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Aims: This work presents an evaluation of the impact of physical exercise of the upper limbs in patients with
muscular atrophy in the lower limbs by analysis of specific biomarkers.
Methodology: It is a cross-sectional study. Patients were recruited using convenience sampling: control group (C:
n=12) and two groups of wheelchair users: non-athletes (NAth: n=12) and athletes (Ath: n=13, profession-
al basketball players). Plasmatic biomarkers analyzed: fibrinogen, TBARS and NO. Comparisonswere assessed by
one-way ANOVA and Newman–Keuls Multiple Comparison post-hoc.
Results: Plasma fibrinogen values were not different between Ath (3.67 ± 0.44 g/L) and NAth (3.44 ± 0.38 g/L)
groups. It was observed difference between fibrinogen levels from both wheelchair user groups (Ath and NAth)
when comparing to control group (C: 2.27± 0.08 g/L) and standard values of fibrinogen (1.8 g/dL–3.1 g/dL). The
TBARS values were not different between the wheelchair users Ath (3.21 ± 0.24 nmol/mL) and NAth (3.66 ±
0.27 nmol/mL). Independently of practicing physical activity, the TBARS values from both wheelchair users,
Ath andNath,were differentwhen compared to the TBARS values fromcontrol group (C: 24.11±1.75nmol/mL).
The plasma levels of NO were not different among the groups.
Conclusion: Under SCI conditions, the upper body exercise practicing did not alter plasma levels of NO and ROS
production neither rheological changes in viscosity indicated by blood clotting studies (fibrinogen levels).

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
Wheelchair users
Spinal cord injury
Biomarkers
Physical activity
Reactive oxygen species (ROS)
1. Introduction

Important clinical conditions in spinal cord injury (SCI) are related to
damages resulted from loss of functions such asmobility and sensitivity.
Frequent causes of SCI are trauma (car accident, gunshot, falls, etc.) or
disease (polio, spina bifida, Friedreich's Ataxia, etc.) [1]. While the atro-
phy is established after a SCI, there are intrinsic skeletalmuscle changes,
such as in mitochondrial oxidative capacity, which is the main contrib-
utor to themetabolic abnormalities [2]. Independently of the type of SCI
injury, complete or incomplete [3], it is observed removal of the supply
trophic substances from the nerve tomuscle and also decreasedmuscle
electrical/contractile activity, leading to a sharp drop in the rate of syn-
thesis of muscle proteins and increased rate of degradation [4].

Classical studies about SCI demonstrated muscle and vascular
changes below the level of injury [5–13]. These peripheral circulatory
and skeletal muscle adaptations contribute to the increased risk of
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cardiovascular disease in SCI patients [14]. In fact, cardiovascular disor-
ders are the substantial causes of morbidity and mortality in both acute
and chronic stages of SCI [15–17]. The muscle atrophy and extensive
physical deconditioning combined with reduced cardiac output impair
the demand of oxygen to the muscle, leading to vascular atrophy [18].

Following SCI, blood flow to inferior limbs diminishes about 50–67%
mainly due to the loss of the autonomic nervous system control and to
the reduction of the local blood flow [19]. Changes in the sympathetic
activity especially into large vascular beds, as in skeletal muscle vessels,
the abolished compensatory vasoconstriction associated with reduced
venous blood return, contribute to low blood pressure. In fact, venous
thromboembolism has been detected in acute spinal cord injury pa-
tients [20].

Regarding the vascular events in the chronic phase of SCI, among
other issues, there is reduced blood volume, decreasedmuscle or tissue
pressures in the extremities, or functional alterations in the sympathetic
nervous system [21]. There are well-reported imminent risks for devel-
oping deep vein thrombosis, which is lower in 8–12 weeks, but highest
in 7–10days after the injury and during the early phases of recovery and
rehabilitation [19]. Causal factors related to deep venous thrombosis are
venous stasis in inferior limbs after muscle paralysis and lack of muscle
pump activity. In addition, there is hypercoagulability as consequence of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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reduction of fibrinolytic activity and raised activity of factor VIII from
blood coagulation cascade [22].

