Sparsity of orthogonal matrices with restrictions

Gi-Sang Cheon ${ }^{\text {a }}$, Bryan L. Shader ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Daejin University, Pocheon 487-711, South Korea
${ }^{\mathrm{b}}$ Department of Mathematics, University of Wyoming, P.O. Box 3036, Laramie WY 82071, USA

Received 27 May 1999; accepted 1 October 1999
Submitted by R.A. Brualdi

Abstract

The sparsity of orthogonal matrices which have $k \geqslant 1$ columns of nonzeros is studied. It is shown that the minimum number of nonzero entries in such an m by m matrix is $$
\left(\left\lfloor\lg \left(\frac{m}{k}\right)\right\rfloor+k+2\right) m-k 2^{\lfloor\lg (m / k)\rfloor+1} .
$$

As a consequence it is shown that if A is an m by n matrix with $m<n$ and the properties that its rows are pairwise orthogonal, and it has less than $$
\left(\left\lfloor\lg \frac{n}{n-m}\right\rfloor+2\right) n-(n-m) 2^{\lfloor\lg (n /(n-m))\rfloor+1}
$$ nonzero entries, then each vector orthogonal to the rows of A has at least one entry equal to 0 . Also, for integers k and n with $k \leqslant n$, the minimum number of nonzero entries in an n by n, connected, orthogonal matrix having a column with at least k nonzero entries is determined. © 2000 Published by Elsevier Science Inc. All rights reserved.

Keywords: Sparse matrices; Orthogonal matrices

1. Introduction

In 1990, Miroslav Fiedler [4] catalyzed several investigations (see [1-3,5,7,8]) into the sparsity of certain types of orthogonal matrices by asking: how sparse can an n by n orthogonal matrix (whose rows and columns cannot be permuted to give a matrix which is a direct sum of matrices) be? The assumption excluding direct sums

[^0]is necessary, since otherwise the answer is trivially n. Fiedler's question is answered in [1] (see also [7]), where it is shown that each n by n orthogonal matrix which is not direct summable has at least $4 n-4$ nonzero entries, and that for $n \geqslant 2$, there exist such orthogonal matrices with exactly $4 n-4$ nonzero entries. This result is extended in [2] to m by n matrices which are not direct summable, and whose rows are pairwise orthogonal.

Define a vector or a matrix to be full, provided each of its entries is nonzero. In [3], it is shown that an n by n orthogonal matrix with a full column has at least

$$
\begin{equation*}
(\lfloor\lg n\rfloor+3) n-2^{\lfloor\lg n\rfloor+1} \tag{1}
\end{equation*}
$$

nonzero entries, where \lg denotes the base- 2 logarithm function. This is perhaps a surprising result, as it implies that the presence of a full column in an n by n orthogonal matrix forces the number of nonzeros to be super-linear (at least of order $n \lg n$) in n. The n by n orthogonal matrices with a full column which achieve the sparsity in (1) are closely related to the discrete Haar wavelet (see [3]). It will be beneficial to describe these matrices here. Throughout we let \#(A) denote the number of nonzero entries in A.

We first describe a way of constructing an $(m+1)$ by $(m+1)$ orthogonal matrix with a full column, from such an m by m matrix. The j th column of the matrix A is denoted by $A_{\cdot, j}$, and the i th row by $A_{i, .}$. Let A be an m by m orthogonal matrix with a full column, and let

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

be a 2 by 2 orthogonal matrix with no entry equal to 0 . Then the matrix

$$
\widehat{A}=\left[\begin{array}{c|c}
a & b A_{i, \cdot} \\
\hline 0 & A_{1, \cdot} \\
\vdots & \vdots \\
0 & A_{i-1, \cdot} \\
c & d A_{i, \cdot} \\
0 & A_{i+1, \cdot} \\
\vdots & \vdots \\
0 & A_{m,}
\end{array}\right]
$$

is an $(m+1)$ by $(m+1)$ orthogonal matrix with a full column.
We next use this construction to recursively define a family, \mathscr{H}_{m}, of m by m orthogonal matrices which have a full column. The family \mathscr{H}_{1} consists of [1] and [-1]. Assuming that the family \mathscr{H}_{m} is defined, then the family \mathscr{H}_{m+1} consists of all matrices which after row and column permutations can be obtained by choosing a matrix A in \mathscr{H}_{m}, choosing an i so that $\#\left(A_{i, .}\right)=\min _{j=1, \ldots, m} \#\left(A_{j, .}\right)$, and applying the above construction. We define \mathscr{H} to be the union of the $\mathscr{H}_{i}(i \geqslant 1)$. In [2] it is shown that the n by n matrices in \mathscr{H} are precisely the n by n, orthogonal matrices with a full column and exactly (1) nonzero entries.

