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Abstract

The sparsity of orthogonal matrices which havek > 1 columns of nonzeros is studied. It
is shown that the minimum number of nonzero entries in such anm by m matrix is(⌊

lg
(m

k

)⌋
+ k + 2

)
m − k2blg(m/k)c+1.

As a consequence it is shown that ifA is anm by n matrix withm < n and the properties that
its rows are pairwise orthogonal, and it has less than(⌊

lg
n

n − m

⌋
+ 2

)
n − (n − m)2blg(n/(n−m))c+1

nonzero entries, then each vector orthogonal to the rows ofA has at least one entry equal to 0.
Also, for integersk andn with k 6 n, the minimum number of nonzero entries in ann by n,
connected, orthogonal matrix having a column with at leastk nonzero entries is determined.
© 2000 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

In 1990, Miroslav Fiedler [4] catalyzed several investigations (see [1–3,5,7,8])
into the sparsity of certain types of orthogonal matrices by asking: how sparse can
ann by n orthogonal matrix (whose rows and columns cannot be permuted to give a
matrix which is a direct sum of matrices) be? The assumption excluding direct sums
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is necessary, since otherwise the answer is triviallyn. Fiedler’s question is answered
in [1] (see also [7]), where it is shown that eachn by n orthogonal matrix which is
not direct summable has at least 4n − 4 nonzero entries, and that forn > 2, there
exist such orthogonal matrices with exactly 4n − 4 nonzero entries. This result is
extended in [2] tom by n matrices which are not direct summable, and whose rows
are pairwise orthogonal.

Define a vector or a matrix to befull, provided each of its entries is nonzero. In
[3], it is shown that ann by n orthogonal matrix with a full column has at least

(blg nc + 3)n − 2blgnc+1 (1)

nonzero entries, where lg denotes the base-2 logarithm function. This is perhaps
a surprising result, as it implies that the presence of a full column in ann by n
orthogonal matrix forces the number of nonzeros to be super-linear (at least of order
n lg n) in n. Then by n orthogonal matrices with a full column which achieve the
sparsity in (1) are closely related to the discrete Haar wavelet (see [3]). It will be
beneficial to describe these matrices here. Throughout we let #(A) denote the number
of nonzero entries inA.

We first describe a way of constructing an(m + 1) by (m + 1) orthogonal matrix
with a full column, from such anm by m matrix. Thejth column of the matrixA is
denoted byA·,j , and theith row byAi,·. Let A be anm by m orthogonal matrix with
a full column, and let[

a b

c d

]
be a 2 by 2 orthogonal matrix with no entry equal to 0. Then the matrix

Â =



a bAi,·
0 A1,·
...

...

0 Ai−1,·
c dAi,·
0 Ai+1,·
...

...

0 Am,·


is an(m + 1) by (m + 1) orthogonal matrix with a full column.

We next use this construction to recursively define a family,Hm, of m by m
orthogonal matrices which have a full column. The familyH1 consists of[1] and
[−1]. Assuming that the familyHm is defined, then the familyHm+1 consists of
all matrices which after row and column permutations can be obtained by choosing
a matrixA in Hm, choosing ani so that #(Ai,·) = minj=1,...,m #(Aj,·), and applying
the above construction. We defineH to be the union of theHi (i > 1). In [2] it is
shown that then by n matrices inH are precisely then by n, orthogonal matrices
with a full column and exactly (1) nonzero entries.
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In this paper, we study the sparsity of orthogonal matrices that have a fixed num-
ber,k > 0, of full columns. In particular, Corollary 4.2 asserts that minimum number
of nonzero entries in anm by morthogonal matrix withk full columns is(⌊

lg
(m

k

)⌋
+ k + 2

)
m − k2blg(m/k)c+1. (2)

In order to prove Corollary 4.2, we prove something stronger. A matrix isrow-
orthogonal provided each of its rows is nonzero and its rows are pairwise ortho-
gonal. Corollary 4.1 asserts that the minimum number of nonzero entries in anm by
n row-orthogonal matrix withk full columns and no column of zeros is(⌊

lg
(m

k

)⌋
+ k + 2

)
m − k2blg(m/k)c+1 + (n − m).

A consequence of this result is that ifA is anm by n row-orthogonal matrix with
n > m, with no column of zeros and

#(A) <

(⌊
lg

(
n

n − m

)⌋
+ 2

)
n − (n − m)2blg(n/(n−m))c+1,

then each vector orthogonal to the rows ofA has an entry equal to 0.

