem 2).

5. Collineation Groups and Orbit Structure

Using the notation of Theorem 5, our previous work shows that T_1 and T_2^2 are collineations of $\mathbf{S} = (\Omega \setminus U) \cup V$ inherited from the collineation group of the regular spread Ω . Using these two collineations, \mathbf{S} is partitioned into two fixed lines (namely, $l_{(0,0)}$ and l_{∞}), (q-3)/2 orbits of size q+1 (namely, the reguli of the partial linear set

contained in $\Omega \setminus U$), and one orbit of size $(q+1)^2/2$ (namely, V). We now look for other collineations of **S**.

LEMMA 8. Let U denote the line set of a (q + 1)-nest as described in Section 2. Then $U = \{l_{(x,y)}: [1 - (x^2 - wy^2)b]^2 - 4(x^2 - wy^2)$ is a non-square in $GF(q)\}$.

PROOF. If $N = \{\mathbf{R}_0, \mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_q\}$ denotes the (q + 1)-nest, it was shown in Section 2 that $\mathbf{R}_i = \{l_{(x,y)}: bx^2 - a_ix - 1 = wby^2 - wc_iy\}$, where $a_i = \alpha^i + \alpha^{-i}$ and $c_i = (\alpha^i - \alpha^{-i})/\epsilon$. So, if $l_{(x,y)} \in U$, then $l_{(x,y)} \in \mathbf{R}_i$ for some $i = 0, 1, 2, \dots, q$, and hence $[1 - (x^2 - wy^2)b]^2 = w^2c_i^2y^2 - 2wa_ic_ixy + a_i^2x^2$ as above. Using $a_i^2 - wc_i^2 = 4$, one easily computes that $[1 - (x^2 - wy^2)b]^2 - 4(x^2 - wy^2) = w(c_ix - a_iy)^2$ and hence is a nonsquare in GF(q). It should be noted that $c_ix - a_iy \neq 0$ as otherwise $x^2 - wy^2 = (2 + b \pm 2\sqrt{1 + b})/b^2$, contradicting the fact that b + 1 is a non-square of GF(q).

Conversely, suppose that $[1 - (x^2 - wy^2)b]^2 - 4(x^2 - wy^2)$ is some non-square *d* in GF(q). Let $\delta = \frac{1}{2}[1 - (x^2 - wy^2)b + \sqrt{d}]$. Since *d* is a non-square of GF(q), $\delta \neq 0$ and $\delta^q = \frac{1}{2}[1 - (x^2 - wy^2)b - \sqrt{d}]$. Hence $\delta^{q+1} = x^2 - wy^2$ and $\delta + \delta^q = 1 - (x^2 - wy^2)b$. Next, let $\gamma = (x + y\varepsilon)/\delta$. Then $\gamma^q = (x - y\varepsilon)/\delta^q$ and $\gamma^{q+1} = 1$. Therefore, $\gamma = \alpha^i$ for some $i = 0, 1, 2, \ldots, q$, by definition of α . If we write $2\gamma = 2\alpha^i$ uniquely as $a_i + c_i\varepsilon$ for some $a_i, c_i \in GF(q)$, then $2\gamma^q = 2\alpha^{-i} = a_i - c_i\varepsilon$. Hence

$$1 - (x^2 - wy^2)b = \delta + \delta^q = (x + y\varepsilon)\alpha^{-i} + (x - y\varepsilon)\alpha^i$$
$$= \frac{1}{2}(x + y\varepsilon)(a_i - c_i\varepsilon) + \frac{1}{2}(x - y\varepsilon)(a_i + c_i\varepsilon) = a_ix - 2c_iy$$

and $l_{(x,y)} \in \mathbf{R}_i \subseteq U$ as described above. \Box

THEOREM 9. Let $q \ge 5$ denote an odd prime power, and let $\mathbf{S} = (\Omega \setminus U) \cup V$ be a spread of Σ obtained by replacing a (q + 1)-nest, as described in Theorem 2. Let T_3 denote the collineation of Σ induced by the matrix

0٦	$-w^{-1}$	0	0 7
1	-1	0	0
0 1 0 0	0	1	$-w^{-1}$
Lo	0	1	-1

acting on column vectors. Then either T_3 or T_2T_3 is an involutionary collineation of **S** inherited from Aut(Ω) accordingly as w - 1 is a square or a non-square of GF(q).