In this paper, we study the sparsity of orthogonal matrices that have a fixed number, $k>0$, of full columns. In particular, Corollary 4.2 asserts that minimum number of nonzero entries in an m by m orthogonal matrix with k full columns is

$$
\begin{equation*}
\left(\left\lfloor\lg \left(\frac{m}{k}\right)\right\rfloor+k+2\right) m-k 2^{\lfloor\lg (m / k)\rfloor+1} . \tag{2}
\end{equation*}
$$

In order to prove Corollary 4.2, we prove something stronger. A matrix is roworthogonal provided each of its rows is nonzero and its rows are pairwise orthogonal. Corollary 4.1 asserts that the minimum number of nonzero entries in an m by n row-orthogonal matrix with k full columns and no column of zeros is

$$
\left(\left\lfloor\lg \left(\frac{m}{k}\right)\right\rfloor+k+2\right) m-k 2^{\lfloor\lg (m / k)\rfloor+1}+(n-m) .
$$

A consequence of this result is that if A is an m by n row-orthogonal matrix with $n>m$, with no column of zeros and

$$
\#(A)<\left(\left\lfloor\lg \left(\frac{n}{n-m}\right)\right\rfloor+2\right) n-(n-m) 2^{\lfloor\lg (n /(n-m))\rfloor+1}
$$

then each vector orthogonal to the rows of A has an entry equal to 0 .

2. Examples of sparse orthogonal matrices

Throughout we let k be a fixed positive integer. For each integer m with $m \geqslant k$ let $q_{m, k}$ and $r_{m, k}$ denote the quotient and remainder when m is divided by k, and let $\ell_{m, k}=\left\lfloor\lg q_{m, k}\right\rfloor$. We begin this section by constructing sparse m by m orthogonal matrices whose first k columns are full.

For each integer t, let H_{t} denote a matrix in \mathscr{H}_{t} whose first column is full. Let \widehat{H}_{t} denote the t by $(t-1)$ matrix obtained from H_{t} by deleting its first column, and let \hat{h}_{t} denote the first column of H_{t}. Since $H_{t} \in \mathscr{H}_{t}$,

$$
\begin{equation*}
\#\left(\widehat{H}_{t}\right)=(\lfloor\lg t\rfloor+2) t-2^{\lfloor\lg t\rfloor+1} \tag{3}
\end{equation*}
$$

Let U be a k by k orthogonal matrix which has no entry equal to 0 and let $u_{1}^{\mathrm{T}}, u_{2}^{\mathrm{T}}, \ldots$, u_{k}^{T} denote its rows. ${ }^{1}$ Finally, set

$$
F_{m, k}=\left[\begin{array}{ccccccc}
\hat{h}_{q_{m, k}} u_{1}^{\mathrm{T}} & \widehat{H}_{q_{m, k}} & \cdots & O & O & \cdots & O \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\hat{h}_{q_{m, k}} u_{k-r_{m, k}}^{\mathrm{T}} & O & \cdots & \widehat{H}_{q_{m, k}} & O & \cdots & O \\
\hat{h}_{q_{m, k}+1} u_{k-r_{m, k}+1}^{\mathrm{T}} & O & \cdots & O & \widehat{H}_{q_{m, k}+1} & \cdots & O \\
\vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
\hat{h}_{q_{m, k}+1} u_{k}^{\mathrm{T}} & O & \cdots & O & O & \cdots & \widehat{H}_{q_{m, k}+1}
\end{array}\right] .
$$

[^1]It is easy to verify that $F_{m, k}$ is an m by m row-orthogonal matrix whose first k columns are full.

