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We investigate the running cosmological constant model with dark energy linearly proportional to the 
Hubble parameter, � = σ H + �0, in which the �CDM limit is recovered by taking σ = 0. We derive the 
linear perturbation equations of gravity under the Friedmann–Lemaïtre–Robertson–Walker cosmology, 
and show the power spectra of the CMB temperature and matter density distribution. By using the 
Markov chain Monte Carlo method, we fit the model to the current observational data and find that 
σ H0/�0 � 2.63 × 10−2 and 6.74 × 10−2 for �(t) coupled to matter and radiation-matter, respectively, 
along with constraints on other cosmological parameters.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The type-Ia supernova observations [1,2] have shown that our 
universe is undergoing a late-time accelerating expansion, which 
is caused by Dark Energy [3]. The simplest way to realize such 
a late-time accelerating mechanism is to introduce a cosmologi-
cal constant to the gravitational theory, such as that in the �CDM 
model. This model fits current cosmological observations very well, 
but there exist several difficulties, such as the “fine-tuning” [4,5]
and “coincidence” [6] problems.

In this work, we will concentrate on the latter problem [7], 
which has been extensively explored in the literature. One of 
the popular attempts is the running � model, in which the cos-
mological constant evolves in time and decays to matter in the 
evolution of the universe [8–20], so that the present energy den-
sities of dark energy and dark matter are of the same order of 
magnitude. Its observational applications have been investigated 
in Refs. [21–23]. In our study, we are interested in the specific 
model with � = σ H [24–29], which would originate from the the-
ory with the QCD vacuum condensation associated with the chiral 
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phase transition [30–34]. In this scenario, the cosmological con-
stant decays to matter (non-relativistic) and radiation (relativistic), 
leading to a large number of particles created in the cosmological 
evolution. Without loss of generality, we phenomenologically ex-
tend this model to include that � additionally couples to radiation 
with � = σ H + �0 [35–37], in which the �CDM limit can be re-
alized if σ = 0. In this scenario, when dark energy dominates the 
universe, the decay rate of � is reduced, and the late-time accel-
erating phase occurs, describing perfectly the evolution history of 
the universe. As a result, it is reasonable to go further to analyze 
the cosmological behavior of this model at the sub-horizon scale.

In this paper, we examine the matter power spectrum P (k)

and CMB temperature perturbations in the linear perturbation the-
ory of gravity. By using the Markov chain Monte Carlo (MCMC) 
method, we perform the global fit from the current observational 
data and constrain the model.

This paper is organized as follows: In Sec. 2, we introduce the 
�(t)CDM model and review its background cosmological evolu-
tions. In Sec. 3, we calculate the linear perturbation theory and 
illustrate the power spectra of the matter distribution and CMB 
temperature by the CAMB program [38]. In Sec. 4, we use the 
CosmoMC package [39] to fit the model from the observational 
data and show the constraints on cosmological parameters. Our 
conclusions are presented in Sec. 5.
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2. The running cosmological constant model

We start with the Einstein equation, given by

Rμν − gμν

2
R + �(t)gμν = κ2T M

μν , (1)

where κ2 = 8πG , R = gμν Rμν is the Ricci scalar, �(t) is the 
time-dependent cosmological constant, and T M

μν is the energy–
momentum tensor of matter and radiation. In the Friedmann–
Lemaïtre–Robertson–Walker (FLRW) case,

ds2 = a2(τ )
[
−dτ 2 + δi jdxidx j

]
, (2)

we obtain

H2 = a2κ2

3
(ρM + ρ�) , (3)

Ḣ = −a2κ2

2
(ρM + P M + ρ� + P�) , (4)

where τ is the conformal time, H = da/(adτ ) represents the Hub-
ble parameter, ρM (P M ) corresponds to the energy density (pres-
sure) of matter and radiation, and ρ� (P�) is the energy density 
(pressure) of the cosmological constant. We note that from the re-
lation of ρ� = −P� = κ−2�(t), derived from Eq. (1), one has the 
equation of state (EoS) of � to be

w� ≡ P�

ρ�

= −1 . (5)

In Eq. (1), we consider �(t) to be a linear function of the Hubble 
parameter, given by [29,35–37]

� = σ H + �0 , (6)

where σ and �0 are two free parameters. From Eq. (6), we can 
write ρ� with two dimensionless parameters λ0,1 as

ρ� = ρ0
�

[
λ0 + λ1

(
H

H0

)]
, (7)

where ρ0
� ≡ ρ�|z=0 is the current dark energy density with the 

condition λ0 + λ1 = 1 and λ1 = σ H0/(σ H0 + �0). Note that λ0
has been treated as a constant of integration and set to zero in 
Ref. [29]. Without loss of generality, we will keep λ0 as a free pa-
rameter with the �CDM model recovered when λ0 → 1.