2. Examples of sparse orthogonal matrices

Throughout we letk be a fixed positive integer. For each integerm with m > k

let qm,k andrm,k denote the quotient and remainder whenm is divided byk, and let
`m,k = blg qm,kc. We begin this section by constructing sparsem by m orthogonal
matrices whose firstk columns are full.

For each integert, let Ht denote a matrix inHt whose first column is full. Let̂Ht

denote thet by (t − 1) matrix obtained fromHt by deleting its first column, and let
ĥt denote the first column ofHt . SinceHt ∈ Ht ,

#(Ĥt ) = (blg tc + 2)t − 2blg tc+1. (3)

Let U be ak by k orthogonal matrix which has no entry equal to 0 and letuT
1, uT

2, . . . ,
uT

k denote its rows.1 Finally, set

Fm,k =



ĥqm,k u
T
1 Ĥqm,k · · · O O · · · O

...
...

. . .
...

...
. . .

...

ĥqm,k u
T
k−rm,k

O · · · Ĥqm,k O · · · O

ĥqm,k+1u
T
k−rm,k+1 O · · · O Ĥqm,k+1 · · · O

...
... · · · ...

... · · · ...

ĥqm,k+1u
T
k O · · · O O · · · Ĥqm,k+1


.

1 The existence of such a matrix is obvious, as we may takeU = I − (2/k)J whereJ is the matrix of
all ones.
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It is easy to verify thatFm,k is an m by m row-orthogonal matrix whose firstk
columns are full.

To compute #(Fm,k) we consider two cases. First suppose thatqm,k /= 2`m,k+1 −
1. Note that blg(qm,k + 1)c = blg qm,kc = `m,k. Since Fm,k consists ofk full
columns,(k − rm,k) Ĥqm,k ’s, andrm,k Ĥqm,k+1’s, (3) implies that

#(Fm,k) = mk + (k − rm,k)
[
(`m,k + 2)qm,k − 2`m,k+1

]
+rm,k

[
(`m,k + 2)(qm,k + 1) − 2`m,k+1

]
= mk + k

[
(`m,k + 2)qm,k − 2`m,k+1

]
+ rm,k(`m,k + 2)

= mk + (kqm,k + rm,k)(`m,k + 2) − k2`m,k+1

= mk + m(`m,k + 2) − k2`m,k+1

= (`m,k + k + 2)m − k2`m,k+1. (4)

Next suppose thatqm,k = 2`m,k+1 − 1. Note thatblg(qm,k + 1)c = blg qm,kc + 1 =
`m,k + 1. Thus,

#(Fm,k) = mk + (k − rm,k)
[
(`m,k + 2)qm,k − 2`m,k+1

]
+ rm,k

[
(`m,k + 3)(qm,k + 1) − 2`m,k+2

]
= mk + (k − rm,k)(qm,k)(`m,k + 2) + rm,kqm,k(`m,k + 2)

−
[
(k − rm,k)2`m,k+1 + rm,k2`m,k+1

]
+ rm,k(`m,k + 3 + qm,k − 2`m,k+1)

= mk + (kqm,k)(`m,k + 2) − k2`m,k+1 + rm,k(`m,k + 2)

= mk + (kqm,k + rm,k)(`m,k + 2) − k2`m,k+1

= (`m,k + k + 2)m − k2`m,k+1. (5)

Based on (4) and (5) we define

f (m, k) = (`m,k + k + 2)m − k2`m,k+1.

Thus, #(Fm,k) = f (m, k).
We now construct sparsemby n row-orthogonal matrices with no column of zeros

andk full columns. Forn > m, setg(m, n, k) = f (m, k) + (n − m). Let D be anm
by (n − m) matrix with exactly one nonzero entry in each column. Then[

Fm,k D
]

is anm by n row-orthogonal matrix whose firstk columns are full, none of whose
columns is the zero column, and withg(m, n, k) nonzero entries. In the next sec-
tion, we will show that thesem by n matrices are the sparsest such row-orthogonal
matrices.
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3. Lower bounds on sparsity

We begin this section by deriving some useful facts aboutg(m, n, k).

Lemma 3.1. Assume thatm > k. Then

g(m, n, k) = g(m − 1, n, k) + k + `m,k +
{

0 if rm,k = 0 andqm,k = 2`m,k ,

1 otherwise.

Proof. First suppose thatrm,k /= 0. Thenqm−1,k = qm,k, and`m−1,k = `m,k. The
desired equality now follows from the definition of the functiong.

Next suppose thatrm,k = 0 andqm,k /= 2`m . Although qm−1,k = qm,k − 1, we
still have `m−1,k = `m,k. The equality again follows from the definition of the
functiong.

