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Let X be an (r!1)-connected space with r*2. Whitehead embedded the Hurewicz homomor-
phism h in the long exact sequence

2PH
n`1

XPC
n
XPn

n
X h&" H

n
XPC

n~1
XP2. (1)

The classical Hurewicz theorem is equivalent to the fact that C
j
X"0 for j)r. Whitehead [32]

computed the group C
r`1

X and the group C
r`2

X was computed by Baues in [5]. In this paper we
show that there is a &&homotopy operation spectral sequence'' which converges to the groups C

n
X,

n'r. The E2-term of the spectral sequence is given by certain homotopy operation functors Ck
r
and

their derived functors ¸
i
Ck

r
. The functors Ck

r
are algebraically determined by properties of

homotopy groups of spheres and can be described explicitly for low k. The spectral sequence is the
canonical generalization of the computation of C

r`1
X and hence it establishes the algebraic

structure of homotopy groups Whitehead's program asked for 50 years ago. A di!erent but related
spectral sequence converging to the homology of X is due to Blanc [10].

The classical homotopy operations on homotopy groups n
*
(X) of the space X are given by the

=hitehead product [a, b]3n
n`m~1

(X) for a3n
n
(X) and b3n

m
X and by composites a L g3n

j
(X).

Here g3 n
j
(Sn) is an element in a homotopy group of a sphere Sn, j'n. The Hilton}Milnor

theorem shows that the classical operations, in fact, generate all homotopy operations on n
*

(X).
Hence if we know the homotopy groups n

r
(X), n

r`1
(X),2 , n

r`k~1
(X) we can construct elements

in n
r`k

(X) by applying appropriate homotopy operations to elements in n
r
(X),2 , n

r`k~1
(X).

This way we obtain the &&decomposable'' part in the group n
r`k

(X) which lies in the kernel of the
Hurewicz homomorphism. We show that the &&decomposable'' part is the image of a natural
homomorphism

gk :Ck
r
(g1,2 , gk~1) c&" C

r`k
(X)&"n

r`k
(X). (2)
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Here Ck
r
denotes the homotopy operation functor de"ned algebraically on tuples (g1,2, gk~1) of

previous homomorphisms.
The homotopy operation spectral sequence converges to the groups C

r`*
(X) and contains c in

(2) as the edge homomorphism. The spectral sequence describes exactly those properties of the
unknown group C

r`k
(X) which are determined by the known groups n

r
(X),2 , n

r`k~1
(X) and

the known homomorphisms g1,2, gk~1. Together with the exact sequence (1) this yields informa-
tion on the unknown group n

r`k
(X). The procedure is a fundamental new tool to compute the

homotopy groups n
r`k

(X) of a space inductively. In particular, since the spectral sequence admits
a vanishing line, we obtain for small k the information about C

r`k
(X) already by exact sequences.

For small k we describe the algebraic functors Ck
r

and the corresponding exact sequences for
C
r`k

(X) explicitly. This extends the computation of C
r`1

(X) and C
r`2

(X) of Whitehead [32] and
Baues [5].

The key homological ingredient for the construction of the homotopy operation spectral
sequence is the E

2
-model category of simplicial spaces introduced and studied by Dwyer et al.

[19, 2]; see Section 6.
We discuss a few applications of the spectral sequence. For example, we obtain a new

homotopy invariant of a simply connected closed six-dimensional manifold; see (5.11). Moreover,
we obtain the explicit primary obstruction for the realizability of a n-algebra; see (3.3). We also
compare the homology of the classical groups SL (Z), St (Z) with the K-theory of Z; see (3.6)
and (5.16).

1. Homotopy operations and the associated homotopy operation functors

We consider the category of homotopy operations given by the homotopy category consisting of
one-point unions of spheres. Such homotopy operations act on the homotopy groups n

*
(X) of

a space X. Moreover, homotopy operations determine canonically a sequence of functors Ck
r
, r*2,

k*1 which we call homotopy operation functors. The derived functors ¸
i
Ck

r
yield the E

2
-term of

the spectral sequence in the next section.
Let Top*/K be the homotopy category of pointed topological spaces.

(1.1) De5nition. The category P of homotopy operations is the full subcategory of Top*/K
consisting of "nite one point unions of spheres of dimensions *1. We also consider the full
subcategories (r*2, k*0)

Pk
r
LP

r
LP.

Here P
r
consists of all "nite one point unions of spheres of dimension *r and Pk

r
consists of all

"nite one point unions of spheres Sn with r)n)r#k. The one point union of objects is the
categorical coproduct in P.

Recall that a theory T is a small category in which "nite coproducts denoted by AsB exist. The
empty coproduct is the initial object * of T. Let Set be the category of sets. A model of the theory
T is a contravariant functor M : TPSet which carries "nite coproducts to products. A morphism
between such models is a natural transformation of functors. The resulting category of models is
denoted by model(T). (cf. [7, 8]).
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For example, the categories of homotopy operations P, P
r
, Pk

r
above are theories. A model of

P is also termed a P-algebra; see Stover [26, 21, 10]. A model of Pk
r
is denoted by n : Pk

r
PSet with

n
n
"n (Sn) for r)n)r#k. (1.2)

Since Sn is a cogroup in P we see that n
n
is a group which is abelian for n*2. Moreover, one has

the canonical functor

G
n
: model (Pk

r
)PAb. (1)

Here Ab is the category of abelian groups and G
n

carries the model n to the abelian group
G

n
(n)"n

n
in (1.2). In fact, for k"0 and r*2 the functor

G
r
: model (P0

r
)+Ab (2)

is an isomorphism of categories which we shall use as an identi"cation. Since n carries "nite
coproducts to products we see that the values of n on objects in Pk

r
are completely determined by

the sequence of groups (n
r
, n

r`1
,2 , n

r`k
).

(1.3) Remark. In view of Hilton's analysis of the homotopy groups of a one point union of spheres
([34] XI) one can consider a P-algebra n as a graded group (n

1
,n

2
,2) with n

n
abelian for n*2,

together with Whitehead product homomorphisms

[!,!] : n
n
?n

m
Pn

n`m~1

(n, m*2) and composition functions a* : n
m
Pn

n
for a3 n

n
(Sm) and a left action of n

1
on the

n
n

(n*2) which commutes with these operations. Moreover, these operations satisfy &&all the
identities that hold for the homotopy groups of pointed topological spaces''. This statement (as
used in [11, 21]) is rather vague. A complete and deep algebraic analysis of the relations in terms of
James}Hopf invariants was achieved in the thesis of Dreckmann [17], cf. [18].

One has the canonical functor

Top*/KPmodel (Pk
r
) (1.4)

which carries a topological space X to the model

n
*

(X)"[!, X] : Pk
r
PSet

de"ned on S3%k
r
by the set of homotopy classes [S, X]. If S is the "nite one point union S"Sn1

s2sSnt of spheres Sni with r)n
i
)r#k then clearly

[S, K]"n
n1

(X)]2]n
nt
(X)

is a product of homotopy groups of X. A map SPS@ in Pk
r

induces a &&homotopy operation''
between such products of homotopy groups.

(1.5) De5nition. The homotopy operation functor Ck`1
r

with r*2, k*0 is de"ned by the
composite

Ck`1
r

: model (Pk
r
) *&"model (Pk`1

r
)

G
r`k`1

&&" Ab
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where D is the left adjoint of the functor

j* : model (Pk`1
r

) &" model (Pk
r
)

induced by the inclusion j : Pk
r
L%k`1

r
. In 7.4 [8] an explicit description of the left adjoint D is

given.
In the next result we use the following well-known comma category CA of a functor C :CPA.

The objects of the category CA are triples (X,A, g) where X is an object in C and g : C (X)PA is
a homomorphism in A. Morphisms (X,A, g)P (>,B, j) in CA are pairs ( f, g) where f : XP> is
a morphism in C such that the diagram

commutes in A. An object (X, A, g) is also denoted by g.

(1.6) Proposition. ¸et Ck`1
r

Ab be the comma category of the homotopy operation functor Ck`1
r

. ¹hen
there is a canonical isomorphism of categories

model (Pk`1
r

)"Ck`1
r

Ab.

Proof. Since Pk`1
r

is a graded theory in the sense of (8.1A) [8] we obtain the result by (8.4) and (7.7)
in [8]. Q.E.D.