Substituting Eq. (7) into the conservation equation ∇μ(T M
μν +

T �
μν) = 0, we have

ρ̇� + 3H(1 + w�)ρ� = ρ̇� ∝ Ḣ �= 0 , (8)

resulting in that dark energy unavoidably couples to matter and 
radiation, given by

ρ̇m + 3Hρm = Q m , (9)

ρ̇r + 4Hρr = Q r , (10)

where Q m,r are the decay rate from �(t) to matter and radiation, 
taken to be

Q i = ρ̇�Ci(ρi + Pi)∑
j=m,r C j(ρ j + P j)

, (11)

respectively. Note that the analytical solution of Eq. (8) has been 
obtained with λ0 = 0 and w M = constant in Refs. [24,25]. However, 
if λ0 �= 0 and ρM = ρm + ρr , composited of multi-fluid with EoS 
wr �= wm , the analytical solution no longer exists.
Fig. 1. Evolutions of ρm (blue line), ρr (green line) and ρ� (red line) with (a), 
(b) and (c) corresponding to (Cr , Cm) = (1, 1), (0, 1) and (1, 0), where the solid, 
dashed and dotted lines represent (λ0, λ1) = (1, 0), (0.9, 0.1) and (0, 1), respec-
tively. The initial conditions are taken as ρma3/ρch = 1 and ρra4/ρch = 3 × 10−4 at 
N ≡ ln a = −12, where ρch is the characteristic energy density. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of 
this article.)

In Fig. 1, we show the cosmological evolutions of ρm (blue 
line), ρr (green line) and ρ� (red line), normalized by the char-
acteristic energy density ρch , as functions of the e-folding N ≡ ln a
with ρma3/ρch = 1 and ρra4/ρch = 3 × 10−4 at N = −12, where 
(Cr, Cm) are (a) (1, 1), (b) (1, 0) and (c) (0, 1) with (λ0, λ1) =
(1, 0), (0.9, 0.1) and (0, 1), corresponding to the solid, dashed and 
dotted lines, respectively. In Fig. 1c, we observe that if dark energy 
fully decays to radiation, ρr can be of the same order of ρm at 
λ1 � 0.1, which violates the current observations. On the contrary, 
this problem never occurs if �(t) only couples to matter as shown 
in Fig. 1b. This behavior allows us to fix Cm = 1 and keep Cr to be 
a free parameter in the later study. In Fig. 2, we present a3ρm (blue 



424 C.-Q. Geng et al. / Physics Letters B 760 (2016) 422–427
Fig. 2. Evolutions of ρma3 (blue lines) and ρra4 (green lines) with (a) Cr = 1 and (b) Cr = 0, where legend is the same as in Fig. 1. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)
line) and a4ρr (green line) as functions of N with (λ0, λ1) = (1, 0), 
(0.9, 0.1) and (0, 1), where the boundary conditions are the same 
as those in Fig. 1. From the plots in Figs. 1 and 2, one can see that 
the cosmological constant decouples to matter and radiation (cor-
responding to ρia−3(1+wi) = constant) when (λ0, λ1) → (1, 0). On 
the other hand, a large number of matter and radiation are cre-
ated by the decay of dark energy at the late-time of the universe 
with (λ0, λ1) → (0, 1). When dark energy dominates the universe, 
ρ� decays slowly and our universe turns into the accelerating ex-
pansion phase. Clearly, this scenario is suitable to describe the dark 
energy problem no matter what values for λ0 and λ1 are used. To 
examine this model in detail, we need to study the linear perturba-
tion theory of gravity and investigate the effects at the subhorizon 
scale.