Finally suppose thatrm,k = 0 andqm,k = 2`m,k . Thenm = k2`m,k , and`m−1,k =
`m,k − 1. Thus,

g(m − 1, n, k) = (`m,k + k + 1)(m − 1) − k2`m,k + (n − (m − 1))

= (`m,km + km + m − `m,k − k − 1)

−
(
k2`m,k+1 − m

)
+ n − m + 1

= g(m, n, k) − k − `m,k

and the desired equality readily follows.�

Lemma 3.2. Assume thatm > k. Then⌈
g(m − 1, n, k)

m − 1

⌉
> `m,k + k +

{
0 if rm,k = 0 andqm,k = 2`m,k ,

1 otherwise.

Proof. First suppose thatrm,k = 0 andqm,k = 2`m,k . Thenm = k2`m,k , and

g(m − 1, n, k)=(`m,k + k + 1)(m − 1) − m + (n − (m − 1))

=(`m,k + k)(m − 1) + (n − m).

The desired inequality now follows from the fact thatn > m.
Next suppose that eitherrm,k /= 0 orqm,k /= 2`m,k . Then

g(m − 1, n, k)=(`m,k + k + 2)(m − 1) − k2`m,k+1 + (n − (m − 1))

=(`m,k + k + 1)(m − 1) − 2k
(
2`m,k

)
+ n

=(`m,k + k + 1)(m − 1) − 2kqm,k + 2k
(
qm,k − 2`m,k

)
+ n

=(`m,k + k+1)(m−1) − 2m + 2rm,k + 2k
(
qm,k − 2`m,k

)
+ n

=(`m,k + k)(m−1)+(n − m)−1 + 2rm,k + 2k
(
qm,k − 2`m,k

)
.
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Since eitherrm,k or qm,k − 2`m,k is a positive integer, we conclude that

g(m − 1, n, k) > (`m,k + k)(m − 1) + (n − m).

The inequality now follows from the fact thatn > m. �

We are now ready to establish a lower bound on the sparsity of a row-orthogonal
matrices withk full columns.

Theorem 3.3. Let A be an m by n row-orthogonal matrix which has no column of
zeros and whose first k columns are full. Then#(A) > g(m, n, k).

Proof. The proof is by induction onm + n. The base case is whenm = k. In this
case, since each of the lastn − k = n − m columns ofA have at least one nonzero
entry, #(A) > km + n − k. Also,qm = 1, and̀ m = 0, and henceg(m, n, k) = (k +
2)m − 2m + (n − m) = km + (n − m). Thus, #(A) > g(m, n, k) in the base case.

Proceeding by induction, we assume thatm > k and that the result holds for all
suchm′ by n′ matrices withm′ + n′ < m + n.

Suppose that one of the lastn − k columns ofA has one nonzero entry. Then them
by (n − 1) matrix obtained fromA by deleting such a column satisfies the inductive
hypothesis, and hence #(A) > g(m, n − 1, k) + 1 = g(m, n, k).

Thus we may assume that no column ofA has exactly one nonzero entry. Without
loss of generality we may assume that the last row,y, of A has the maximum num-
ber of nonzero entries among the rows ofA. Let B be the matrix obtained fromA
by deleting the last row. ThenB is an (m − 1) by n row-orthogonal matrix which
has no column of zeros and whose firstk columns are full. Hence by induction,
#(B) > g(m − 1, n, k). Lemma 3.2 now implies that some row ofB, and thusy, has
at least

`m,k + k +
{

0 if rm,k = 0 andqm,k = 2`m,k ,

1 otherwise.

nonzero entries. This, coupled with Lemma 3.1, implies that

#(A)=#(B) + #(y)

>g(m − 1, n, k) + #(y)

>g(m, n, k).

The proof is now complete.�

4. Consequences

In this section we discuss some consequences of the results in the preceding sec-
tions. The first two follow immediately from the construction of sparse orthogonal
matrices in Section 2 and Theorem 3.3.
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Corollary 4.1. Let k,m, n be integers with0 < k 6 m 6 n. Then the minimum
number of nonzero entries in an m by n row-orthogonal matrix with k full columns,

and no column of all zeros is(⌊
lg
(m

k

)⌋
+ k + 2

)
m − k2blg(m/k)c+1 + (n − m).

Corollary 4.2. Let k and m be integers with0 < k 6 m. Then the minimum number
of nonzero entries in an m by m orthogonal matrix with k full columns is(⌊

lg
(m

k

)⌋
+ k + 2

)
m − k2blg(m/k)c+1.

In [3] it is shown that the minimum number of nonzero entries in anm by n
row-orthogonal matrix with no column of zeros and with a full column is

(blg(m)c + 3)m − 2blg(m)c+1 + (n − m).