Using isomorphism (1.6) as an identi"cation we obtain by (1.2)(2) inductively the sequence of
functors C1

r
, C2

2
,2 (also termed homotopy operation functors) with

C1
r
: AbPAb

Ck`1
r

: Ck
r
AbPAb, k*1 (1.7)

This is an iterated comma category satisfying model (Pk
r
)"Ck

r
Ab. Hence a model n of Pk

r
can be

identi"ed with a graded abelian group n
*
"(n

r
,n

r`1
,2 , n

r`k
) together with a sequence of

homomorphisms

g1 : C1
r
(n

r
)Pn

r`1
g2 : C2

r
(g1)Pn

r`2
g3 : C3

r
(g1, g2)Pn

r`3
F

gk :Ck
r
(g1,2 , gk~1)Pn

r`k
.

(1)

Such sequences describe objects in the iterated comma category. For any model n of Pk
r
the graded

abelian group n
*

has a graded subgroup P(n)Ln
*
, generated by all elements which are in the
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image of a nontrivial primary homotopy operation (i.e. any homotopy operation which vanishes in
homology). In fact, we have in degree t with r)t)r#k

P
t
(n)"G

0 for t"r,

image (gq :C q
r
(g1,2, gq~1)Pn

t
) for t'r, q"t!r.

(2)

The quotient group

Q
t
(n)"n

t
/P

t
(n)"G

n
r

for t"r,

cok (gq) for t'r, q"t!r,
(3)

will be called the indecomposables in degree t of the model n. Hence Q
t

yields a functor
Q

t
: model (Pk

r
)PAb.

(1.8) Remark. A P-algebra n is the same as a n
1
-object in the category model(P

2
) and hence the

P-algebra n can be equivalently described by a group n
1

and a sequence (n
2
, n

3
,2) of left

n
1
-modules together with a sequence of n

1
-equivariant homomorphisms

g1 : C1
2
(n

2
)Pn

3
gk`1 : Ck`1

2
(g1,2 , gk)Pn

2`k`1
, k*1.

Hence only the homotopy operation functors Ck
2
, k*1, are needed to de"ne a P-algebra n.

Whitehead [32] computed the homotopy operation functor C1
r

by

C1
r
(n

r
)"G

C (n
2
) for r"2,

n
r
?Z/2 for r*3.

(1.9)

Here C is the universal quadratic functor de"ned as follows. A function f :APB between abelian
groups is termed quadratic if f (!a)"f (a) and if the function A]APB with
(a,b)C f (a#b)!f (a)!f (b) is bilinear. For each abelian group A there is a universal quadratic
function c : APC (A) which de"nes the functor C. If n"n

*
X is given by (1.4) then the composite

n
2

c&" C (n
2
)

g1

&" n
3

coincides with the map n
2
XPn

3
X induced by the Hopf map g

2
3n

3
(S2). cf. [5].

As a further example the homotopy operation functor C2
r

is given as follows where
g1 : C1

r
(n

r
)Pn

r`1
. See 11.3.3, 9.3.3 and 8.3.5 in [5].

C2
r

(g1)"G
C2

2
(g1) for r"2,

n
4
?Z/2 =K2 (n

3
) for r"3,

n
r`1

?Z/2 for r*4.

(1.10)

Here K2 (A)"A?A/(a? a&0) is the exterior square of the abelian group A and C2
2

(g1) is
de"ned by the pushout diagram in Ab
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The group ¸(A, 1)
3

is the image of the homomorphism Ac3PAc3 which carries a? b ? c to

[[a, b], c]"(a? b#b ? a)? c!c? (a ? b#b ? a) (2)

with a, b, c3A. Moreover, the quotient map q is the inclusion on C (n
2
) ?Z/2 and satis"es

q (c (a) ? b)"![[b, a],a]#(c (a#b)!c (a)!c (b))? 1 (3)

with 13Z/2 and a, b3n
2
.

The next somewhat technical remark is of importance only in Section 5 below so that it can be
skipped. On the other hand, a reader interested in the paper Baues [8] "nds in this remark the
simplest examples of &&reduction functors'' which play a crucial role in [8].

(1.11) Remark. For s*0 let Abs"Ab]2]Ab be the s-fold product of the category Ab. We
de"ne in Section 4 [8] a system of reduction functors

Cn`1
r,e

: (Cn
r
Ab)]Ab @ e @&"Ab

associated to the iterated comma category (C1
r
, C2

r
,2). Here e"(e1, e2,2 , et) is a "nite sequence

of integers ei*0 with t*0 and D e D is the number of integers ei'0 in e. Clearly, for the empty
sequence t"0 the functor coincides with Cn`1

r
. The reduction functors are useful to obtain

information on the vanishing line for the derived functors ¸
i
Ck
r
in (1.12) below with k"n#1#t.

As an example we consider the case k"r"2. Using (1.10) (1) above one gets the exact sequence in
the top row of the following diagram where Q (g1)"cok (g1) and where we use the reduction
functors C1

2,(0)
and C1

2, (1)
with C0

r
Ab"Ab.

By (2.6) [5] we obtain for the functor K"C2
2
: C1

2
AbPAb the exact sequence in the bottom row of

the diagram which shows that the reduction functors C1
2,(0)

and C1
2,(1)

are given by the equations in
the diagram. The exact sequence is short exact if g1 is split injective. In Section 5 we shall use the
exact sequence to study the derived functors ¸

i
C2

2
. We point out that the exact sequence in the

diagram is also studied in Appendix 11.3A [5] where a relation with the &&nilization functor'' is
described.

As usual we obtain for the category C the category sC of simplicial objects in C.

(1.12) De5nition. For each object

X3model (Pk
r
)"Ck

r
Ab

there is a resolution

Xv 3 s model (Pk
r
)"s Ck

r
Ab
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which either can be chosen to be a free simplicial resolution de"ned by Blanc (3.2.2) [10] or
a resolution as in Baues 3.3 [8]. Then the derived functors

¸
i
Ck`1

r
: Ck

r
AbPAb

are de"ned by the homotopy groups

¸
i
Ck`1

r
(X)"n

i
(Ck`1

r
(Xv))

of the simplicial abelian group Ck`1
r

(Xv). One has ¸
0
Ck`1

r
"Ck`1

r
.

For example the derived functors of C1
r

are the derived functors in the sense of Dold and Puppe
[16] satisfying

¸
1
C1
r
(A)"G

C¹ (A) for r"2,

A*Z/2 for r*3.
(1.13)

Here C¹ (A) is the C-torsion in (11.12) [5] (see also (5.5)(3) below) and A* B"Tor (A, B) is the
torsion product of abelian group A and B. The cross e!ect of the C-torsion is C ¹ (A DB)"A* B
and for cyclic groups we have C¹ (Z)"0 and C¹ (Z/n)"Z/n * Z/2. Moreover ¸

i
C1

r
"0 for i*2;

see 6.14.9 [5]. The next result is a consequence of the vanishing line of Blanc [10]; an additional
proof of this result is contained in [8].

(1.14) Proposition. ¹he derived functors ¸
i
Ck

r
are trivial, that is ¸

i
Ck
r
"0, for r53 and i*2k.

Moreover for r"2 one has ¸
i
Ck
2
"0 if i'2k.

We conjecture that also ¸
i
Ck

2
"0 for i"2k; for example, we have ¸

2
C1
2
"0 by (1.13) and in

(5.12)(8) we shall show ¸
4
C2
2
"0. For the proof of (1.14) we observe that we have by 3.6 [8] the

following connection between the derived functors ¸
i
Ck
r

and the derived functors ¸
j
Q

t
of the

functor Q
t
of indecomposables in (1.7)(3):

¸
i`1

Q
r`k

"¸
i
Ck
r

for i*1. (1.15)

Moreover, for a model n of Pk
r

the sequence

0P (¸
1
Q

r`k
) (n)PCk

r
(g1,2 , gk~1)

gk

&" n
r`k

PQ
r`k

(n)P0 (1.16)

is exact with Q
r`k

"¸
0
Q

r`k
. The derived functors ¸

j
Q

t
were studied by Blanc [10]. Therefore

(1.14) is a consequence of 4.1 [10]. The exact sequence (1.16) shows that ¸
1
Q

t
can be computed by

use of the homotopy operation functor. In addition, 5.1.1 [10] shows

(¸
2k~1

Ck
r
) (n)"n

r *
Z/2 for r*1, k*1. (1.17)

For k"1 this is compatible with (1.13).
For small k (k)19) the categories Pk

r
are completely known by the results in Toda's book [27].