3. Cosmological perturbation in running cosmological constant 
model

We focus on the perturbation theory with the synchronous 
gauge and explore the power spectra of matter and the CMB tem-
perature in the running cosmological constant model. Under the 
FLRW background, the metric perturbation is given by [40]

ds2 = a2(τ )
[
−dτ 2 + (δi j + hij)dxidx j

]
, (12)

where

hij =
∫

d3kei�k·�x
[

k̂ik̂ jh(�k, τ ) + 6

(
k̂ik̂ j − 1

3
δi j

)
η(�k, τ )

]
, (13)

i, j = 1, 2, 3, h and η are two scalar perturbations in the syn-
chronous gauge, and k̂ = �k/k is the k-space unit vector. The mat-
ter (baryon, cold dark matter and massive neutrino) and radiation 
(photon and massless neutrino) density perturbations can be de-
rived from the conservation equation ∇μ(T M

μν + T �
μν) = 0 with 

δT 0
0 = δρM , δT 0

i = −T i
0 = (ρM + P M)vi

M and δT i
j = δP Mδi

j , given 
by [27,41],

δ̇M = −(1 + w M)

(
θM + ḣ

2

)
− 3H

(
δP M

δρM
− w M

)
δM − Q M

ρM
δM ,

(14)

where δM ≡ δρM/ρM , θM = iki vi
M , and Q M is the decay rate in 

Eq. (11).
To show how the running cosmological constant scenario in-

fluences the matter density perturbation and CMB temperature 
fluctuation, we perform the open-source program CAMB [38] with 
the model in Eq. (7), and modify the evolution of the density per-
turbation in Eq. (14) as well as the background density evolutions 
ρ�(z), ρm(z) and ρr(z), solved from Eqs. (8)–(10), respectively. 
Since the dark energy density ratio, ρ�/ρc ∝ H−1, is negligible in 
the early universe, the running cosmological constant model shares 
the same initial condition as the �CDM model with ρM = ρM |a→0. 
Besides, the matter-radiation equality zeq also changes in this 
model, given by

ρm(z = zeq)

ρr(z = zeq)
= 1 . (15)

In Fig. 3, we present the matter power spectrum P (k) as a function 
of the wavenumber k with (a) Cr = 1 and (b) Cr = 0, along with 

bh2 = 2.23 × 10−2, 
ch2 = 0.119, �mν = 0.06 eV and (λ0, λ1) =
(1, 0) (black line), (0.9, 0.1) (red line), (0.5, 0.5) (blue line) and 
(0, 1) (cyan line), respectively. Obviously, the matter power spec-
trum P (k) is suppressed at a large k, and the deviation from 
�CDM (black line) is significant for λ1 	 0. As a result, the allowed 
parameter space for λ1 can be estimated to be small. The suppres-
sion of P (k) can be realized from Eq. (14) with Q m ∝ −Ḣ ≥ 0. As 
λ1 increases, the running cosmological model deviates from the 
�CDM limit, while the matter creation gets enhanced due to the 
dark energy decay as seen in Eq. (9). In addition, since dark energy 
is considered to be homogeneous and isotropic, δρ� = 0, so that 
the creation of matter smoothly distributes to our universe. Conse-
quently, the density perturbation is diluted and the matter power 
spectrum is suppressed by the decay of �.

Fig. 4 depicts the CMB temperature power spectrum in the run-
ning cosmological constant model with (a) Cr = 1 and (b) Cr = 0, 
while the boundary conditions are the same as those in Fig. 3. 
One finds that the CMB temperature spectrum in �(t)CDM signif-
icantly differs from that in �CDM (black line) when λ1 	 0. This 
gives us a hint that λ1 would be relatively small in order to fit the 
spectrum. Our results demonstrate that the allowed matter cre-
ation from the cosmological constant should be tiny.

4. Observational constraints

We now examine the possible ranges for λ0 and λ1 by the 
cosmological observations. We use the open-source CosmoMC pro-
gram [39] with the MCMC method to perform the global fitting for 
the �(t)CDM model. The dataset includes (i) Planck 2015 TT, TE, 
EE, low-l polarization and lensing from SMICA [42–44]; (ii) baryon 
acoustic oscillation (BAO) data from 6dF Galaxy Survey [45], SDSS 
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Fig. 3. The matter power spectrum P (k) as a function of the wavelength k = 2π/λ with (a) Cr = 1 and (b) Cr = 0, where (λ0, λ1) = (1, 0) (black line), (0.9, 0.1) (red line), 
(0.5, 0.5) (blue line), (0, 1) (cyan line), and the boundary conditions are taken to be 
bh2 = 2.23 × 10−2, 
ch2 = 0.119, h = 0.7 and �mν = 0.06 eV, respectively. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 4. The CMB temperature power spectrum for (a) Cr = 1 and (b) Cr = 0 with T = 2.73 K , where legend is the same as in Fig. 3. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)
Table 1
Priors for cosmological parameters with ρ� =
ρ0

� [λ0 + λ1 H/H0] and λ0 + λ1 = 1.