To compute \#($F_{m, k}$) we consider two cases. First suppose that $q_{m, k} \neq 2^{\ell_{m, k}+1}-$ 1. Note that $\left\lfloor\lg \left(q_{m, k}+1\right)\right\rfloor=\left\lfloor\lg q_{m, k}\right\rfloor=\ell_{m, k}$. Since $F_{m, k}$ consists of k full columns, $\left(k-r_{m, k}\right) \hat{H}_{q_{m, k}}$'s, and $r_{m, k} \hat{H}_{q_{m, k}+1}$'s, (3) implies that

$$
\begin{align*}
\#\left(F_{m, k}\right)= & m k+\left(k-r_{m, k}\right)\left[\left(\ell_{m, k}+2\right) q_{m, k}-2^{\ell_{m, k}+1}\right] \\
& +r_{m, k}\left[\left(\ell_{m, k}+2\right)\left(q_{m, k}+1\right)-2^{\ell_{m, k}+1}\right] \\
= & m k+k\left[\left(\ell_{m, k}+2\right) q_{m, k}-2^{\ell_{m, k}+1}\right]+r_{m, k}\left(\ell_{m, k}+2\right) \\
= & m k+\left(k q_{m, k}+r_{m, k}\right)\left(\ell_{m, k}+2\right)-k 2^{\ell_{m, k}+1} \\
= & m k+m\left(\ell_{m, k}+2\right)-k 2^{\ell_{m, k}+1} \\
= & \left(\ell_{m, k}+k+2\right) m-k 2^{\ell_{m, k}+1} . \tag{4}
\end{align*}
$$

Next suppose that $q_{m, k}=2^{\ell_{m, k}+1}-1$. Note that $\left\lfloor\lg \left(q_{m, k}+1\right)\right\rfloor=\left\lfloor\lg q_{m, k}\right\rfloor+1=$ $\ell_{m, k}+1$.Thus,

$$
\begin{align*}
\#\left(F_{m, k}\right)= & m k+\left(k-r_{m, k}\right)\left[\left(\ell_{m, k}+2\right) q_{m, k}-2^{\ell_{m, k}+1}\right] \\
& +r_{m, k}\left[\left(\ell_{m, k}+3\right)\left(q_{m, k}+1\right)-2^{\ell_{m, k}+2}\right] \\
= & m k+\left(k-r_{m, k}\right)\left(q_{m, k}\right)\left(\ell_{m, k}+2\right)+r_{m, k} q_{m, k}\left(\ell_{m, k}+2\right) \\
& -\left[\left(k-r_{m, k}\right) 2^{\ell_{m, k}+1}+r_{m, k} 2^{\ell_{m, k}+1}\right] \\
& +r_{m, k}\left(\ell_{m, k}+3+q_{m, k}-2^{\ell_{m, k}+1}\right) \\
= & m k+\left(k q_{m, k}\right)\left(\ell_{m, k}+2\right)-k 2^{\ell_{m, k}+1}+r_{m, k}\left(\ell_{m, k}+2\right) \\
= & m k+\left(k q_{m, k}+r_{m, k}\right)\left(\ell_{m, k}+2\right)-k 2^{\ell_{m, k}+1} \\
= & \left(\ell_{m, k}+k+2\right) m-k 2^{\ell_{m, k}+1} . \tag{5}
\end{align*}
$$

Based on (4) and (5) we define

$$
f(m, k)=\left(\ell_{m, k}+k+2\right) m-k 2^{\ell_{m, k}+1} .
$$

Thus, \#($\left.F_{m, k}\right)=f(m, k)$.
We now construct sparse m by n row-orthogonal matrices with no column of zeros and k full columns. For $n \geqslant m$, set $g(m, n, k)=f(m, k)+(n-m)$. Let D be an m by $(n-m)$ matrix with exactly one nonzero entry in each column. Then

$$
\begin{array}{ll}
{\left[F_{m, k}\right.} & D]
\end{array}
$$

is an m by n row-orthogonal matrix whose first k columns are full, none of whose columns is the zero column, and with $g(m, n, k)$ nonzero entries. In the next section, we will show that these m by n matrices are the sparsest such row-orthogonal matrices.

3. Lower bounds on sparsity

We begin this section by deriving some useful facts about $g(m, n, k)$.
Lemma 3.1. Assume that $m>k$. Then

$$
g(m, n, k)=g(m-1, n, k)+k+\ell_{m, k}+ \begin{cases}0 & \text { if } r_{m, k}=0 \text { and } q_{m, k}=2^{\ell_{m, k}} \\ 1 & \text { otherwise }\end{cases}
$$

Proof. First suppose that $r_{m, k} \neq 0$. Then $q_{m-1, k}=q_{m, k}$, and $\ell_{m-1, k}=\ell_{m, k}$. The desired equality now follows from the definition of the function g.