Therefore, in principle, it is possible to compute the corresponding homotopy operation functors
Ck
r

and the derived functors ¸
i
Ck

r
. The rich structure of homotopy groups of spheres, however,

implies that such a computation is of high complexity.
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2. The spectral sequence based on homotopy operations

Let X be an (r!1)-connected CW-complex with r*2. The C-groups C
n
X in the &&certain exact

sequence'' of Whitehead [32]

2&"H
n`1

X b&" C
n
X i&"n

n
X h&" H

n
X b&" C

n~1
X P2

are de"ned by

C
n
X"image Mn

n
Xn~1 j&" n

n
XnN . (2.1)

Here Xn denotes the n-skeleton of X and the map j is induced by Xn~1LXn . Moreover, the
operator i in the exact sequence is induced by XnLX. The operator h is the Hurewicz homomor-
phism and the secondary boundary b is induced by attaching maps of n-cells, cf. for example [5],
where many further properties of Whitehead's exact sequence are studied. Since X is (r!1)-
connected we may assume that Xr~1"* is a point and therefore C

j
X"0 for j)r. Hence the

sequence terminates as follows where we omit X in the notation so that n
t
"n

t
X.

Here g1, g2,2 are given by the model n
*

(X) of P
r
de"ned as in (1.4). We claim that for k*1 there

exists a natural commutative diagram

(2.2)

where gk is de"ned as in (1.7)(1); that is, there is a transformation c which is natural in X and which
satis"es gk"ic. In fact, using (2.1) we see that c exists since all homotopy operations involved in the
de"nition of Ck

r
are de"ned on elements in degree (r#k and such elements live in the skeleton

Xr`k~1. Whitehead [32] showed that

c : C1
r

(n
r
(X)) "&" C

r`1
X (2.3)

is an isomorphism for all (r!1)-connected spaces X. This result now is generalized by the
following spectral sequence which is constructed in Section 6 below.

(2.4) Theorem. ¸et X be an (r!1)-connected space with r*2. ¹hen there is a natural spectral
sequence MEr

p,q
N with di+erential dr : Er

p,q
PEr

p~r,q`r~1
satisfying

E0
0,q

"Cq
r
(g1,2 , gq~1)

E2
p,q

"(¸
p
!q
r
) (g1,2, gq~1)
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with p, q*1. ¹he sequence converges to C
r`*

X such that the edge homomorphism

E2
0,q

"Cq
r
(g1,2, gq~1) { E=

0,q
LC

r`q
(X)

coincides with c in (2.2).

Using the vanishing line (1.14) we see that the spectral sequence looks like

Only for p(2q with r*3 (resp. p)2q with r"2) the E2-term is non trivial. The terms E2
p,q

with
p#q"k contribute to C

r`k
(X). This, in fact, proves that for k"1 the map c in (2.3) is an

isomorphism. Moreover, we derive from the spectral sequence the results in the following sections.

(2.5) Addendum. If X is a connected pointed CW-complex with universal covering XI then we can
apply the spectral sequence (2.4) to XI . Hence, there exists a natural spectral sequence MEr

p,q
N

consisting of n
1
(X)-modules with n

1
(X)-equivariant di!erentials satisfying

E2
0,q

"Cq
2

(g1,2, gq~1)

E2
p,q

"(¸
p
Cq
2
) (g1,2 , gq~1)

with p, q*1. This sequence converges to the n
1
(X)-module C

2`*
(X)"C

2`*
(XI ) such that the

edge homomorphism coincides with c in (2.2) (cf.) (1.8)).

3. The group C
r`2

X of an (r!1)-connected space

The next theorem is an immediate consequence of the spectral sequence (2.4) since ¸
2
C1

r
"0

by (1.12). In this section we describe various speci"cations and applications of this result.

(3.1) Theorem. ¸et X be an (r!1)-connected space with r*2. ¹hen there is a natural short exact
sequence

0&"C2
r

(g1)PC
r`2

X&" (¸
1
C1

r
) (n

r
) &" 0

where g1 : C1
r
(n

r
)Pn

r`1
with n

*
"n

*
(X).

Using (1.10) and (1.13) we see that there are the following three cases of (3.1).

(1) Corollary. ¸et X be a 1-connected space and let

g1 : C (n
2
(X)) &" n

3
(X)
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be induced by the Hopf map g
2
3n

3
(S2), that is, g1 c(a)"ag

2
for a3n

2
(X); see (1.9). ¹hen there is

a natural short exact sequence

0PC2
2

(g1) c&" C
4
(X) k&" C¹ (n

2
(X)) &" 0

where C2
2

(g1) is de,ned in (1.10)(1) and where C¹ is the C-torsion in (1.13).

(2) Corollary. ¸et X be a 2-connected space and let

g1 : n
3

(X)?Z/2&" n
4

(X)

be induced by the Hopf map g
3
3n

4
(S3), that is g1 (a? 1)"ag

3
for a3n

3
(X). ¹hen there is

a natural short exact sequence

0&"n
4

(X) ?Z/2 =K2 (n
3

(X)) c&" C
5
(X) k&" n

3
(X) *Z/2P0.

where K2 is the exterior square in (1.10).

(3) Corollary. ¸et X be an (r!1)-connected space with r*4 and let

g1 : n
r
(X) ? Z/2Pn

r`1
(X)

be induced by the Hopf map g
r
3n

r`1
(Sr), that is g1 (a? 1)"ag

r
for a3n

r
(X). ¹hen one has

a natural short exact sequence

0 P n
r`1

(X)?Z/2 c&" C
r`2

(X) k&" n
r
(X) * Z/2&" 0.

The exact sequence (3) was already achieved by Whitehead [33], who also determined the
extension in (3). Moreover, the exact sequences (1)}(3) were obtained using di!erent methods by
Baues [5] 11.3.3, 9.3.3 and 8.3.5, respectively. Also, the extension problems for (1)}(3) are solved in
[5] as follows.

(3.2) Remark on the extension problem. In (3.1)(3) the extension is determined by the homomor-
phism

E :n
r *

Z/2 &" n
r`1

?Z/2 (1)

de"ned by E(x)"c~1 2 k~1 (x) for x3n
r *

Z/2. Here E"E
r
(g1) coincides with the composite.

E
r
(g1) : n

r * Z/2 i&" n
r

q&" n
r
?Z/2

g1

&" n
r`1

q&" n
r`1

?Z/2"C2
r

(g1) (2)

where i and q are the canonical maps, r*4. For extension (3.1)(2) we know that K2 (n
3
) is a direct

summand of C
5
X and the remaining summand is an extension given as in (2) by qg1qi. Let E

3
(g1)

be the composite

E
3
(g1) : n

3 * Z/2 i&" n
3

q&" n
3
?Z/2

g1

&" n
4

q&"
q&" n

4
?Z/2 j&" n

4
?Z/2=K2 (n

3
)"C2

3
(g1) (3)

where j is the inclusion.
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The situation for extension (3.2)(1) is more complicated. Let A"n
2

and let K be a basis of the
Z/2-vector space A?Z/2. Then the cross e!ects of the functors C and C¹ show that the choice of
such a basis yields canonically an isomorphism

t
K

:C¹ (A ?Z/2) + C (A? Z/2) ?Z/2.

Hence we get an extension

0&" C (A)?Z/2 *&" nA
4
(A) k&" C¹ (A)&" 0

which is determined by E"D~1 ( ) 2) k~1 where E is the composite

E
K

:C¹( A)
q*

&" C¹ (A?Z/2)
t
K

&" C (A ?Z/2) ?Z/2"C (A)?Z/2. (4)

Now consider the following push out of abelian groups:

(5)

Here g1
*

is the homomorphism in (1.10)(1). Then the bottom row of (5) determines the extension in
(3.1)(1). We de"ne the homomorphism E

2
(g1) by the following composite with A"n

2
:

E
2
(g1) : C¹ (A)

E
K

&" C (A)?Z/2 j&" ¸ (A, 1)
3
=C (A)?Z/2

g1
*

&" C2
2

(g1) . (6)

Here j denotes the inclusion and E
K

and g1
*

are given by (4) and (5). The homomorphisms E
r
(g1)

above with r*2 are used in the following theorem. We point out that all extensions (3.1)(1)}(3) are
completely determined by g1.