Parameter Prior

Baryon density 0.5 ≤ 100
bh2 ≤ 10
CDM density 10−3 ≤ 
ch2 ≤ 0.99
Optical depth 0.01 ≤ τ ≤ 0.8
Neutrino mass sum 0 ≤ �mν ≤ 2 eV
Model parameter λ1 0 ≤ λ1 ≤ 0.3

DR7 [46] and BOSS [47]; (iii) matter power spectrum data from 
SDSS DR4 and WiggleZ [48], and (iv) weak lensing data from 
CFHTLenS [49]. With this dataset, we keep the model parameter 
λ1 ≥ 0 to avoid the negative dark energy density and explore the 
constraints on λ1 and other cosmological parameters. The priors of 
the various parameters are listed in Table 1, and our results are 
shown in Fig. 5.

From Fig. 5, we find that λ1 is strongly constrained with λ1 =
σ H0/(σ H0 +�0) � σ H0/�0 � 6.68 × 10−2 (2.63 × 10−2) for Cr =
1(0) at 2σ -confidence level, which is consistent with the predic-
tion in Sec. 3. Additionally, the best-fit χ2

�(t) = 13546.5 (13545.7) 
for Cr = 1(0) in the �(t)CDM is slightly larger than χ2

� = 13545.3
in the �CDM model. Since the cosmological observations prefer 
the �CDM limit, the effect from the decaying dark energy model 
is strongly confined. Finally, the allowed ranges for the various cos-
mological parameters with 2σ -confidence level are summarized in 
Table 2.

5. Conclusions

We have investigated the �(t)CDM model with the dark energy 
decaying to both matter and radiation, in which �(t) = σ H + �0. 
Although this scenario is suitable to describe the late-time accel-
erating universe at the background level, the linear perturbation 
analyses of the matter power and CMB temperature spectra have 
set a strong constraint on the model parameter λ1 in Eq. (7). Ex-
plicitly, by performing the global fit from the observational data, 
we have obtained that λ1 � σ H0/�0 � 6.68 × 10−2 (2.63 × 10−2) 
and χ2

�(t)CDM = 13546.5(13545.7) � χ2
�CDM = 13545.3 for Cr =

1(0), implying that the current data prefers the �CDM limit. Con-
straints on other cosmological parameters in both �(t)CDM and 
�CDM models have been also given in Table 2.
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Fig. 5. One and two-dimensional distributions of 
bh2, 
ch2, τ , �mν , λ1, σ8 and zeq , where the contour lines represent 68% and 95% confidence levels, respectively. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 2
List of allowed regions as 95% C.L. with ρ� = ρ0

� [λ0 + λ1 H/H0] and λ0 + λ1 = 1, where χ2
Best-fit = χ2

CMB + χ2
BAO + χ2

MPK + χ2
lensing.

Parameter �(t)CDM with Cr = 1 �(t)CDM with Cr = 0 �CDM

Model parameter (λ1) < 6.68 × 10−2 < 2.63 × 10−2 0
Baryon density (100
bh2) 2.21+0.04

−0.05 2.25 ± 0.04 2.23 ± 0.04
CDM density (
ch2) 0.117 ± 0.002 0.119+0.003

−0.002 0.118 ± 0.002

Optical depth (τ ) 6.71+2.83
−2.62 × 10−2 6.74+2.79

−2.62 × 10−2 6.99+2.83
−2.77 × 10−2

Neutrino mass sum (�mν ) < 0.189 eV < 0.194 eV < 0.221 eV
σ8 0.791+0.034

−0.035 0.799+0.025
−0.029 = 0.805+0.026

−0.028

zeq 3298+82
−94 3414+117

−98 3351 ± 46

χ2
Best-fit 13546.5 13545.7 13545.3

χ2
CMB 13032.4 13032.2 13031.1

χ2
BAO 4.3 4.3 4.8

χ2
MPK 479.9 479.6 480.0

χ2
lensing 29.9 29.5 29.4
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