Next suppose that $r_{m, k}=0$ and $q_{m, k} \neq 2^{\ell_{m}}$. Although $q_{m-1, k}=q_{m, k}-1$, we still have $\ell_{m-1, k}=\ell_{m, k}$. The equality again follows from the definition of the function g.

Finally suppose that $r_{m, k}=0$ and $q_{m, k}=2^{\ell_{m, k}}$. Then $m=k 2^{\ell_{m, k}}$, and $\ell_{m-1, k}=$ $\ell_{m, k}-1$. Thus,

$$
\begin{aligned}
g(m-1, n, k)= & \left(\ell_{m, k}+k+1\right)(m-1)-k 2^{\ell_{m, k}}+(n-(m-1)) \\
= & \left(\ell_{m, k} m+k m+m-\ell_{m, k}-k-1\right) \\
& -\left(k 2^{\ell_{m, k}+1}-m\right)+n-m+1 \\
= & g(m, n, k)-k-\ell_{m, k}
\end{aligned}
$$

and the desired equality readily follows.
Lemma 3.2. Assume that $m>k$. Then

$$
\left\lceil\frac{g(m-1, n, k)}{m-1}\right\rceil \geqslant \ell_{m, k}+k+ \begin{cases}0 & \text { if } r_{m, k}=0 \text { and } q_{m, k}=2^{\ell_{m, k}} \\ 1 & \text { otherwise }\end{cases}
$$

Proof. First suppose that $r_{m, k}=0$ and $q_{m, k}=2^{\ell_{m, k}}$. Then $m=k 2^{\ell_{m, k}}$, and

$$
\begin{aligned}
g(m-1, n, k) & =\left(\ell_{m, k}+k+1\right)(m-1)-m+(n-(m-1)) \\
& =\left(\ell_{m, k}+k\right)(m-1)+(n-m) .
\end{aligned}
$$

The desired inequality now follows from the fact that $n \geqslant m$.
Next suppose that either $r_{m, k} \neq 0$ or $q_{m, k} \neq 2^{\ell_{m, k}}$. Then

$$
\begin{aligned}
g(m-1, n, k) & =\left(\ell_{m, k}+k+2\right)(m-1)-k 2^{\ell_{m, k}+1}+(n-(m-1)) \\
& =\left(\ell_{m, k}+k+1\right)(m-1)-2 k\left(2^{\ell_{m, k}}\right)+n \\
& =\left(\ell_{m, k}+k+1\right)(m-1)-2 k q_{m, k}+2 k\left(q_{m, k}-2^{\ell_{m, k}}\right)+n \\
& =\left(\ell_{m, k}+k+1\right)(m-1)-2 m+2 r_{m, k}+2 k\left(q_{m, k}-2^{\ell_{m, k}}\right)+n \\
& =\left(\ell_{m, k}+k\right)(m-1)+(n-m)-1+2 r_{m, k}+2 k\left(q_{m, k}-2^{\ell_{m, k}}\right) .
\end{aligned}
$$

Since either $r_{m, k}$ or $q_{m, k}-2^{\ell_{m, k}}$ is a positive integer, we conclude that

$$
g(m-1, n, k)>\left(\ell_{m, k}+k\right)(m-1)+(n-m) .
$$

The inequality now follows from the fact that $n \geqslant m$.
We are now ready to establish a lower bound on the sparsity of a row-orthogonal matrices with k full columns.

Theorem 3.3. Let A be an m by n row-orthogonal matrix which has no column of zeros and whose first k columns are full. Then $\#(A) \geqslant g(m, n, k)$.

Proof. The proof is by induction on $m+n$. The base case is when $m=k$. In this case, since each of the last $n-k=n-m$ columns of A have at least one nonzero entry, $\#(A) \geqslant k m+n-k$. Also, $q_{m}=1$, and $\ell_{m}=0$, and hence $g(m, n, k)=(k+$ 2) $m-2 m+(n-m)=k m+(n-m)$. Thus, $\#(A) \geqslant g(m, n, k)$ in the base case.

Proceeding by induction, we assume that $m>k$ and that the result holds for all such m^{\prime} by n^{\prime} matrices with $m^{\prime}+n^{\prime}<m+n$.

Suppose that one of the last $n-k$ columns of A has one nonzero entry. Then the m by ($n-1$) matrix obtained from A by deleting such a column satisfies the inductive hypothesis, and hence $\#(A) \geqslant g(m, n-1, k)+1=g(m, n, k)$.