Blanc [12] considers the problem of realizing an abstract P-algebra n by a space X so that
n+n

*
X in model (P). Concerning this problem we get as a consequence of (3.1) and (3.2) the

following new result which describes the ,rst obstruction for realizability.

(3.3) Theorem. ¸et r*2.
(A) ¸et n be a model of P1

r
given by g1 :C1

r
(n

r
)Pn

r`1
. ¹hen n is realizable by an (r!1)-connected

space X. ¹he ,rst k-invariant of X is given by g1.
(B) ¸et n be a model of P2

r
given by g1 and g2 : C2

r
(g1)Pn

r`2
. ¹hen n is realizable by an

(r!1)-connected space if and only if the obstruction O(n)"g2 L E
r
(g1) vanishes. Here O(n) is

the composite of g2 and the homomorphism E
r
(g1) in (3.2).

Proof. Proposition (A) is an easy consequence of Whitehead's classi"cation of (r!1)-connected
(r#2)-dimensional homotopy types; cf. for example 3.5.6 [5]. Next, we prove (B). If n is realizable
by a space X then the existence of the commutative diagram (2.2) with k"2 implies that O (n)"0;
here we use (3.2). On the other hand, if O (n)"0 then there exists a commutative diagram with
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exact row and column as follows:

Here the column is given by the extension in (3.2) and H
r`3

is free abelian. Now the &&theorem on
the realizability of the Hurewicz homomorphism'' 3.4.7 [5] implies that the exact row of the
diagram is realizable by an (r!1)-connected (r#3)-dimensional space. Q.E.D.

(3.4) Example. Cochran and Habegger [15] compute the homotopy group n
4
(M) of a closed

simply connected four-dimensional manifold M. This result is a consequence of (3.1). We have the
homology groups H

4
M"Z, H

3
M"0 and H

2
M is free abelian. Hence we have the exact sequence

0 &" C
4

M&" n
4
M&" H

4
M b&" C (H

2
M)

g
1

&" n
3
M&" 0.

Here b carries the generator to the intersection form of M; see (8.10) [6]. Hence b is injective and
g1 is the cokernel map of b. Moreover, by (3.1) we see that

n
4
M"C

4
M"C2

2
(g1)

is algebraically determined by g1 since C¹ (H
2
M)"0.

(3.5) Example. Let M be a closed simply connected "ve-dimensional manifold or PoincareH
complex. Then we get the natural diagram

by (3.1)(1). The fundamental class [M] is the generator of H
5
M and the element

kb [M]3C¹ (H
2
M)

is a homotopy invariant of the manifold M. This is the torsion invariant in 9.8 [4]; compare also
1.16 [9]. We generalize this torsion invariant for simply connected six-dimensional manifolds in
(5.4) below.

(3.6) Example. Let GL(Z) (resp. SL(Z)) be the in"nite general (resp. special) linear group. Let
KI (Z) be the simply connected cover of the algebraic K-theory space K(Z)"B(G¸(Z))`. Then we
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have

K
n
(Z)"n

n
KI (Z)

H
n
SL (Z)"H

n
KI (Z)

(1)

for n*2. Hence Whitehead's exact sequence for the space KI (Z) has the form (see [31])

Here ¹
3

is 3-torsion and g1 is the map Z/4{Z/2LZ/48. Therefore we can compute C
4

by
(3.1)(1) and (3.2) and this yields C

4
"(Z/2)3. Let K(g1, 2) be the "ber of the map

g1 : K (Z/2, 2)PK (Z/48,4) given by the homomorphism g1. Since K
4
Z"0 we see that

C
5
"H

6
K (g1, 2) is 2-torsion. In fact C

5
"C

5
KI ( Z) is computed in (5.16) below. Therefore we get

the short exact sequence

0PZ=¹
3
&"H

5
SL (Z)&" (Z/2)3 &" 0. (2)

This sequence is actually nonsplit so that H
5
SL (Z)"Z=¹

3
= (Z/2)2. To see this we observe that

the 2-connected cover KII (Z) of K (Z) satis"es

H
n
St (Z)"H

n
KII (Z) (3)

for n*3 where St (Z) is the in"nite Steinberg group. Then the map g :KII (Z) PKI (Z) induces the
following commutative diagram for the Whitehead sequences:

(4)

in which the top row is nonsplit so that g
*

is split injective with cokernel (Z/2)2 (cf. [1, 2]). In (5.16)
we give a further argument that the bottom sequence of (4) is non split. The extensions of the short
exact sequences in (4) characterize nontrivial k-invariants k

5
of the spaces KII (Z) and KI (Z),

respectively. This follows from the &&Theorem on Postnikov invariants'' 2.5.10 [5]. The top row of
(4) shows that the k-invariant k

5
of KI I (Z) is the nontrivial element in

0Ok
5
3H6 (K (Z/48, 3), Z =¹

3
)"Z/2. (5)

One can apply the Whitehead sequence also to the space KII (Z) to obtain the exact sequence

K
6
Z &" H

6
St (Z) &" C

5
&" 0 (6)

where C
5
"Z/2 as is easily seen by (3.1)(2). Since K

6
Z is odd torsion we thus have

H
6
St (Z)"Z/2 =odd torsion.
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4. On the functors Ck
r
&03 k(r!1

In the stable range k(r!1 the suspension functor & : Pk
r
PPk

r`1
is an isomorphism of

additive categories. Therefore, the theory Pk
r
is completely determined by the k-skeleton nS

*)k
(S0)

of the stable ring of homotopy groups of spheres nS
*

(S0). A model of Pk
r
is the same as a nS

*)k
(S0)-

module so that for k(r!1 we have the functors Ck"Ck
r

which do not depend on r. These
functors form the iterated Grothendieck construction

C1 : AbPAb

Ck`1 : Ck AbPAb, k*1. (4.1)

Here all functors Ck and categories Ck Ab are additive. In low degrees )6 we have in nS
*

(S0) only
the algebra generators g and l (in dimension 1 and 3, respectively) and a in dimension 3 with the
relations

2g"0, 4l"g3, gl"lg"0, 2l2"0 and 3a"0, a2"0.

This implies that the functors Ck with k)6 are given as follows. For a homomorphism
f : APB3Ab we use the notation

f
c
"f ?Z/n :A?Z/n&"B?Z/n

and q : BPB/ f A is the quotient map for the cokernel of f. Let n
0
,2, n

6
be abelian groups. Then

the following system of homomorphisms g1,2 , g6 de"nes an object in C6 Ab.

C1 (n
0
)"n

0
?Z/2

g1

&" n
1

with g1"g* (1)

C2 (g1)"n
1
?Z/2

g2

&" n
2

with g2"g* (2)

C3 (g1, g2)"(n
0
?Z/3)=P

g3

&" n
3
. (3)

Here P is given by the push out in Ab

The left-hand column is induced by the inclusion 4 :Z/2LZ/8 and the bottom row is the
composite

(gg)*"g2
c

g1
c

: n
0

? Z/2 &" n
1
? Z/2 &" n

2
?Z/2.

Using g3 we obtain the action of a, g, l3 nS
*

(S0) by the composites

a* : n
0
?Z/3

g3

&" n
3

g* : n
2
?Z/2 &" P

g3

&" n
3

l* : n
0
?Z/8 &"P

g3

&" n
3
.
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Next, we get

C4 (g1, g2, g3)"n
1
?Z/3 =Q

g4

&"n
4
. (4)

Here Q is the push out

where (gg)*"(g*)
c

g2
c

with (g*)
c

given by (3). Using g4 we obtain again the action of a, g, l by the
composites

a* : n
1
?Z/3

g4

&" n
3

g* : n
3
?Z/2&" (n

3
/l*n

0
) ?Z/2 &"Q

g4

&" n
4

l* : n
1
?Z/8&" (n

1
/g*n

0
) ? Z/8 &" Q

g4

&" n
4
.