The next corollary determines the minimum number of nonzero entries in anm by n
row-orthogonal matrix with a full row.

Let e1, . . . , en denote the standard basis vectors ofRn. A Given’s rotationin Rn

is ann by n orthogonal matrix,R, such that there exist integersi andj and an angle
θ with

Rek =
 ek if k /∈ {i, j },

(cosθ)ei + (sinθ)ej if k = i,
−(sinθ)ei + (cosθ)ej if k = j .

It is clear that ifQ is ann by n orthogonal matrix whose first row is full, andj /= 1,
then there exists a Given’s rotation,R, such that both the first andjth row of RQare
full.

Corollary 4.3. The minimum number of nonzero entries in an m by n row-orthogonal
matrix with a full row is(⌊

lg
n

n − m + 1

⌋
+ 3

)
n − (n − m + 1)2blg(n/(n−m+1))c+1. (6)

Proof. The transpose of the matrix obtained fromFn,n−m+1 by deleting the first
n − m columns is anm by n row-orthogonal matrix with a full row and (6) nonzero
entries.

To show that (6) is a lower bound on the sparsity of such matrices, letA be an
m by n row-orthogonal matrix whose last row is full. Without loss of generality we
may assume that the rows ofA each have Euclidean length 1. Clearly, there exists an
orthogonaln by n matrixB whose firstm rows are the rows ofA. By the observation
proceeding the corollary, we may pre-multiplyB by a sequence of Given’s rotations
which involve the full row ofA and the lastn − m rows ofB, to obtain an orthogonal
matrix B̂ whose lastn − m + 1 rows are full, and whose firstm − 1 rows are those
of A. HenceB̂T is an n by n orthogonal matrix withn − m + 1 full columns. It
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follows from Theorem 3.3 that #(A) = #(B̂) − (n − m)n > (blg(n/(n − m + 1))c
+ 3)n − (n − m + 1)2blg(n/(n−m+1))c+1. �

The next corollary shows that if a row-orthogonal matrix is sufficiently sparse,
then no vector orthogonal to its rows is full.

Corollary 4.4. Let A be an m by n row-orthogonal matrix withn > m. Suppose

#(A) <

(⌊
lg

n

n − m

⌋
+ 2

)
n − (n − m)2blg(n/(n−m))c+1.

Then each vector orthogonal to the rows of A has a zero entry.

Proof. Suppose to the contrary thatvT is a full vector orthogonal to the rows ofA.
Then the(m + 1) by n matrix obtained fromA by appendingvT on the top, is an
(m + 1) by n row-orthogonal matrix with a full row and less than(⌊

lg
n

n − m

⌋
+ 3

)
n − (n − m)2blg(n/(n−m))c+1

nonzero entries. This contradicts Corollary 4.3.�

We conclude this section by pointing out a connection between this work and
Pothen’s [6] dissertation. In Chapter 3 of his dissertation, Pothen studied the problem
of determining the sparsest orthogonal basis of a null space of ank by n matrix
A. Under the assumptions thatA is generic (that is, everyi by i submatrix ofA is
invertible for i = 1, 2, . . . , k) andk dividesn, Pothen shows that every orthogonal
basis of the null space ofA has at least

nk (blg(n/k)c + 2) − k22blg(n/k)c+1 (7)

nonzero entries. Corollary 4.2 implies a different answer when the assumption that
A is generic is weakened. Namely, the minimum number of nonzero entries in an
orthogonal basis for the null space of a fulln by k matrix of rankk, is

n(blg(n/k)c + 2) − k2blg(n/k)c+1. (8)

Thus, the assumption thatA is generic causes ak-fold increase in the number of
nonzero entries in a sparse orthgonal basis for the null space ofA. Note that the first
k columns of the sparse orthogonal matrices,Fn,k constructed in Section 2, are far
from generic.

5. Related problems

In this section we raise some problems for future research, and give some partial
results. LetM be ap by q (0, 1)-matrix, and letn be an integer withn > max{p, q}.
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Problem 1. Does there exist ann by n orthogonal matrix which has a submatrix
whose zero pattern isM?

Problem 2. If the answer to Problem 1 is yes, then what is the minimum number of
nonzero entries in an orthogonal matrix which has a submatrix with zero patternM?