PROOF. Straightforward computations show that $T_3: l_{\infty} \to l_{\infty}$ and $T_3: l_{(x,y)} \to l_{(x,-y)}$ for any $x, y \in GF(q)$. Thus $T_3 \in \operatorname{Aut}(\Omega)$. Moreover, $T_3: U \to U$ by Lemma 8, and hence $T_3: \Omega \setminus U \to \Omega \setminus U$. It may easily be checked that $T_3^2 = I$, $T_3T_2 = T_2^{-1}T_3$, and $T_3T_1 = T_1^{-1}T_3$. In particular, both T_3 and T_2T_3 are involutions in $\operatorname{Aut}(\Omega)$. Of course, $T_2: \Omega \setminus U \to \Omega \setminus U$ as T_2 leaves invariant each line of Ω . Thus, it only remains to check the action of T_3 and T_2T_3 on the lines of V.

Let $x, y \in GF(q)$ with $bx^2 - 2x - 1 = wby^2$. Then $l_{(x,y)} \in \mathbb{R}_0$ and $L = \langle (x, wy, 1, 0), (x + 1, wy, bx - 1, wby) \rangle \in \mathbb{R}_0^{opp}$, as before. As in the proof of Theorem 2, we may take $V = \{T_1^i T_2^{2j}(L) : i = 0, 1, 2, \dots, q \text{ and } j = 0, 1, 2, \dots, (q - 1)/2\}$, where T_1 and T_2 commute. Since $T_3(T_1^i T_2^{2j}(L)) = T_1^{-i} T_2^{-2j} T_3(L)$, $T_1: V \to V$, and $T_2^2: V \to V$, we see that $T_3: V \to V$ (and hence $T_3 \in \text{Aut}(S)$) iff $T_3(L) \in V$. We now determine when $T_3(L) \in V$. As $T_3: l_{(x,y)} \to l_{(x,-y)}$ and $\mathbb{R}_0 = \{l_{(x,y)}: bx^2 - 2x - 1 = wby^2\}$, $T_3: \mathbb{R}_0 \to \mathbb{R}_0$ and hence $T_3: \mathbb{R}_0^{opp} \to \mathbb{R}_0^{opp}$. Therefore, $T_3(L) = T_2^k(L)$ for some $k = 0, 1, 2, \dots, q$ by definition of

 T_2 . Since T_2^2 : $V \to V$, $T_3(L) \in V$, provided that k is even. Representing T_2^k by the matrix

$$\begin{bmatrix} e & w^{-1}f & 0 & 0 \\ f & e & 0 & 0 \\ 0 & 0 & e & w^{-1}f \\ 0 & 0 & f & e \end{bmatrix}$$

as in the proof of Theorem 2, the usual determinant argument shows that k is even iff $e^2 - w^{-1}f^2$ is a square in GF(q).

In order to simplify the notation, let P and Q denote the projective points $\langle (x, wy, 1, 0) \rangle$ and $\langle (x + 1, wy, bx - 1, wby) \rangle$, respectively. Then $P = L \cap l_{(x,y)}$ and $Q = L \cap l_{(x,-y)}$. Since $T_3: l_{(x,y)} \rightarrow l_{(x,-y)}$ and $T_2^k: l_{(x,-y)} \rightarrow l_{(x,-y)}$, $T_3(L) = T_2^k(L)$ implies that $T_3(P) = T_2^k(Q)$. That is, $\langle (x - y, x - wy, 1, 1) \rangle = \langle (ex + e + y, x + 1 + wey, ebx - e + by, bx - 1 + weby) \rangle$. In particular, this forces e = f(bx - by - 1)/(bx - wby - 1). Note that if bx - wby - 1 = 0, then wby = by and b = 0 or y = 0, both of which are contradictions as before. A straightforward computation now shows that $e^2 - w^{-1}f^2 = f^2[b^2(1 - w^{-1})x^2 - 2b(1 - w^{-1})x + (1 - w^{-1}) + b^2(1 - w)y^2]/(bx - wby - 1)^2$. Using the fact that $wby^2 = bx^2 - 2x - 1$ to rewrite the last term of the numerator, one easily obtains that $e^2 - w^{-1}f^2$ and $(1 - w^{-1})(b + 1)$ have the same quadratic character. That is, since b + 1 and w are both non-squares of GF(q), $e^2 - w^{-1}f^2$ is a (non-zero) square of GF(q) iff w - 1 is a (non-zero) square of GF(q).