Next, we describe

C5 (g1, g2, g3, g4)"n
2
?Z/3 =R

g5

&" n
5
. (5)

Here R is the push out

where (gg)*"(g*)
c

(g*)
c

is given by g* in (3) and (4), respectively. Again we get by g5 the action

a* : n
2
?Z/3

g5

&" n
5

g* : n
4
?Z/2 &" (n

4
/l* n

1
) ?Z/2 &" R

g5

&" n
5

l* : n
2
?Z/8&" (n

2
/g*n

1
) ? Z/8&"R

g5

&" n
5
.

Finally, we describe
C6 (g1, g2, g3, g4, g5)"(n

3
/a*n

0
)?Z/3 =S

g6

&" n
6

(6)

where S is given by the following double push out diagram:
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Here n
0
?Z/8Pn

0
?Z/2 is the quotient map and l* is de"ned by (3) and (gg)* is de"ned by g* in

(4) and g* in (5).
In the paper [8] one "nds a general method for the computation of the derived functors ¸

i
Ck

r
.

Since in the stable range all functors Ck
r
"Ck (k(r!1) are additive the computation of ¸

i
Ck

r
is

possible only in terms of chain complexes of abelian groups. We obtain the computation of the
derived functors

¸
i
Ck`1 : Ck Ab&" Ab (4.2)

for small k as follows.
A weak resolution C

*
of an abelian group A is a chain complex C

*
"(2PC

1
PC

0
) of abelian

groups satisfying

H
i
C

*
"G

A for i"0,

0 otherwise.

This is a resolution if all C
i
are free abelian. Moreover C

*
has length )n if C

i
"0 for i'n.

Given an object (n
0
, n

1
,2, g1, g2,2) in the iterated comma category (4.1) we choose a length

1 resolution of n
0

C0
1
&" C0

0
&" n

0
(1)

and we choose inductively weak resolutions Ci
*

of n
i
of length 2i#1 together with the following

commutative diagrams in which all homomorphisms gk
i
, k*1, i*0, are split injective and have

a free abelian group as cokernel.

(2)

(3)

(4)

The homology of the top row in (2) is ¸
*
C1 so that by (4.1)(1) we have

¸
1
C1(n

0
)"n

0 *Z/2 (5)

and ¸
i
C1"0 for i'1. Moreover, the homology of the top row in (3) is ¸

*
C2 so that we get by use

of (4.1)(2) and the argument below the following result.
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(4.3) Proposition.

¸
1
C2 (g1)"(n

1 *Z/2)/g1 (n
0
?Z/2)

¸
2
C2 (g1)"ker (g1)

¸
3
C2 (g1)"n

0 * Z/2

¸
i
C2"0 for i'3.

Next, the homology of the chain complex (4) is ¸
*
C3 and inductively one gets this way the

derived functors ¸
i
Ck with ¸

i
Ck"0 for i'2k!1; cf. (1.14). Now it is easy to prove (1.17) in the

stable case.

Proof of Proposition 4.3. We obtain by (2) the short exact sequence of chain complexes

0&"C1C0
*
&"C1

*
&" B1

*
&" 0 (6)

with H
0
B1

*
"cok(g1), H

1
B1

*
"ker (g1) and H

2
B1

*
"n

0 * Z/2. We can apply the functor ?Z/2 to
(6) and we get the short exact sequence of chain complexes

0PC1C0
*
&"C2 (g1

*
)PB1

*
?Z/2&" 0 (7)

where the chain complex C2 (g1
*
) coincides with (3). Now (7) yields a long exact sequence of

homology groups. This shows

¸
3
C2 (g1)"H

3
C2 (g1

*
)"H

3
(B1

*
?Z/2)"n

0 *Z/2.

Moreover, we get this way the exact sequences

Here L is the canonical inclusion on ker(g1) so that we get the exact sequence

0&"¸
1
C2 (g1)&" cok (g1) * Z/2

L
&" im (g1)&"n

1
?Z/2.

But here L is the boundary associated to the 6-term exact sequence given by the short exact
sequence

0&" im(g1) &" n
1
&" cok (g1) &" 0.

This yields the formulas in (4.3). Q.E.D.
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5. On the group C
r`3

X of an (r!1)-connected space

Again the spectral sequence (2.4) yields immediately the next result which is a crucial tool for the
computation of the homotopy group n

r`3
(X). We describe various special cases and applications

of this result.

(5.1) Theorem. ¸et X be an (r!1)-connected space with r*2. ¹hen there is a natural exact
sequence

(¸
2
C2
r
) (g1)

d2
&" C3

r
(g1,g2) &" C

r`3
X&" (¸

1
C2

r
) (g1) P0

where g1 : C1
r

(n
r
X) &" n

r`1
(X) and g2 : C2

r
(g1) &" n

r`2
(X).

Recall that the functors C1
r

and C2
r

are completely understood by (1.9) and (1.10). In the theorem
the derived functors ¸

i
!2
r

and the functor C3
r

are needed.
For example, we get by (4.1)(3) and (4.3) the following stable case of Theorem (5.1).

(5.2) Corollary. ¸et X be an (r!1)-connected space with r*5 and let

g1"g* : n
r
(X) ?Z/2 &" n

r`1
(X)

g2"g* : n
r`1

(X)?Z/2&"n
r`2

(X)

be induced by the Hopf maps g"g
r
3n

r`1
Sr and g"g

r`1
3n

r`2
Sr`1 respectively. ¹hen there is

a natural exact sequence

ker (g1) d2
&" n

r
(X) ?Z/3 = P&"C

r`3
(X)&" n

r`1
(X) * Z/2

g1 (n
r
(X) ? Z/2)

&" 0.

Here P is the push out of

n
r
(X)? Z/8

1? 4
$&n

r
(X)?Z/2

(gg)*
&" n

r`2
(X) ?Z/2.

(5.3) Remark. The exact sequence in (5.2) depends only on the (r#2)-type of X which is classi"ed
by an algebraic invariant (termed an &&injective A3-system'') in 8.1.6 [5]. Therefore, it should be
possible to compute d2 and the extension problem in the exact sequence (5.2) only in terms of the
A3-system associated to X similarly as this is done in Remark (3.2).

A similar explicit form of Theorem (5.1) for the unstable cases r"2, 3, 4 is needed though the
relevant computations are quite involved. For CW-complexes with torsion free homology such
computation can be found in UnsoK ld [28]. We need notation on quadratic functors as follows; cf.
6.13 [5].

(5.4) De5nition. A quadratic Z-module M is a diagram

M"(M
e

H&"M
ee

P&"M
e
)
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in Ab satisfying PHP"2P and HPH"2H. For an abelian group A we de"ne the quadratic tensor
product A?M generated by the symbols a?m, [a, b]? n with a, b3A, m3M

e
, n3M

ee
. The

relations are

(a#b)?m"a?m#b?m#[a, b] ?H(m)

[a, a]? n"a?P (n)

a?m is linear in m

[a, b]? n is linear in a, b and n, respectively.

Each M yields the quadratic functor ?M :Ab&"Ab which carries A to A? M. For example
Whitehead's functor C and the exterior square K2 yield the equations

C (A)?C"A? (C 1&" C 2&"C)

K2 (A)?C"A? (0P CP 0)

where C is an abelian group. We identify C"(CP0PC) since

A? C"A? (CP0PC)

is the usual tensor product of abelian groups. A map a"(a
e
, a

ee
) : MPN between quadratic

Z-modules is given by maps a
e
: M

e
&"N

e
, a

ee
: M

ee
&"N

ee
in Ab satisfying Ha

e
"a

ee
H,

a
e
P"Pa

ee
. Such a map induces a homomorphism 1 ? a : A? MPA?N which is natural in A.

Homotopy groups of spheres in the metastable range yield the quadratic Z-modules
(m(3n!2)

n
m

MSnN"(n
m

Sn H&" n
m

S2n~1 P&" n
m

Sn )

where H is the Hopf invariant and P is induced by the Whitehead product square P (a)"[i
n
, i

n
] a.

For example we have by 6.15.4 [5]

n
6

MS3N"(Z/4 1&" Z/2 0&" Z/4)=Z/3

n
7
MS4N"(Z=Z/4 (1, 0)&&" Z

(2,!1)
&&" Z = Z/4)=Z/3. (5.5)

These quadratic Z-modules are used in the next two corollaries of (5.1).