An important mechanism that may contribute to the vascular inju-
ries associated to hemodynamic alterations in inactive individuals
with SCI is the reduced NO availability, due to endothelial dysfunction
and increasing humoral or local vasoconstrictors, such as reactive oxy-
gen species (ROS) [23]. On the other hand, exercise is an important
stimulus for regulating blood flow, which is partially due to enhanced
metabolic rate and NO production, affecting vascular relaxation and
inhibition in platelet aggregation [24]. While regular physical activity
increases the bioavailability of NO [25,26], the cardiovascular decondi-
tion is associated with the altered nitric oxide (NO) metabolism under
SCI [27,28]. According to Buck and Chojkier [29], physical activity prac-
tice increases endothelial oxidative stress and stimulates the release of
NO, which leads to vasodilatation.

Mitochondrial signaling contributes to disusemuscle atrophy due to
oxidative stress [30]. In fact, inmuscle tissue the elevatedmetabolic rate
associated with physical exercise increases mitochondrial O2 consump-
tion and energy production during cellular metabolism. Oxygen- and
nitrogen-derived free radicals are then generated and are involved in
oxidative damage to cell components.

Oxidative stress, produced bymitochondrial activity, can be evaluat-
ed in plasma through reaction of lipid peroxidation products with ‘Thio-
barbituric Acid Reactive Substances’ (TBARS) [31]. Djordjevic et al., [32]
demonstrated athletes with higher VO2max, compared to athletes with
poorer aerobic power, had higher levels of TBARS as an accepted index
of lipid peroxidation. The authors conclude that TBARS supported the
positive correlation found between muscle percentage and TBARS as a
consequence of the higher working capacity and consequently in-
creased oxidative stress in working musculature of these athletes.

It is already known reactive hyperemia [33] and arterial blood flow
are extensively used to determine hemodynamic parameters in SCI pa-
tients, mainly male aged 20 and 40 years [5]. In such condition, resting
metabolic demands are so low that resting blood flowmight be of little
diagnostic value. Blood flow during exercise is influenced by cardiac
output, making changes in peripheral vascular function [5,34].

Thus, analysis of factors that inform about blood clotting, intrinsic
vascular function and the cellular metabolic damages might be useful
as additional tools to understand cardiovascular aspects in SCI, mainly
when the interest is to know the impact of physical conditioning in
such condition.

In face of the data stated above there is a potential positive associa-
tion among mitochondrial metabolism, NO production and blood
clotting after SCI. Considering the disuse of the lower limbs muscles
leads to decrease of the local musclemass and consequentmetabolic al-
terations in installed blood flow reduction, we hypothesized in such
condition there is lack of hemodynamic homeostasis which should be
detected by biochemical biomarkers. To explore the mentioned poten-
tial, the aimof this studywas to evaluate, as biomarkers, the blood levels
of TBARS, NO and fibrinogen of SCI patients, who are professional bas-
ketball players, in comparison with SCI patients that did not practice
physical exercise after the injury.

2. Materials and methods

2.1. Subjects/groups, inclusion and exclusion criteria

At the first contactwith the potential subjects, they received an expla-
nation concerning the objective of the study and, then, they were invited
to be part of the research. Thirty-two volunteers attended to the study.

In any type of procedure, volunteers were held solely and exclusive-
ly after approval and agreement, by means of signing the Informed
Consent Form (ICF) on a voluntary basis. The study was previously ap-
proved by the Ethics Committee of The National Ministry of Health/
University of Ribeirao Preto (CAAE: 18388513.7.0000.5498/protocol:
462.531/2013).
It was included subjects aged between 20 and 60 years old. The sam-
ple was assembled in the following groups: wheelchair users who reg-
ularly practiced physical exercises (athletes: professional basketball
players); wheelchair users who did not practice physical exercises
(non-athletes); able bodied (control group).