Thus we may assume that no column of A has exactly one nonzero entry. Without loss of generality we may assume that the last row, y, of A has the maximum number of nonzero entries among the rows of A. Let B be the matrix obtained from A by deleting the last row. Then B is an $(m-1)$ by n row-orthogonal matrix which has no column of zeros and whose first k columns are full. Hence by induction, $\#(B) \geqslant g(m-1, n, k)$. Lemma 3.2 now implies that some row of B, and thus y, has at least

$$
\ell_{m, k}+k+ \begin{cases}0 & \text { if } r_{m, k}=0 \text { and } q_{m, k}=2^{\ell_{m, k}} \\ 1 & \text { otherwise }\end{cases}
$$

nonzero entries. This, coupled with Lemma 3.1, implies that

$$
\begin{aligned}
\#(A) & =\#(B)+\#(y) \\
& \geqslant g(m-1, n, k)+\#(y) \\
& \geqslant g(m, n, k) .
\end{aligned}
$$

The proof is now complete.

4. Consequences

In this section we discuss some consequences of the results in the preceding sections. The first two follow immediately from the construction of sparse orthogonal matrices in Section 2 and Theorem 3.3.

Corollary 4.1. Let k, m, n be integers with $0<k \leqslant m \leqslant n$. Then the minimum number of nonzero entries in an m by n row-orthogonal matrix with k full columns, and no column of all zeros is

$$
\left(\left\lfloor\lg \left(\frac{m}{k}\right)\right\rfloor+k+2\right) m-k 2^{\lfloor\lg (m / k)\rfloor+1}+(n-m) .
$$

Corollary 4.2. Let k and m be integers with $0<k \leqslant m$. Then the minimum number of nonzero entries in an m by m orthogonal matrix with k full columns is

$$
\left(\left\lfloor\lg \left(\frac{m}{k}\right)\right\rfloor+k+2\right) m-k 2^{\lfloor\lg (m / k)\rfloor+1}
$$

In [3] it is shown that the minimum number of nonzero entries in an m by n row-orthogonal matrix with no column of zeros and with a full column is

$$
(\lfloor\lg (m)\rfloor+3) m-2^{\lfloor\lg (m)\rfloor+1}+(n-m) .
$$

The next corollary determines the minimum number of nonzero entries in an m by n row-orthogonal matrix with a full row.

Let e_{1}, \ldots, e_{n} denote the standard basis vectors of \mathbb{R}^{n}. A Given's rotation in \mathbb{R}^{n} is an n by n orthogonal matrix, R, such that there exist integers i and j and an angle θ with

$$
R e_{k}=\left\{\begin{array}{cl}
e_{k} & \text { if } k \notin\{i, j\}, \\
(\cos \theta) e_{i}+(\sin \theta) e_{j} & \text { if } k=i, \\
-(\sin \theta) e_{i}+(\cos \theta) e_{j} & \text { if } k=j .
\end{array}\right.
$$

It is clear that if Q is an n by n orthogonal matrix whose first row is full, and $j \neq 1$, then there exists a Given's rotation, R, such that both the first and j th row of $R Q$ are full.

Corollary 4.3. The minimum number of nonzero entries in an m by n row-orthogonal matrix with a full row is

$$
\begin{equation*}
\left(\left\lfloor\lg \frac{n}{n-m+1}\right\rfloor+3\right) n-(n-m+1) 2^{\lfloor\lg (n /(n-m+1))\rfloor+1} . \tag{6}
\end{equation*}
$$

Proof. The transpose of the matrix obtained from $F_{n, n-m+1}$ by deleting the first $n-m$ columns is an m by n row-orthogonal matrix with a full row and (6) nonzero entries.

To show that (6) is a lower bound on the sparsity of such matrices, let A be an m by n row-orthogonal matrix whose last row is full. Without loss of generality we may assume that the rows of A each have Euclidean length 1. Clearly, there exists an orthogonal n by n matrix B whose first m rows are the rows of A. By the observation proceeding the corollary, we may pre-multiply B by a sequence of Given's rotations which involve the full row of A and the last $n-m$ rows of B, to obtain an orthogonal matrix \widehat{B} whose last $n-m+1$ rows are full, and whose first $m-1$ rows are those of A. Hence \widehat{B}^{T} is an n by n orthogonal matrix with $n-m+1$ full columns. It
follows from Theorem 3.3 that $\#(A)=\#(\widehat{B})-(n-m) n \geqslant(\lfloor\lg (n /(n-m+1))\rfloor$ $+3) n-(n-m+1) 2^{\lfloor\lg (n /(n-m+1))\rfloor+1}$.