(5.6) Corollary. ¸et X be a 3-connected space and let

g1"g* : n
4
(X)?Z/2Pn

5
(X)

g2"g* : n
5
(X)?Z/2Pn

6
(X)

be induced by the Hopf maps g"g
4
3n

5
S4 and g"g

5
3n

6
(S5), respectively. ¹hen there is a natural

exact sequence

ker (g1) d&" n
4
(X) ?Z/3 =P

7
&" C

7
(X) &" n

5
(X) *Z/2

g1 (n
4

(X)?Z/2)
&" 0.
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Here P
7

is the push out in Ab of

n
4

(X)?M
id ? a

$&&n
4

(X) ?Z/2
(gg)*

&&" n
6

(X)?Z/2

where (gg)*"g2
c

g1
c

and where a is the map between quadratic Z-modules

a :Z/2"(Z/2&" 0&" Z/2)PM"( Z= Z/4 (1,0)&&" Z (2,~1)&&" Z=Z/4)

given by a
e
"(0, 2) and a

ee
"0.

For the proof of (5.6) we only observe that by (5.5) and relations in Toda [27]

C3
4

(g1, g2)"n
4
?Z/3=P

7
(5.7)

with P
7

de"ned as in (5.6). In the next corollary we use the exterior square torsion

K2 ¹ (A)"X (A)"(¸
1
K2) (A) (5.8)

which is the "rst left derived functor of K2. In the notation of Eilenberg and Mac Lane [22] this is
the functor X; cf. 6.2.10 [5]. The cross e!ect of K2¹ is the torsion product K2¹ (A D B)"A* B of
abelian groups and one has K2¹ (Z)"0 and K2¹ (Z/n)"Z/n. Using (1.10) it is easy to compute
the derived functors ¸

i
C2

3
(g1) by use of (4.3). This leads to the following result.

(5.9) Corollary. ¸et X be a 2-connected space and let

g1"g* : n
3
(X)?Z/2 &" n

4
(X)

g2"(g*, [!,!]) :n
4

(X) ? Z/2 =K2n
3
(X)&"n

5
(X)

be induced by the Hopf maps g"g
3
3n

4
S3 and g"g

4
3n

5
S4, respectively, and the =hitehead

product [!,!] : n
3
?n

3
Pn

5
. ¹hen there is a natural exact sequence

ker (g1)
d2

&" n
3
(X) ?Z/3 =P

6
&"C

6
(X)&" n

4
(X) * Z/2

g1 (n
3
(X)? Z/2)

= K2¹ (n
3
(X))&" 0.

Here P
6

is de,ned by the following double push out diagram in Ab with n
*
"n

*
(X):

¹he map q is given by the quotient map n
3
? n

3
&"K2n

3
and a and b are maps between quadratic

Z-modules

a : Z/2"(Z/2&" 0&"Z/2)&"N"(Z/4 1&" Z/2 0&" Z/4)

b : (0&"Z/2&" 0)&"N"(Z/4 1&" Z/2 0&" Z/4)

with a
e
"2, a

ee
"0 and b

e
"0, b

ee
"1.
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For the proof of (5.9) we observe that by (5.5) and relations in Toda [27] we have

C3
3

(g1, g2)"n
3
?Z/3 =P

6
(5.10)

with P
6

de"ned as in (5.9). The remaining case r"2 in Theorem 5.1 has the following important
application.

(5.11) Example. Let M be a closed simply connected six-dimensional manifold or PoincareH
complex. Then we get the following natural diagram which is the analogue of (3.4) and (3.5),
respectively:

The bottom row is exact by (5.1). The fundamental class [M] thus yields the torsion invariant

kb [M]3 (¸
1
C2

2
) (g1)

which is a homotopy invariant of M. The classi"cation of simply connected six-dimensional
manifolds and PoincareH -complexes is a deep problem which is not completely solved because of the
lack of good invariants. The new torsion invariant above should ease the problem considerably; cf.
[35, 30, 23, 14, 24]. For example, for M"CP

3
we obtain the generator

kb [CP
3
]3¸

1
C2

2
(g1)+C

5
CP

3
+Z

where g1 : C (Z)P 0. Here the isomorphisms are compatible with the exact sequence in (5.12)(9)
below.

We now study along the lines of Baues [8] the derived functors ¸
i
C2

2
of C2

2
in (1.10)(1) which are

needed for example in (5.11) above. Let N be the normalization functor from simplicial abelian
groups to chain complexes and let K be the inverse of N; cf. [14].

For g1 : C (n
2
)&" n

3
we choose a length 1 resolution

C2
1

d&" C2
0
&"n

2
(5.12)

and we choose a weak resolution C3
*

of n
3

of length 3 together with the following commutative
diagram in which g1

i
(i"0, 1, 2) is split injective with torsion free cokernel B3

i
; cf. (4.2):

(1)
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The columns are split short exact sequences of abelian groups. The top row in diagram (1) is given
by d in (5.12) and by the Whitehead product P : A?A&"C (A) for the functor C de"ned by
P(a? b)"c(a#b)!c(a)!c(b), that is

L
1
"(C (d), P (d ? 1))

L
2
"(P,!1 ? d). (2)

We point out that L
1

is injective and that C2
1
?C2

1
is free abelian. Therefore, it is possible to choose

a weak resolution C3
*

of n
3

of length 3 as in diagram (1). The homology of the top row in degree 1 is
the C-torsion

(¸
1
C) (n

2
)"C¹ (n

2
)"ker (L

1
)/im (L

2
). (3)

One can check that the top row of (1) coincides with NC (KC2
*
). Hence (1) yields a short exact

sequence of simplicial abelian groups

0&"C (K (C2
*
))

g1f
&" K(C3

*
)&"K (B3

*
)&" 0. (4)

We can apply the functor C2
2

to the simplicial object g1v 3 sCAb in (4) and we obtain the derived
functors of C2

2
by

(¸
i
C2

2
) (g1)"n

i
C2

2
(g1v ). (5)

We now use the exact sequence (1.11) to study the derived functors ¸i!2
2
. Since g1f in (4) is split

injective in each degree we see that (1.11) induces the short exact sequences of simplicial abelian
groups

0&"C1
2,(0)

(K (C2
*
)) &" C2

2
(g1v ) &" C1

2,(1)
(K(C2

*
), K(B3

*
))&" 0 (6)

which in turn yields a long exact sequence of homotopy groups. The functors C1
2,(0)

and C1
2,(1)

are
explicitly described in (1.11). Using the Eilenberg}Zilber theorem [16] we see that

n
i
C1

2,(1)
(K (C2

*
), K (B2

*
))"H

i
(B3

*
? (Z/2 = n

2
))

+H
i
(B3

*
) ? (Z/2 =n

2
) =H

i~1
(B3

*
) * (Z/2=n

2
). (7)

Here the direct sum decomposition is natural in the sense of the universal coe$cient theorem, that
is, the inclusion of the ?-summand is natural but the retraction of this summand is not natural. We
deduce from the de"nition of B3

*
the homology groups

H
i
B3

*
"G

cok(g1) for i"0

ker(g1) for i"1

C¹(n
2
) for i"2

0 for i*3.

By a result of Buth [14] we have ¸
i
C1

2,(0)
"0 for i*3. This shows by (6)

¸
i
C2

2
(g1)"0 for i*4. (8)
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Moreover, the following sequence is exact

0&"¸
3
C2

2
(g1)&"C¹ (n

2
) * (Z/2=n

2
)&"C¹ (n

2
) * Z/2 =¸

2
¸ (n, 1)

3

&"¸
2
!2

2
(g1)&" G

C¹ (n
2
) ? (Z/2= n

2
)

=

ker (g1) * (Z/2 =n
2
) H &" G

C (n
2
) * Z/2=C¹ (n

2
)?Z/2

=

¸
1
¸ (n

2
, 1)

3
H

&"¸
1
C2
2
(g1)&" G

ker (g1)? (Z/2=n
2
)

=

cok (g1) * (Z/2 =n
2
)H&"C (n

2
)?Z/2=¸ (n

2
, 1)

3

&" C2
2
(g1)&" cok(g1)? (Z/2=n

2
)&" 0. (9)

Hence this sequence is a continuation of the exact sequence in (1.11). The sequence is natural for
maps a : g1&" g1

0
in CAb though the direct sum decompositions are only natural in the sense of the

universal coe$cient theorem for homology; see (7). Sequence (9) is an initial case of the general
theory of reduction functors in Baues [8]. We point out that Buth showed that the derived functors
¸
i
¸(!, 1)

3
satisfy ¸

i
¸ (Z, 1)

3
"0 for i*0, and for k'0

¸
i
¸ (Z/k, 1)

3
"G

Z/gcd (3k, k2) for i"1

Z/gcd(3, k) for i"2

0 for i*3 and i"0.