Description of the groups:

Group 1: Ten wheelchair users who are professional basketball
players since the 2rd year after the SCI. The members of this group
were called athletes (Ath). Along the last 7 years before the present
research, all of them have regularly played basketball 3 times a
week, on the Municipal Sports Center located at 627, Camilo Matos
Street, Ribeirão Preto, São Paulo, Brazil (zip code: 14090-210).

Group 2: Ten wheelchair users who did not practice physical activi-
ties regularly. The members of this group were called non-athletes
(NAth). Along the last 7 years before the present research all of the
patients were being clinically followed up in the Universitary Phys-
iotherapy Clinic — University of Ribeirão Preto, (UNAERP), which is
located at 2201, Costabile Romano Avenue, Ribeirão Preto, São
Paulo, Brazil (zip code: 14096-030).
Evidence of the muscle atrophy for groups 1 and 2: All included pa-
tients suffered damage to the spinal cord due to trauma that resulted
in a loss of functions of mobility and sensitivity of lower limbs. In all
wheelchair users, the type of injury was complete In the studied
cases, the injuries were to the five Lumbar vertebra (the vertebra
in the lower back between the thoracic vertebra, where the ribs at-
tach, and the pelvis; L-1 thru L-5) or also to the fifth Sacral Vertebra
(from the Pelvis to the end of the spinal column S-1 thru S-5). The
patients' injury caused loss of functioning in the hips and legs.
The wheelchair users included as volunteers had had the complete
SCI at least seven years before the development of the present
work. Themedical records of patients since the traumahad occurred
included detailed physical andmedical history, sensor-motor neuro-
logical examination to confirm the level, completeness of the lesion
and was useful to get the time-course from the trauma at the mo-
ment of the present research. The evidence for the skeletal muscle
atrophy was certified by previous diagnosis of the time of SCI, re-
spective levels of injury and also on literature data [1].
Group 3: Twelve participants able-bodied. This was the control
group (C). None of them were athletes.
Exclusion criteria: Acute coronary syndromes, coronary artery by-
pass grafting or percutaneous intervention during the first three
months of these events were excluded as well as those with renal
insufficiency (serum creatinine N 2.0 mg/dL), hepatic insufficiency
and uncontrolled hypothyroidism. Those who were chronic users
of vitamin C, vitamin E and beta-carotene supplementation were
also excluded.

2.2. Study procedures

2.2.1. Protocol
Subjects were submitted to blood collection for the analysis of

biochemical markers: fibrinogen, TBARS and nitric oxide. All the blood
collection took place between September 2014 and October 2014.
2.2.2. Fibrinogen
Blood was collected by venipuncture, using vacuum collection

disposable tubes containing 2.7 mL of sodium citrate, immediately
centrifuged at 2000 rpm for 15 min. After the centrifugation process,
the supernatant plasma was collected for storage at −20 °C. The
Multifibren® commercial kit was used tomeasure the serum fibrinogen
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concentration. The reference values must be between 1.8–3.1 g/L (the
standard reference values).

The principle of the fibrinogen measurement was based on Clauss
[35]. In brief, thrombin has clotted the previously diluted plasma (usu-
ally 1:10) in order to minimize the effect of inhibitory substances,
such as heparin. To clot the diluted plasma, thrombin was used in high
concentration (100 U/mL), to ensure that the clotting times are inde-
pendent of thrombin concentration over a wide range of fibrinogen
levels [35].

As reference to construct the calibration curve standard plasma was
used in a series of dilutions (1:5–1:40). This plasma was prepared in
buffer to give a range of fibrinogen concentrations. The reference
plasma must present a known level of fibrinogen calibrated against an
international standard also known. The clotting time of each plasma
dilutions was established in duplicate samples. The results were
expressed as clotting time(s)/fibrinogen concentration (g/L) [log–log].
To normalize, 1:10 concentration was considered 100%. According to
Clauss [35], a precise curve must present linear correlation between
clotting times in the region of 10–50 s.