The next corollary shows that if a row-orthogonal matrix is sufficiently sparse, then no vector orthogonal to its rows is full.

Corollary 4.4. Let A be an m by n row-orthogonal matrix with $n>m$. Suppose

$$
\#(A)<\left(\left\lfloor\lg \frac{n}{n-m}\right\rfloor+2\right) n-(n-m) 2^{\lfloor\lg (n /(n-m))\rfloor+1} .
$$

Then each vector orthogonal to the rows of A has a zero entry.
Proof. Suppose to the contrary that v^{T} is a full vector orthogonal to the rows of A. Then the $(m+1)$ by n matrix obtained from A by appending v^{T} on the top, is an $(m+1)$ by n row-orthogonal matrix with a full row and less than

$$
\left(\left\lfloor\lg \frac{n}{n-m}\right\rfloor+3\right) n-(n-m) 2^{\lfloor\lg (n /(n-m))\rfloor+1}
$$

nonzero entries. This contradicts Corollary 4.3.
We conclude this section by pointing out a connection between this work and Pothen's [6] dissertation. In Chapter 3 of his dissertation, Pothen studied the problem of determining the sparsest orthogonal basis of a null space of an k by n matrix A. Under the assumptions that A is generic (that is, every i by i submatrix of A is invertible for $i=1,2, \ldots, k$) and k divides n, Pothen shows that every orthogonal basis of the null space of A has at least

$$
\begin{equation*}
n k(\lfloor\lg (n / k)\rfloor+2)-k^{2} 2^{\lfloor\lg (n / k)\rfloor+1} \tag{7}
\end{equation*}
$$

nonzero entries. Corollary 4.2 implies a different answer when the assumption that A is generic is weakened. Namely, the minimum number of nonzero entries in an orthogonal basis for the null space of a full n by k matrix of rank k, is

$$
\begin{equation*}
n(\lfloor\lg (n / k)\rfloor+2)-k 2^{\lfloor\lg (n / k)\rfloor+1} \tag{8}
\end{equation*}
$$

Thus, the assumption that A is generic causes a k-fold increase in the number of nonzero entries in a sparse orthgonal basis for the null space of A. Note that the first k columns of the sparse orthogonal matrices, $F_{n, k}$ constructed in Section 2, are far from generic.

5. Related problems

In this section we raise some problems for future research, and give some partial results. Let M be a p by $q(0,1)$-matrix, and let n be an integer with $n \geqslant \max \{p, q\}$.

Problem 1. Does there exist an n by n orthogonal matrix which has a submatrix whose zero pattern is M ?

Problem 2. If the answer to Problem 1 is yes, then what is the minimum number of nonzero entries in an orthogonal matrix which has a submatrix with zero pattern M ?

For example, consider the case that $M=J_{p, q}$, the all ones matrix. Clearly, the existence of an n by n orthogonal matrix with a full p by q submatrix requires $n \geqslant$ $\max \{p, q\}$. Without loss of generality assume that $p \geqslant q$. For $n \geqslant p$, the direct sum of the matrix $F_{p, q}$ and I_{n-p} is an n by n orthogonal matrix which contains a full p by q submatrix, and has

$$
p\left(\left\lfloor\lg \frac{p}{q}\right\rfloor+q+2\right)-q 2^{\lfloor\lg (p / q)\rfloor+1}+(n-p)
$$

nonzero entries.
Suppose that Q is an n by n orthogonal matrix with a full p by q submatrix with $p \geqslant q$. Without loss of generality we may assume that the p by q submatrix occurs in the upper left corner of Q. By Corollary 4.1, the first p rows of Q have at least

$$
p\left(\left\lfloor\lg \frac{p}{q}\right\rfloor+2+q\right)-q 2^{\lfloor\lg (p / q)\rfloor+1}
$$

nonzero entries, and by the orthogonality of Q the last $n-p$ rows have at least $n-p$ nonzero entries. Hence we have proven the following result.