Finally, suppose that w - 1 is a non-square in GF(q). Then the above paragraph shows that $T_3(L) = T_2^{2n+1}(L)$ for some integer *n*. Now consider the collineation $T_2T_3 = T_3T_2^{-1}$. Letting $T_1^iT_2^{2j}(L)$ again denote an arbitrary line in *V*, we have $T_2T_3(T_1^iT_2^{2j}(L)) = T_1^{-i}T_2^{-2j}T_2T_3(L) = T_1^{-i}T_2^{-2j}T_2^{2n+2}(L) \in V$. Arguing as above, we see that $T_2T_3 \in \text{Aut}(S)$ iff w - 1 is a non-square in GF(q). The result now follows. \Box

THEOREM 10. Using the same notation as in Theorem 9, let T_4 denote the collineation of Σ induced by the matrix

$$\begin{bmatrix} 0 & 0 & b^{-1} & w^{-1}b^{-1} \\ 0 & 0 & b^{-1} & b^{-1} \\ 1 & w^{-1} & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

acting on column vectors. Then either T_4 or T_2T_4 is a collineation of **S** inherited from Aut(Ω) accordingly as 1 - w is a square or a non-square in GF(q).

PROOF. Straightforward computations show that $T_4: l_{(0,0)} \leftrightarrow l_{\infty}$ and $T_4: l_{(x,y)} \rightarrow l_{(\bar{x},\bar{y})}$, where $\bar{x} = x/b(x^2 - wy^2)$ and $\bar{y} = -y/b(x^2 - wy^2)$. Hence, $T_4 \in \operatorname{Aut}(\Omega)$. Since $\bar{x}^2 - w\bar{y}^2 = 1/b^2(x^2 - wy^2)$, an application of Lemma 8 shows that $T_4: U \rightarrow U$ and hence $T_4: \Omega \setminus U \rightarrow \Omega \setminus U$. Thus $T_4 \in \operatorname{Aut}(S)$ iff $T_4: V \rightarrow V$. Once again, if L denotes any line of $\mathbb{R}_0^{\text{opp}}$, we may take $V = \{T_1^i T_2^{2j}(L): i = 0, 1, 2, \ldots, q \text{ and } j = 0, 1, 2, \ldots, (q-1)/2\}$. We proceed in a fashion somewhat analogous to the proof of Theorem 9, but with a few added wrinkles.

We first define \overline{T}_1 to be the collineation of Σ induced by the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & c \\ 0 & 0 & wc & a \end{bmatrix},$$

where $a = (\alpha + \alpha^{-1})/2$ and $c = (\alpha - \alpha^{-1})/2\varepsilon$ as previously defined. Then, it is easy to compute that $T_4T_1T_4^{-1} = \overline{T}_1$, $T_1\overline{T}_1 = \overline{T}_1T_1$, $T_2\overline{T}_1 = \overline{T}_1T_2$, and also $T_2T_4 = T_4T_2$. Hence $T_4(T_1^iT_2^{2j}(L)) = \overline{T}_1^iT_2^{2j}T_4(L)$. That is, $T_4: V \to V$ (and hence $T_4 \in \text{Aut}(\mathbf{S})$) provided that $T_4(L) \in V$ and $\overline{T}_1: V \to V$. Again, letting $T_1^iT_2^{2j}(L)$ denote an arbitrary line in V, we have $\overline{T}_1(T_1^iT_2^{2j}(L)) = T_1^iT_2^{2j}\overline{T}_1(L)$. Hence, to show $\overline{T}_1: V \to V$, it suffices to show that $\overline{T}_1(L) \in V$. Summarizing the above work, we have that $T_4 \in \text{Au}(\mathbf{S})$ provided that both $T_4(L)$ and $\overline{T}_1(L)$ are lines of V for some fixed line L of $\mathbf{R}_0^{\text{opp}}$. It should also be observed that $\overline{T}_1: l_{(x,y)} \to l_{(x',y')}$, where x' = ax - wcy and y' = ay - cx, and hence \overline{T}_1 and T_1^{-1} have the same action on lines of Ω (see previous computations concerning T_1 in Section 2).