2.2.3. TBARS (thiobarbituric acid reactive substances)
The OXltek® TBARS Assay commercial kit is designed to provide

standardized and reproducible assay with consistent results. Each lot
of reagents is quality controlled, which includes a malondialdehyde
(MDA) standard [36]. MDA is one of thefinal products of polyunsaturat-
ed fatty acids peroxidation in the cells. An increase in free radicals
causes overproduction of MDA, its level is commonly known as a mark-
er of oxidative stress. Due to extremely short half-lives, Reactive oxygen
species (ROS) are difficult to measure directly. Instead, what can be
measured are several products of the damage produced by oxidative
stress, such as TBARS [37].

Assay of TBARS measures MDA present in the sample, as well as
malondialdehyde generated from lipid hydroperoxides by the hydrolyt-
ic conditions of the reaction [38].

Samples were prepared according to Yagi [36], where 20 μL of plas-
mawas diluted in 4.0mL of H2SO4 (0.04mol/L). 0.5mL of 10% phospho-
tungstic acidwas added andmixed. After standing at room temperature
for five-minutes, the mixture was centrifuged at 3000 rpm for 10 min.
The supernatant was discarded and the precipitate was suspended in
2 mL of H2SO4 (0.04 mL) following the addition of 0.3 mL of 10% phos-
photungstic acid. After centrifugation at 3000 rpm for 10min, the super-
natant was discarded again and the precipitate was dissolved in 0.5 mL
deionizedH2O. 1mL of thismixture solution composed of thiobarbituric
acid 0.67% acetic acid 50% was added. The samples were incubated in a
water bath at 95 °C for one hour. After cooling, extraction was per-
formed of TBARS with 5 mL of butanol. The analysis was performed by
spectrophotometry (535 nm) and the calculation of TBARS concentra-
tion, through a standard curve of tetraetoxipropano. The results were
expressed in nmoL/mL plasma.

2.2.4. NO (Nitric Oxide): measurement of plasma NOx (nitrate + nitrite)
concentration

To determine the NO production, NO2− (nitrite) + NO3− (nitrate)
plasma concentrations were measured by the Griess-nitrate reductase
method [39]. The blood was collected in heparinized vacuum collection
tubes (in triplicate) and promptly mixed with a nitrite preservation so-
lution: diethylene triamine pentaacetic acid (DTPA; 0.1 mmol·L−1) and
N-ethylmaleimide (NEM; 8 mmol·L−1) [40,41] and centrifuged at
3500 rpm for 5 min at 5 °C. After the centrifugation process, the
supernatant plasma was collected for storage at −70 °C.

DTPA + NEM block SH-groups and inhibiting transition metal-
catalyzed transnitrosation reactions, preventing artificial nitrosation,
as well as thiolate and ascorbate mediated degradation of endogenous
S-nitrosothiols (RSNOs) and nitrite [42–44].

Numerous factors possibly affect the plasma levels of nitrate, such as
medications, nutrition status/diet, gender differences, ethnicity, clinical
conditions, smoking and environmental chemicals [45], thus limiting
the clinical utility of measuring nitrate to assess endogenous NO pro-
duction. On the other hand, measuring plasma nitrite level reflects NO
synthase activity under normal or pathophysiologic conditions [46–48].

The plasma nitrite + nitrate (NOx) concentration were determined
in duplicate by using the adapted Griess reaction from [40,41]. Briefly,
40 μL of plasma was incubated with the same volume of nitrate reduc-
tase buffer (0.1 mol·L−1 potassium phosphate, pH 7.5, containing
1 mmol·L−1 β-nicotinamide adenine dinucleotide phosphate and 2 U
of nitrate reductase·mL−1) in individual wells of a 96-well plate. Sam-
ples were allowed to incubate overnight at 37 °C in the dark. Nitrite
wasfirst treatedwith a diazotizing reagent (sulfanilamide, SA), in acidic
media to form a transient diazonium salt. Ten minutes later, this
intermediate was allowed to react with a coupling reagent, N-
naphthyl-ethylenediamine (NED), to form a stable azo compound;
briefly, 80 μL of freshly prepared Griess reagent (1% sulfanilamide, 1%
naphthylethylenediamine dihydrochloride in 5% phosphoric acid) was
added to each well and the plate was incubated for an additional
10 min at room temperature.