Corollary 5.1. Let n, p, and q be integers with $p \geqslant q$. There exists an n by n orthogonal matrix with a full p by q submatrix if and only if $n \geqslant p$. Furthermore, the minimum number of nonzero entries in such an n by n orthogonal matrix is

$$
p\left(\left\lfloor\lg \frac{p}{q}\right\rfloor+2+q\right)-q 2^{\lfloor\lg (p / q)\rfloor+1}+(n-p) .
$$

One can ask the analogous questions under the assumption that the orthogonal matrix is not a direct sum (no matter how you permute its rows and columns). More precisely, an m by n matrix A is disconnected, if the rows and columns of A can be permuted to obtain a matrix of the form

$$
\left[\begin{array}{cc}
A_{1} & O \\
O & A_{2}
\end{array}\right]
$$

Here, either of the matrices A_{1} or A_{2} may be vacuous by virtue of having no rows or no columns. But neither A_{1} nor A_{2} is allowed to be the 0 by 0 matrix. A matrix which is not disconnected is connected. If A is an n by n orthogonal matrix, then it is easy to verify that if A contains a zero submatrix whose dimensions sum to n, then the submatrix complementary to it is also a zero submatrix. Hence an n by n orthogonal matrix is disconnected if and only if there exists an r by s zero submatrix of A for some positive integers r and s with $r+s=n$.

Our last result answers the sparsity question for connected, orthogonal matrices that have a column of p nonzero entries. We use $A[\alpha, \beta]$ to denote the submatrix of A whose rows are indexed by the set α, and whose columns are indexed by the set β.

Theorem 5.2. Let n and p be integers with $n \geqslant p \geqslant 2$. The minimum number of nonzero entries in a connected, n by n orthogonal matrix whose first column has p nonzero entries is

$$
\begin{equation*}
(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1}+4(n-p) \tag{9}
\end{equation*}
$$

Proof. We first recursively define a family $Q_{n}, n \geqslant p$, of orthogonal matrices. Let Q_{p} be a matrix in \mathscr{H}_{p} whose first column has p nonzero entries, and whose last column has two nonzero entries and these are in rows $p-1$ and p. For $n>p$, define Q_{n} as follows. If $n-p$ is odd, then

$$
Q_{n}=\left(Q_{n-1} \oplus[1]\right)\left(I_{n-2} \oplus\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\right)
$$

If $n-p$ is even, then

$$
Q_{n}=\left(I_{n-2} \oplus\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\right)\left(Q_{n-1} \oplus[1]\right)
$$

It is easy to verify that Q_{n} is a connected, orthogonal matrix that has p nonzero entries in its first column, and

$$
\#\left(Q_{n}\right)=(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1}+4(n-p)
$$

Next, let A be a connected, n by n orthogonal matrix whose first column has p nonzero entries. We show, by induction on $n-p$, that A has at least (9) nonzero entries,

If $n-p=0$, then this follows from Theorem 3.3. Assume that $n-p>0$ and proceed by induction. Without loss of generality we may assume that the last $n-p$ entries in the first column of A are 0 .

If each of the last $n-p$ rows of A has at least four nonzero entries, then by Theorem 3.3,

$$
\#(A) \geqslant(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1}+4(n-p)
$$

Since A is connected, each row of A has at least two nonzero entries. Suppose that one of the last $n-p$ rows, say row n, of A has two nonzero entries, say $a_{n, n-1} \neq 0$ and $a_{n, n} \neq 0$. Then the orthogonality of A implies that the last two columns of A have nonzero entries in the same set of rows, and that

$$
A=(\widehat{A} \oplus[1])\left(I_{n-2} \oplus\left[\begin{array}{rr}
a_{n, n} & a_{n, n-1} \\
-a_{n, n-1} & a_{n, n}
\end{array}\right]\right)
$$

where \widehat{A} is the matrix obtained from A by deleting its last row and column, and then scaling column $n-1$ by $1 / a_{n, n}$. Since A is connected, \widehat{A} is connected, and since
the first column of A has p nonzero entries, so does the first column of \widehat{A}. Thus, by induction,

$$
\begin{aligned}
\#(A)= & \widehat{A}+2+\#\left(\widehat{A}_{\cdot, n-1}\right) \geqslant(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1} \\
& +4(n-p-1)+2+\#\left(\widehat{A}_{\cdot, n-1}\right) .
\end{aligned}
$$

The assumption that A is connected implies that $\#\left(\widehat{A}_{\cdot, n-1}\right) \geqslant 2$. Hence, the desired inequality has been established in this case.