Let $x, y \in GF(q)$ with $bx^2 - 2x - 1 = wby^2$, let $P = \langle (x, wy, 1, 0) \rangle$, and let $Q = \langle (x + 1, wy, bx - 1, wby) \rangle$. Then $l_{(x,y)} \in \mathbf{R}_0$ and $L = \langle P, Q \rangle \in \mathbf{R}_0^{\text{opp}}$ as before. We now show that $\overline{T}_1(L) \in V$. As $T_1^{-1}: \mathbf{R}_0 \to \mathbf{R}_q$ and \overline{T}_1 acts like T_1^{-1} on lines of Ω , $\overline{T}_1: \mathbf{R}_0 \to \mathbf{R}_q$ and hence $\overline{T}_1(L)$ and $T_1^{-1}(L)$ are both lines of $\mathbf{R}_q^{\text{opp}}$. Thus, $T_2^k: \overline{T}_1(L) \to T_1^{-1}(L)$ for some integer k. In particular, $T_2^k: \overline{T}_1(P) \to T_1^{-1}(P)$ as $T_1^{-1}(l_{(x,y)}) = \overline{T}_1(l_{(x,y)})$. Since T_1^{-1} may be represented by the matrix

Г	a	-c	0	0	
-	-wc	а	0	0	
	0	0	1	0	,
L	0	0	0	1_	

this implies that T_2^k : $\langle (x, wy, a, wc) \rangle \rightarrow \langle (ax - wcy, way - wcx, 1, 0) \rangle$ and hence $f = -wcea^{-1}$, where we represent T_2^k as in the proof of Theorem 9. This, in turn, implies that $e^2 - w^{-1}f^2 = e^2(a^2 - wc^2)/a^2 = e^2/a^2$. That is, $e^2 - w^{-1}f^2$ is always a square in GF(q), and therefore the usual determinant argument shows that k is necessarily even. Hence, since $T_1^{-1}(L) \in V$ and T_2^2 : $V \rightarrow V$, T_2^k : $\overline{T}_1(L) \rightarrow T_1^{-1}(L)$ implies that $\overline{T}_1(L) \in V$.

We now address the question of whether $T_4(L)$ is a line of V. A tedious computation shows that $T_4: \mathbf{R}_0 \to \mathbf{R}_{(q+1)/2}$. Thus $T_4(L)$ and $T_1^{(q+1)/2}(L)$ are lines of $\mathbf{R}_{(q+1)/2}^{opp}$, and therefore $T_2^k: T_1^{(q+1)/2}(L) \to T_4(L)$ for some integer k. Once again, $T_4(L)$ will be a line of V provided that k is even. It is easy to check that $T_1^{(q+1)/2}$ and T_4^{-1} may be represented by the matrices

Γ-	-1	0	0	ר0	and	Γ0	0	b^{-1}	$-w^{-1}b^{-1}$	
	0	-1	0	0		0	0	$-b^{-1}$	b^{-1}	
	0	0	1	0		1	$-w^{-1}$	0	0	'
L	0	0	0	1_			1		0 _	İ.

respectively. Now $T_1^{(q+1)/2}$: $l_{(x,y)} \rightarrow l_{(-x,-y)}$ and T_4^{-1} : $l_{(-x,-y)} \rightarrow l_{(-x/(2x+1),y/(2x+1))} \in \mathbb{R}_0$, using the fact that $wby^2 = bx^2 - 2x - 1$ in the latter computation. One then shows directly that $R = L \cap l_{(-x/(2x+1),y/(2x+1))} = \langle (0, -b^{-1}, y, x) \rangle$, and thus $T_4(R) = \langle (wy + x, wy + wx, -1, -w) \rangle$. Since $T_4(R) = T_4(L) \cap l_{(-x,-y)}$ and T_2^k : $T_1^{(q+1)/2}(L) \rightarrow T_4(L)$, we have T_2^k : $T_1^{(q+1)/2}(P) \rightarrow T_4(R)$. Computing $T_1^{(q+1)/2}(P) = \langle (-x, -wy, 1, 0) \rangle$ and representing T_2^k as in the above paragraph, one easily obtains that we = f and hence $e^2 - w^{-1}f^2 = (1 - w)e^2$. The usual determinant argument now shows that k is even iff 1 - w is a square in GF(q). Therefore, by our work above, we have that $T_4(L) \in V$ and thus $T_4 \in \text{Aut}(\mathbf{S})$ provided that 1 - w is a square in GF(q).