A standard nitrate curve was obtained by incubating sodium nitrate
(0.2 mmol·L−1 to 200 mmol·L−1) with the same reductase buffer. The
intense purple color of the product allows nitrite assay with high sensi-
tivity and can be used to measure nitrite concentration as low as
~0.5 μmol/L level. The absorbance of this adduct at 540 nm is linearly
proportional to the nitrite concentration in the sample [39].

2.3. Statistical analysis

The results are shown as the means (M) ± standard error mean
(SEM). Numerical variables comparisons between the groups were
performed using the one-way ANOVA following by Newman–Keuls
Multiple Comparison post-hoc test. P value less than 0.05 (IC95) was
considered statistically significant.

All statistically calculations were performed using Graph Prism 5.03
(San Diego, CA-USA) software package.

2.4. Materials

Multifibren®U: bovine thrombin (50 IU/mL), fibrin-aggregation
retarding peptide (gly-proarg-pro-ala-amide, 0.15 g/L), calcium chlo-
ride (1.5 g/L), hexadimethrine bromide (15 mg/L), polyethylene glycol
6000 (0.8 g/L), sodium chloride (6.4 g/L), Tris (50 mmol·L−1), bovine
albumin (10 g/L); Preservative: sodium azide (b1 g/L), were purchased
from Dade Behring Inc. Newark, U.S.A.

Thiobarbituric Acid, TBARS diluents 1 and 2, SDS solution (sodium
dodecyl sulfate in distilled),MDA (malondialdehyde) standards and dil-
uents were purchase from Enzo life sciences (Farmingdale, NY — USA).

3. Results

3.1. Fibrinogen

According to Fig. 1, there was no difference between wheel chairs
user Ath (3.67 ± 0.44 g/L) and NAth (3.44 ± 0.38 g/L). On the other
hand, it was observed difference between both wheelchair users Ath
and NAth, when compared to C (P b 0.01) (2.27 ± 0.08 g/L) and also
the standard reference values (ref: 1.8–3.1 g/L; P b 0.05).

3.2. TBARS

Data from Fig. 2 demonstrated that there is no difference
between the NAth (3.21 ± 0.24 nmol/mL) and Ath groups (3.66 ±
0.27 nmol/mL). Conversely, it was observed in both wheelchair users
groups decreased TBARS serum level when compared to C group
(24.11 ± 1.75 nmol/mL; P b 0.001).



Fig. 1. Serum fibrinogen levels (g/L). Control (C; n= 12); athletes (wheelchair users: Ath;
n = 10) and non-athletes (wheelchair users: NAth; n = 10). Data are reported as
means ± SEM. *P b 0.05. **P b 0.01. One-way ANOVA and Newman–Keuls Multiple
Comparison post-hoc.

Fig. 3. Serum level of Nitric Oxide products (μmol/L). Control (C; n = 12); athletes
(wheelchair users: Ath; n = 10) and non-athletes (wheelchair users: NAth; n = 10).
Data are reported as means ± SEM. One-way ANOVA and Newman–Keuls Multiple
Comparison post-hoc.
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3.3. NO (nitric oxide)

As presented in the Fig. 3, there was no difference in plasma
levels of NO products among the C (30.98 ± 0.92 μM/L), the NAth
(32.45 ± 3.85 μM/L) and Ath (40.77 ± 3.12 μM/L) group.
4. Discussion