Finally, suppose that one of the last $n-p$ rows of A has three nonzero entries. Without loss of generality we may assume row n has three nonzero entries and that $a_{n, n-2}, a_{n, n-1}$ and $a_{n, n}$ are nonzero. Thus, A has the form

$$
\left[\begin{array}{llll}
X & u & v & w \\
O & a & b & c
\end{array}\right],
$$

where X is an $(n-1)$ by $(n-3)$ matrix. We may further assume that $\#(u) \geqslant \#(v)$.
The orthogonality of A implies that the null space of $\left[\begin{array}{ll}u & v \\ \hline\end{array}\right]$ is one-dimensional and is spanned by the vector $(a, b, c)^{\mathrm{T}}$. In particular, u and v are linearly independent. Since u and v are orthogonal to each column of X,

$$
Q^{\prime}=\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & X
\end{array}\right]
$$

is an orthogonal matrix of order $n-1$, where u^{\prime} and v^{\prime} are the vectors obtained from u and v by applying the Gram-Schmidt process.

The assumption that $\#(u) \geqslant \#(v)$ and the independence of u and v, imply that there exists an i such that the i th entries of u^{\prime} and v^{\prime} are both nonzero. Suppose that Q^{\prime} can be written as a direct sum of two matrices. Then, since u_{i}^{\prime} and v_{i}^{\prime} are nonzero, there exists an r by s zero submatrix, $Q^{\prime}[\alpha, \beta]$, for some integers r and s such that $r+s=n-1$, which intersects column $n-2$ and column $n-1$. But then $Q[\alpha, \beta \cup\{n\}]$ is an r by $(s+1)$ zero submatrix of Q, and we contradict the assumption that Q is connected.

By the induction hypothesis,

$$
\#\left(Q^{\prime}\right) \geqslant(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1}+4(n-p-1)
$$

Thus

$$
\#(Q) \geqslant(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1}+4(n-p)-1+\#(v)+\#(w)-\#\left(v^{\prime}\right)
$$

Since rows $1,2, \ldots, n-1$ of Q are orthogonal to the last row of Q, no row of [$\left.\begin{array}{lll}u & v & w\end{array}\right]$ contains exactly one nonzero entry. Thus, each row of $\left[\begin{array}{ll}v & w\end{array}\right]$ contains at least as many nonzero entries as the corresponding row of v^{\prime}. Since the $(n-1)$ th and nth columns of Q are orthogonal, some row of $\left[\begin{array}{ll}v & w\end{array}\right]$ has no zero entries. Thus, for some i, row i of $\left[\begin{array}{ll}v & w\end{array}\right]$ has more nonzero entries than row i of v^{\prime}. It follows that

$$
\#(Q) \geqslant(\lfloor\lg p\rfloor+3) p-2^{\lfloor\lg p\rfloor+1}+4(n-p)
$$

References

[1] L.B. Beasley, R.A. Brualdi, B.L. Shader, Combinatorial orthogonality, in: R.A. Brualdi, S. Friedland, V. Klee (Eds.), Combinatorial and Graph-Theoretical Problems in Linear Algebra, Springer, Berlin, 1993, pp. 207-218.
[2] G.S. Cheon, B.L. Shader, How sparse can a matrix with orthogonal rows be? J. Combinatorial Theory A 85 (1999) 29-40.
[3] G.S. Cheon, B.L. Shader, Sparse orthogonal matrices and the Haar wavelet, Discrete Appl. Math., to appear.
[4] M. Fiedler, Invited talk, SIAM Applied Linear Algebra meeting, Minneapolis, 1990.
[5] P.M. Gibson, G.-H. Zhang, Combinatorially orthogonal matrices and related graphs, Linear Algebra Appl. 282 (1998) 83-97.
[6] A. Pothen, Sparse null bases and marriage theorems, Ph.D. thesis, Cornell University, 1984.
[7] B.L. Shader, A simple proof of Fiedler's conjecture concerning orthogonal matrices, J. Rocky Mtn. Math. 27 (1997) 1239-1243.
[8] C. Waters, Sign pattern matrices that allow orthogonality, Linear Algebra Appl. 235 (1996) 1-16.

[^0]: * Corresponding author.

 E-mail address: bshader@uwyo.edu (B.L. Shader).

[^1]: ${ }^{1}$ The existence of such a matrix is obvious, as we may take $U=I-(2 / k) J$ where J is the matrix of all ones.