Finally, if 1 - w is a non-square in GF(q), then $T_4(L) = T_2^{2n+1}T_1^{(q+1)/2}(L)$ for some integer *n* as in the above paragraph. Hence $T_2T_4(L) = T_2^{2n+2}T_1^{(q+1)/2}(L) \in V$, and an analogous argument shows that $T_2T_4 \in \text{Aut}(\mathbf{S})$ in this case. \Box

COROLLARY 11. Assume the same notation as in Theorems 9 and 10: (i) If $q \equiv 1 \pmod{4}$, let $G = \langle T_1, T_2^2, T_3, T_4 \rangle$ or $G = \langle T_1, T_2^2, T_2T_3, T_2T_4 \rangle$ accordingly as w - 1 is a square or a non-square of GF(q). Then G is a collineation group of **S** inherited from Aut(Ω) that partitions **S** into one orbit of size 2, one orbit of size $(q + 1)^2/2$, one orbit of size q + 1, and (q - 5)/4 orbits of size 2(q + 1).

(ii) If $q \equiv 3 \pmod{4}$, let $G = \langle T_1, T_2^2, T_3, T_2T_4 \rangle$ or $G = \langle T_1, T_2^2, T_2T_3, T_4 \rangle$ accordingly as w - 1 is a square or a non-square of GF(q). Then G is a collineation group of **S** inherited from Aut(Ω) that partitions **S** into one orbit of size 2, one orbit of size $(q + 1)^2/2$, and (q - 3)/4 orbits of size 2(q + 1) if b is a square of GF(q), while G partitions **S** into one orbit of size 2, one orbit of size q + 1, and (q - 7)/4 orbits of size 2(q + 1) if b is a non-square of GF(q).

PROOF. The fact that G is a collineation group of **S** inherited from Aut(Ω) in all cases follows from Theorems 9 and 10, the discussion immediately preceding Theorem 9, and the fact that -1 is a square in GF(q) iff $q \equiv 1 \pmod{4}$. Similarly, previous work implies that **S** will have one G-orbit of size $(q + 1)^2/2$ (namely, V) and one G-orbit of size 2 (namely, $\{l_{(0,0)}, l_{\infty}\}$). The only remaining question is how G acts on the (q - 3)/2 reguli of the partial linear set with carriers $l_{(0,0)}$ and l_{∞} which comprise the lines of $(\Omega \setminus U) \setminus \{l_{(0,0)}, l_{\infty}\}$.

A simple calculation (see [7], for instance) shows that the reguli of Ω in the linear set with carriers $l_{(0,0)}$ and l_{∞} have the form $\mathbf{R}_a = \{l_{(x,y)}: x^2 - wy^2 = a\}$, one for each non-zero element a of GF(q). From Lemma 8, we know that $\mathbf{R}_a \subseteq \Omega \setminus U$ iff $(1-ab)^2 - 4a$ is a (non-zero) square of GF(q). Note that $(1-ab)^2 - 4a \neq 0$ from a standard discriminant argument and the fact that b + 1 is a non-square. Also, from our earlier discussion, $T_1: \mathbf{R}_a \to \mathbf{R}_a$ for each $0 \neq a \in GF(q)$ by permuting the lines of \mathbf{R}_a in a cycle of length q + 1, and T_2 leaves invariant each line of Ω . Thus each of the $(q-3)/2 \mathbf{R}_a$'s contained in $\Omega \setminus U$ is a $\langle T_1, T_2^2 \rangle$ -orbit of \mathbf{S} , and we only need decide if T_3 and/or T_4 combine any of these orbits. In fact, since $T_3: l_{(x,y)} \to l_{(x,-y)}, T_3: \mathbf{R}_a \to \mathbf{R}_a$ for all $0 \neq a \in GF(q)$, and we may concentrate our efforts on the action of T_4 .