(10)

This and the cross-e!ect formulas

¸ (A D B, 1)
3
"(A?B)?B = (A ?B)?A

¸ (A D B D C, 1)
3
"(A ?C)?B= (B? C)?A

¸
1
¸ (A D B, 1)

3
"(A ?B) *B = (A* B)?B= (A?B) * A= (A * B)? A

¸
1
¸ (A D B DC, 1)

3
"(A?C) * B= (A* C)?B= (B?C) * A= (B *C) ?A

¸
2
¸ (A D B, 1)

3
"(A *B) *B = (A* B) * A

¸
2
¸ (A D B D C, 1)

3
"(A * C) * B= (B* C) *A

now yield a complete computation of ¸
i
¸ (A,1)

3
for all "nitely generated abelian groups A.

(5.13) De5nition. Let n
2
, n

3
, n

4
be abelian groups and let

g1 : C (n
2
)&"n

3

g2 : C2
2

(g1)&"n
4

(1)

be homomorphisms in Ab. Then we de"ne by c : n
2
PC (n

2
) the following elements (x, y3n

2
)

xg"g1 (c (x))3n
3

[x, y]"g1 (c (x#y)!c (x)!c (y))3n
3
. (2)
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Moreover, we de"ne by the composite

n
3
? (Z/2 =n

2
)

q*
&" C2

2
(g1)

g2

&"n
4

the elements (z3n
3
)

zg"g2 q* (z ? 1)3 n
4

[z, y]"g2 q* (z? y)3 n
4
. (3)

Using the notation in (2) and (3) we de"ne an equivalence relation & on the direct sum

;"n
4
? (Z/2=n

2
)=K2 (n

3
) (4)

which is generated by the following relations (5)}(7), with 13Z/2, z3n
3
, x, y3n

2
.

(zg)? y&[z, y] ? 1 (5)

z'(xg)& [z, x]? 1#[z, x] ? x (6)

[z, x] ? y#[z, y] ? x& z' [x, y]. (7)

Here z' z@"q (z? z@) is de"ned by the quotient map q :n
3
?n

3
P K2 (n

3
) with z, z@3n

3
.

(5.14) Theorem. ¹here is a natural isomorphism

C3
2
(g1, g2)"(n

4
? (Z/2 =n

2
)=K2 (n

3
))/&

where & is the equivalence relation in (5.13).

In fact (5.13)(5), (6) are obtained by the Barcus}Barratt formula and (5.13)(7) is deduced from the
Jacobi identity for Whitehead products. The tedious proof of (5.14) is achieved along the lines of the
computations of UnsoK ld for the proof of III.1.5 p. 168 [28]. Using (5.14) we obtain as a "nal case
r"2 of (5.1) the following result.

(5.15) Corollary. ¸et X be a simply connected space and let

g1 : C (n
2
(X))&" n

3
(X)

g2 : C2
2

(g1)&" g
4
(X)

be induced by the Hopf maps g
2
3n

3
(S2), g

3
3n

4
(S3) and the =hitehead product

[!,!] : n
3
(X) ?n

2
(X)Pn

4
(X), that is g1c (a)"ag

2
with a3n

2
(X) as in (3.1)(1) and

g2 q
*

(b? 1)"bg
3

and g2 q
*

(b? a)"[b, a] with b3 n
3
(X) and q

*
as in (1.10)(1). ¹hen there is

a natural exact sequence

¸
2
C2
2
(g1)

d2

&" C3
2
(g1, g2)&"C

5
(X)P¸

1
C2
2

(g1)&" 0.

Here the derived functors ¸
i
C2

2
are described in (5.12) and C3

2
(g1, g3) is computed in (5.14).

(5.16) Example. We can continue the exact sequence in (3.6) and we obtain for X"KI (Z) the exact
sequence

K
6
Z&"H

6
SL (Z)&"C

5
KI (Z)&" 0 (1)
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where g1 and g2 for KI (Z) are given by g1 : C (Z/2)"Z/4 {Z/2LZ/48 as in (3.6) and
g2 : C2

2
(g1)"Z/2=Z/2P0. Hence we see by (5.14) that C3

2
(g1, g2)"0 so that by (5.15)

C
5
KI (Z)+¸

1
C2

2
(g1). (2)

This group can be computed by (5.12)(9) as follows. Consider g1
0
:C(Z/2)P 0 and the canonical

map a : g1P g1
0

in CAb which is the identity on n
2
"Z/2. Then a induces the commutative

diagram:

(3)

Here the exact rows are given by (5.12)(9) and (1.12). Using (5.15) for the space K(Z/2,2) we see that

¸
1
C2
2
(g

0
)"C

5
K (Z/2, 2)"H

6
K (Z/2, 2)"Z/2 (4)

where we use the computations of H
6
K (Z/2, 2)"Z/2 of Eilenberg and Mac Lane [22]. Now (4)

and (3) shows by (2)

C
5
KI Z"¸

1
C2
2
(g1)"(Z/2)3. (5)

Moreover since K
6
Z is odd torsion we get by (1)

H
6
SL (Z)"(Z/2)3 = odd torsion (6)

Using corollary 14 [3] we see that H6 (SL (Z), Z/2)"(Z/2)5. This group maps surjectively to the
group Hom(H

6
(SL (Z)), Z/2)"(Z/2)3. Therefore we have Ext(H

5
(SL(Z)), Z/2)"(Z/2)2. This im-

plies that the extension in (3.6)(2) is nonsplit. According to an argument of H.W. Henn eq. (6) can
also be proved by use of corollary 14 [3] and the Bockstein spectral sequence.

(5.17) Example. We also can continue the exact sequence in (3.6) for X"KII (Z). In this case we get
n
3
X"Z/48, n

4
X"0, n

5
X"Z =¹

3
, so that g1 :Z/2P0 and g2 : 0PZ =¹

3
"K

5
Z . Now (5.9)

shows that there is a commutative diagram in which the row and the column are exact:

Since K
6
Z is odd torsion this shows that the 2-torsion of cok(K

7
ZPH

7
St (Z)) is Z/2 or

Z/2 = Z/2. The diagram is also of interest with respect to the 3-torsion since the 3-torsion of
C
6

KII (Z) is Z / 3.
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6. The construction of the homotopy operation spectral sequence

In this section we prove Theorem 2.4. The key homological ingredient is a minor modi"cation of
the &&E

2
-model category'' structure on simplicial spaces (as in [19, 2]). We begin by spelling out

what we need from this work. Fix r*1.
The category of simplicial pointed spaces sTop* has a closed model category structure where

f : XP> is a weak equivalence if
n
p
n
q
f :n

p
n
q
X&"n

p
n
q
> (6.1)

is an isomorphism for all p*0 and q*r. The co"brations (and, hence, co"brant objects) can be
described as follows.

If X3 sTop*, let

¸
n
X" colim

/ : *n+? *k+
X

k

where / runs over the morphisms in the ordinal number category which are surjections and k(n,
that is, /* : X

k
PX

n
is a composition of degeneracies. There is an obvious map s :¸

n
XPX

n
and

f : XP> in sTop* is a Reedy co"bration if the induced maps

X
n
X

LnX
¸

n
>&">

n

are co"brations for all n*0. Then f : XP> is an E
2
-co"bration if it is a Reedy co"bration and for

each n*0 there is a space

Z
n
"S

a|In
Sma

where a in some index set I
n

and m*r and a map

Z
n
&">

n

so that

[X
n
X

LnX
¸

n
> ]sZ

n
&">

n
(6.2)

is a homotopy equivalence. In particular, an inductive argument shows that if X is co"brant in the
E
2
-model category, then X

n
is homotopy equivalent to a wedge of spheres Sm, m*r.

This E
2
-model category structure is actually a simplicial model category in the standard

simplicial structure on sTop* (see [25, II. Section 2]). In particular, given a simplicial set K and
X3sTop*, we can form an object X?K3 sTop* with

(X?K)
n
"S

Kn

X
n
.