This is the first study analyzing the impact of physical activity to con-
sider a triangulation among blood clotting, oxidative stress and nitric
oxide, as biochemical markers, in paired groups of patients with disuse
muscle atrophy of lower limbs because of complete SCI (spinal cord in-
jury). In this study, it has been demonstrated hyperfibrinogenemia in
individuals with SCI, despite of upper limbs physical activity (Ath and
Fig. 2. Serum levels of TBARS (nmol/mL). Control (C; n= 12); athletes (wheelchair users:
Ath; n = 10) and non-athletes (wheelchair users: NAth; n = 10). Data are reported as
means ± SEM. ***P b 0.001. One-way ANOVA and Newman–Keuls Multiple Comparison
post-hoc.
NAth). Similarly, the plasma levels of TBARS were lower in both groups
of wheelchair users, Ath and NAth, than in the able-bodied control
group. Conversely, the able-bodied control volunteers and the all
wheelchair users did not present different levels of blood NO. The phys-
ical exercise practice using the upper body (Ath) was an independent
variable for all biochemical markers evaluated.

Several works have demonstrated the time after the SCI and
tissue/organ injuries [49–59]. Taking in account the time-course
(more than 7 years) of the injury of the patients included in the pres-
ent research, it is evident to assume the disuse muscle atrophy of the
Ath and NAth wheelchair users was definitely installed as well-
evidenced in the literature. According to numerous articles, the body
composition degenerates markedly during the first 6 months after SCI
[49–59]. Therefore, it can be considered that a series of tissue injuries,
including vascular damages, were substantially established after this
elapsed time.

Hyperfibrinogenemia is a well-known risk factor for both arterial
and venous thrombosis [60,61] and often is a characteristic of vascular
endothelium injury [62,63]. High plasma levels of fibrinogen in muscle
atrophy condition leads to injury of the vascular endothelium [64].
Notwithstanding of increased level of fibrinogen in the plasma of both
SCI individuals, Ath and Nath, we do not have enough results to
speculate whether muscle atrophy precedes vascular atrophy (oxygen
demand–oxygen delivery) [64]. Taking into consideration their
hyprefibrinogenemia, without changes in the NO plasma levels (as an
indicator of endothelial integrity), the occurrence of a compensatory
mechanism is a possible explanation.

We have observed greater production of TBARs in the able-bodied
subjects than in wheel-chair users (Ath and NAth). As shown by Zago
and Zanesco [24] and Pattwell and Jackson [31], the chronic physical ex-
ercise increases theNO and TBARs production in the able-bodied. Levels
of TBARS are often investigated as an index of oxygen radical-induced
lipid peroxidation [32]. Acute exercise can induce oxidative stress and
tissue damage in both animals and humans [65–68]. At the same time
that exercise increases the ROS production, mainly through mitochon-
drion as source [69–72], adaptive mechanisms [3,73–75] seem to de-
crease oxidative stress, by means of increased antioxidant defenses,
reducing basal production of oxidants, and also the reduction of radical
leak during oxidative phosphorylation [76]. These statements support
our hypothesis that wheelchair users may have additional compensato-
ry mechanisms, which may improve the NO levels balance closer to
physiological levels.
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Regarding to vascular adaptive mechanisms, Hopman et al. [5],
compared male individuals with paraplegia with able-bodied control
subjects aged between 20 and 40 years to examine properties of the ve-
nous vascular system in SCI condition to prove the hypothesis of venous
atrophy as an adaptation to inactivity and muscle atrophy rather than
the effect of venous blood pooling caused by sympathetic denervation
or muscle pump inactivity. It is widely recognized that vascular
reactivity increases after exercise training [77] facilitating venous
blood flow return to the heart [78–80], while cardiovascular and venous
return are impaired in deconditioned [81,82], immobilized patients [83]
and in incomplete SCI individuals [84].