The proof of Theorem 10 shows that $T_4: \mathbf{R}_a \to \mathbf{R}_{a^{-1}b^{-2}}$. In particular, T_4 leaves invariant the reguli $\mathbf{R}_{b^{-1}}$ and $\mathbf{R}_{-b^{-1}}$ while pairing off the remaining reguli in the (complete) linear set. Thus, it only remains to be seen when $\mathbf{R}_{b^{-1}}$ and $\mathbf{R}_{-b^{-1}}$ are contained in $\Omega \setminus U$. In this regard, note that $(1-ab)^2 - 4a = -4b^{-1}$ if $a = -b^{-1}$.

Suppose first that $q \equiv 1 \pmod{4}$, and thus -1 is a square in GF(q). Recalling that b+1 is a non-square in GF(q), our work in the above paragraph now implies that precisely one of $\{\mathbf{R}_{b^{-1}}, \mathbf{R}_{-b^{-1}}\}$ will be contained in $\Omega \setminus U$. Hence G will partition S as indicated in part (i) of the theorem. On the other hand, if $q \equiv 3 \pmod{4}$, then -1 is a non-square in GF(q). In this case, both $\mathbf{R}_{b^{-1}}$ and $\mathbf{R}_{-b^{-1}}$ will be contained in $\Omega \setminus U$ if b is a non-square, while neither regulus will be contained in $\Omega \setminus U$ if b is a square. The result now follows. \Box

It is not known if G is the full collineation group of S or even if the full collineation group of S is inherited from Aut(Ω). The computational group theory package CAYLEY has been used to examine several examples for q = 5 and q = 7, and a fairly sophisticated pruning algorithm was developed to show that $G = Aut(S) \cap Aut(\Omega)$ in all these examples. The author believes this always to be true. Finally, it should be noted that $|G| = 2(q + 1)^2$ in all cases.

6. CONCLUDING REMARKS

In this paper, an infinite family of (new) two-dimensional translation planes has been constructed by replacing (q + 1)-nests of reguli in a regular spread of PG(3, q). As

indicated in Section 3, several non-isomorphic planes can be constructed for a given q using this method, and completely answering the isomorphism question remains an open problem. Other remaining problems include determining if the group G from Corollary 11 is the full collineation group of the corresponding spread S, and deciding if the reguli described in Section 4 are indeed the only reguli of S.

However, a more important question may be the following. The spreads corresponding to the above planes are the only non-André spreads known to the author which admit regular elliptic covers. As spreads admitting regular conical and regular hyperbolic covers have recently been characterized (see [8] and [9]), we close with this question: Is every spread admitting a regular elliptic cover either an André spread or a spread obtained from a (q + 1)-nest?

References

- 1. J. André, Uber nicht-Desarguesche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186.
- 2. R. D. Baker and G. L. Ebert, A new class of translation planes, Ann. Discr. Math. 37 (1988), 7-20.
- 3. R. D. Baker and G. L. Ebert, Nests of size (q-1) and another family of translation planes, J. Lond. Math. Soc. 38 (1988), 341-355.
- 4. R. H. Bruck, Construction problems of finite projective planes, in *Proc. Conf. Combinatorics*, Univ. N. Carolina, Chapel Hill, 1967, pp. 426–514.
- 5. R. H. Bruck and R. C. Bose, The construction of translation planes from projective spaces, J. Algebra 1 (1964), 85-102.
- 6. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
- 7. G. Ebert, Nests, covers, and translation planes, ARS Comb. 25C (1988), 213-233.
- 8. H. Gevaert and N. L. Johnson, Flocks of quadratic cones, generalized quadrangles and translation planes, Geom. Dedicata 27 (1988) No. 3, 301–317.
- 9. N. L. Johnson, Flocks of hyperbolic quadrics and translation planes admitting affine homologies, J. of Geometry 34 (1989), 50-73.

Received 29 October 1987

G. L. Ebert

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, U.S.A.