If K is pointed, we can form an object X' K3 sTop* de"ned by the push-out diagram

(6.3)

186 H.-J. Baues, P. Goerss / Topology 39 (2000) 161}192



Of particular interest is the object Sj'Di/LDi, where Sj3 sTop* is the sphere regarded as
a constant simplicial object, Di is the standard simplicial i-simplex and LDi-Di is the boundary.
The simplicial set Di/LDi is a simplicial model for the i-sphere. If X3 sTop* is E

2
-"brant (or Reedy

"brant), de"ne

n
i,j

X"[Sj'Di/LDi, X] (6.4)

where the homotopy classes are computed in the homotopy category of the E
2
-model category of

sTop*. This can be calculated as

n
i, j

X"n
0

map (Sj'Di/LDi, X)

"n
i
map (Sj, X)

where map ( ) , ) ) is the simplicial mapping space of sTop*. The &&spiral exact sequence'' of [20]
implies that

n
0
n
j
X+n

0,j
X (6.5)

and that there is a long exact sequence

2&"n
i~1,j`1

X&"n
i,j

X&"n
i
n
j
X&"n

i~2,j`1
X

&" n
i~1,j

X&"2&"n
1,j

X&"n
1
n
j
X&" 0. (6.6)

We assume j*r.
Splicing the exact triangles

together yields a spectral sequence

n
p
n
q
XNn

p`q~r,r
X" [Sr'Dp`q~r / LDp`q~r, X]. (6.7)

Taking geometric realizations using the fact that D Di/LDi D +Si (regarding a simplicial set as
a simplicial disrete space) yields a homomorphism

[Sn 'Dm/LDm, X]&" [Sn`m, X].

or, in symbols, a map

n
p`q~r,r

X&"n
p`q

D X D .

The following is a minor variation on the main theorem of [20].

(6.8) Proposition. Suppose X3 sTop* is Reedy co,brant and X
m

is (r!1)-connected for all m*0.
¹hen the homomorphism

n
m~r,r

X&"n
m

D X D

is an isomorphism.
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Proof. In [20] it is shown that

n
m~1,1

X&"n
m
D X D

is an isomorphism. This is the case r"1. The spiral exact sequence for the case r"1 shows

n
m~j~1,j`1

X+n
m~j,j

X

for j(r.

Combining (6.7) and (6.8) yields that for X satisfying the hypotheses of (6.8) there is a spectral
sequence

n
p
n
q
XNn

p`q
D X D. (6.9)

One source of input for this spectral sequence arises from bisimplicial sets. If X"MX
m, n

N is
a bisimplicial set we call the "rst (or m) index to be the horizontal index and the second (or n) index
to be the vertical direction. If we write D X D

v
"M DX

m,*
DN to be the level-wise geometric realization,

then D X D
v

is automatically Reedy co"brant. This is because the map

¸
m

X" colim
/ : *m+? *k+

X
k,*

&"X
m,*

is automatically an inclusion of simplicial sets, so

D¸
m

XD
v
+¸

m
D X D + colim

/ : *m+?*k+
D X

k,*
D&" D X

m,*,
D

is a co"bration. If X
m, *

is connected as a simplicial set and X is pointed then (6.8) yields a spectral
sequence

n
p
n
q
D X D

v
Nn

p,q
E X D

v
D .

Since E X
v
E"Ddiag X D and one can de"ne n

q
X

m,*
"n

q
D X

m,*
D we recover the Bous"eld}Fried-

lander spectral sequence

n
p
n
q
XNn

p`q
(diag X). (6.10)

See [13] Section B.
With this technology in hand, we can begin to construct our spectral sequence. Fix a Reedy

co"brant simplicial space>, which will eventually be an E
2
-co"brant model for some "xed pointed

space regarded as a constant simplicial space. Let Sing(>) be the bisimplicial space obtained by
applying the singular functor level-wise to >. Then the natural map

DSing (>) D
v
&"> (6.11)

is a level-wise weak equivalence between Reedy co"brant simplicial spaces, so

Ddiag Sing (>) D"E Sing (>) D
v
D&" D> D (6.12)

is a weak equivalence. Note that if > is pointed and level-wise connected, so is Sing (>).
Now let Z Sing (>) be the free bisimplicial abelian group of Sing (>). Assume> is pointed and let

Z1 Sing (>)"Z Sing (>)/Z M * N.
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Then

n
q
Z1 Sing (>)+HI

q
Sing (>)+HI

q
>+ MHI

q
>

m
N

and

n
q
> +
&" n

q
Sing (>)&"n

q
Z1 Sing (>) +HI

q
>

is the Hurewicz homomorphism. Factor Sing (>)&" Z1 Sing (>) as

Sing (>) i&" Z f&" Z1 Sing (>)

where i is a level-wise weak equivalence and f is a "bration in the closed model category structure
of Bous"eld}Friedlander [13], Theorem B.6. Then, among other things, f is a level-wise "bration
and the realization diag ( f ) is a "bration. Let

F&"Z f&"Z1 Sing (>)

be the resulting "ber sequence. The next task is to identify the homotopy type of D diag F D.
If X is a pointed, connected co"brant space, let S

=
X be the in"nite symmetric product on X and

let CX be the homotopy "ber of the natural map XPS
=

X.

(6.14) Lemma. ¹here is a weak equivalence

Ddiag F D&"C D> D.

Proof. We have morphisms of simplicial spaces

> p$& D Sing (>) D
v

D i D
&" D Z D

v

D f D
&" D Z1 Sing (>) D

v
.

Both p and D i D are level-wise weak equivalences between Reedy co"brant objects. Since E ) D
v
D

+ D diag ( ) ) D we have

D> D
D p D

$& D diagSing (>) D
E i E

&&" Ddiag Z D
E f E
&" D diagZ1 Sing (>) D

and D p D and E i E are weak equivalences. In particular D p D has a homotopy inverse, since the source
and target are co"brant. Also

diag Z1 Sing(>)"Z1 diag Sing (>),

whence

n
*

D diag Z1 Sing (>) D"H
*
Ddiag Sing (>) D"H

*
D> D.

Since DZ1 diag Sing (>) D is an abelian topological monoid, there is a diagram
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and the horizontal maps are weak equivalences. Now f : ZPZ1 Sing (>) was chosen so that

diag ( f ) : diagZ&"diag Z1 Sing (>)

is a "bration of simplicial sets. Furthermore, the diagonal functor preserves pullbacks, so the "ber
of diag ( f ) is diag (F ). Then

D diag F D&" D diag Z D&" DZ1 diag Sing (>) D

is a homotopy "ber sequence. Q.E.D.

We now can construct our spectral sequence. Let X be an (r!1)-connected space where r*2,
regard X as a constant simplicial space. Let >PX be a co"brant model for X in the E

2
-model

category structure based on the spheres Sm, m*1. Then> is Reedy co"brant level-wise connected
and

n
p
n
q
>+ G

n
q
X, p"0, q*r

0, pO0 or q(r.

Since X is (r!1)-connected the spectral sequence (6.9) implies that the evident map

D> D&"X

is a weak equivalence. To "nish the construction apply the process above to produce a bisimplicial
set F so that

Ddiag F DKC D> DKCX.

Then the spectral sequence (6.9) becomes

n
p
n
q
FNn

p`q
CX"C

p`q
X. (6.15)

It remains to identify the E
2
-term. For "xed p, there is a "ber sequence

F
p,*

&"Z
p,*

&" Z Sing (>
p
)

and a weak equivalence Z
p,*

&"Sing (>
p
). Since >

p
is a wedge of spheres, the Hurewicz

homomorphism for >
p

is onto, so there is a short exact sequence

0&"n
q
F
p,*

&"n
q
Z

p,*
&"n

q
ZSing (>

p
)&" 0. (6.16)

More is true. Since n
*
Z

p,*,
is a free model in P

r
,

n
q
Z Sing (>

p
)"HI

q
>

p
"Q

q
(n

*
Z

p,*
)

and (¸
1

Q
p
) (n

*
Z

p,*
)"0. Hence (1.16) and (6.16) imply

n
r`q

F
p,*

+Cq
r
(g1,2 , gq~1).
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Combining this with (6.15) and reindexing the q variable gives

¸
p
Cq

r
(g1,2 , gq~1)"n

p
!q
r
(g1f ,2, gq~1f )NC

r`p`q
X. (6.17)

This is the desired spectral sequence. The statement about the edge homomorphism is clear.
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