Cardiovascular comorbidities are implied in clinical conditions relat-
ed to skeletal muscle atrophy as cause or consequence for metabolic ab-
normalities [2,85]. In terms of metabolic impairments, the spinal cord
does not have to be severed for occurring a loss of functioning [86,87].
Muscle atrophy by denervation or disuse leads to increased mitochon-
drial ROS production and oxidative stress signaling clinical conditions
of vascular damages [30].

Since the 1960s [88–90] important data have established a causal
link between the increased mitochondrial network and denervation-
induced muscle atrophy [91] to explain the origin of significant protec-
tion against muscle wasting [30,91–93]. As described by De Groot et al.
[18], decreased vascular diameter and blood flow reduction was ob-
served in adults (male and female) individuals with longstanding SCI.
The authors explained this result in function of compensatory mecha-
nisms by an adjustment due to the lower metabolic necessity under
muscle atrophy condition.

The explanations for correlation between mechanisms of muscular
and vascular adaptations under SCI conditions are poorly studied in
humans but studies in animal models are in line with the scarce clinic
data available in the literature. Langille and O′Donnell [94] have
shown that reductions in blood flow and arterial diameter produced
by chronic decreases are endothelium dependent in rabbits. Arterial re-
modeling in response to chronic changes in blood flow occurs in an
endothelium-and NO-dependent manner [94–96], and an increased
muscle blood flowwith elevated shear stress can trigger NO production.
Shear stress and altered blood flow are important sources of ROS that
plays a key role in the signalingmechanisms and affect vascular homeo-
stasis [97–99] of factors such as NO. In fact, under shear stress NO pro-
duction is increased in endothelial cells modulating various cellular
processes that are essential for endothelial integrity [100].

NO levels, through its endogenous products nitrate + nitrite, were
similar both in able-bodied individuals and in wheelchair users. In this
sense we are likely to confirm physiological levels of NO as an adaptive
process to protect the vascular function from oxidative stress. Compara-
ble condition involving muscle atrophy and reduced oxidative capacity
were observed by Zizola and Schulze [101]. Our present results allow us
to rationale the new hypothesis that the skeletal muscle atrophy, as
cause or consequence, is benefitted by compensatory mechanisms
able to maintain the NO production closer to physiological levels.
Further, the reduced levels of TBARS in both SCI groups, despite of
upper limbs physical activity, is also due to compensatory and protec-
tive mechanisms of mitochondrial metabolic activity reduction.

5. Conclusions

The results of the present study demonstrated that, similarly in ath-
lete (Ath) and non-athlete (NAth) wheelchair users, the lower limb
muscle disuse potentially increases blood clotting, but it does not
change nitric oxide production and oxidative stress. The proposed ex-
planation is a metabolic protective mechanism triggered in SCI condi-
tion involving vascular factors, independently of upper limb exercises.

Since data of this study did not find difference in the studied bio-
marker levels between both in Ath and NAth wheelchair users, the
upper limb physical stimulation does not alter the rheological changes
in viscosity, the red cell aggregation (indicated by fibrinogen levels),
the vasodilatation (indicated by NO measure) and ROS production
(indicated by TBARS levels). Nevertheless, these biomarkers are not
the only ones that could be evaluated in these conditions. Further
studies should be conducted to further clarify the effects of upper
body exercise in wheelchair users.

6. Study limitation

1- Groups with small number of subjects.
2- Procedures limitations:
- Hemolysis, icteric or grossly lipemic plasma samples are not suit-
able for using in TBARS analysis.

- Non-lipid TBARS may be present in the sample. It is recommended
that a sample with elevated TBARS levels be tested by a more
specific test for lipid peroxidation such as HPLC.

- Normal tissues contain very low levels of free malondialdehyde
(MDA). Overall, TBARS method is convenient, simple, and low
cost, but the inherent problems of specificity and variability of
data make it difficult to be a reliable quantitative biomarker of
lipid peroxidation in vivo, although it may be used as a screening
tool when measured with tightly controlled consistent protocol
and/or control groups for comparisons.
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