For example, consider the case thatM = Jp,q , the all ones matrix. Clearly, the
existence of ann by n orthogonal matrix with a fullp by q submatrix requiresn >
max{p, q}. Without loss of generality assume thatp > q. Forn > p, the direct sum
of the matrixFp,q andIn−p is ann by n orthogonal matrix which contains a fullp
by q submatrix, and has

p

(⌊
lg

p

q

⌋
+ q + 2

)
− q2blg(p/q)c+1 + (n − p)

nonzero entries.
Suppose thatQ is ann by n orthogonal matrix with a fullp by q submatrix with

p > q. Without loss of generality we may assume that thep by q submatrix occurs
in the upper left corner ofQ. By Corollary 4.1, the firstp rows ofQ have at least

p

(⌊
lg

p

q

⌋
+ 2 + q

)
− q2blg(p/q)c+1

nonzero entries, and by the orthogonality ofQ the lastn − p rows have at leastn − p

nonzero entries. Hence we have proven the following result.

Corollary 5.1. Let n, p, and q be integers withp > q. There exists an n by n or-
thogonal matrix with a full p by q submatrix if and only ifn > p. Furthermore, the
minimum number of nonzero entries in such an n by n orthogonal matrix is

p

(⌊
lg

p

q

⌋
+ 2 + q

)
− q2blg(p/q)c+1 + (n − p).

One can ask the analogous questions under the assumption that the orthogonal
matrix is not a direct sum (no matter how you permute its rows and columns). More
precisely, anm by n matrix A is disconnected, if the rows and columns ofA can be
permuted to obtain a matrix of the form[

A1 O

O A2

]
.

Here, either of the matricesA1 or A2 may be vacuous by virtue of having no rows
or no columns. But neitherA1 nor A2 is allowed to be the 0 by 0 matrix. A matrix
which is not disconnected isconnected. If A is ann by n orthogonal matrix, then
it is easy to verify that ifA contains a zero submatrix whose dimensions sum ton,
then the submatrix complementary to it is also a zero submatrix. Hence ann by n
orthogonal matrix is disconnected if and only if there exists anr by szero submatrix
of A for some positive integersr andswith r + s = n.
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Our last result answers the sparsity question for connected, orthogonal matrices
that have a column ofp nonzero entries. We useA[α, β] to denote the submatrix of
A whose rows are indexed by the setα, and whose columns are indexed by the setβ.

Theorem 5.2. Let n and p be integers withn > p > 2. The minimum number of
nonzero entries in a connected, n by n orthogonal matrix whose first column has p
nonzero entries is

(blg pc + 3)p − 2blgpc+1 + 4(n − p). (9)

Proof. We first recursively define a familyQn, n > p, of orthogonal matrices. Let
Qp be a matrix inHp whose first column hasp nonzero entries, and whose last
column has two nonzero entries and these are in rowsp − 1 andp. Forn > p, define
Qn as follows. Ifn − p is odd, then

Qn = (Qn−1 ⊕ [1])
(

In−2 ⊕
[ 1√

2
1√
2

1√
2

− 1√
2

])
.

If n − p is even, then

Qn =
(

In−2 ⊕
[ 1√

2
1√
2

1√
2

− 1√
2

])
(Qn−1 ⊕ [1]).

It is easy to verify thatQn is a connected, orthogonal matrix that hasp nonzero
entries in its first column, and

#(Qn) = (blg pc + 3)p − 2blgpc+1 + 4(n − p).

Next, let A be a connected,n by n orthogonal matrix whose first column hasp
nonzero entries. We show, by induction onn − p, that A has at least (9) nonzero
entries,

If n − p = 0, then this follows from Theorem 3.3. Assume thatn − p > 0 and
proceed by induction. Without loss of generality we may assume that the lastn − p

entries in the first column ofA are 0.
If each of the lastn − p rows of A has at least four nonzero entries, then by

Theorem 3.3,

#(A) > (blg pc + 3)p − 2blgpc+1 + 4(n − p).

SinceA is connected, each row ofA has at least two nonzero entries. Suppose that
one of the lastn − p rows, say rown, of A has two nonzero entries, sayan,n−1 /= 0
andan,n /= 0. Then the orthogonality ofA implies that the last two columns ofA
have nonzero entries in the same set of rows, and that

A = (Â ⊕ [1])
(
In−2 ⊕

[
an,n an,n−1

−an,n−1 an,n

])
,

whereÂ is the matrix obtained fromA by deleting its last row and column, and then
scaling columnn − 1 by 1/an,n. SinceA is connected,̂A is connected, and since
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the first column ofA hasp nonzero entries, so does the first column ofÂ. Thus, by
induction,

#(A) = Â + 2 + #(Â·,n−1) > (blg pc + 3)p − 2blgpc+1

+ 4(n − p − 1) + 2 + #(Â·,n−1).

The assumption thatA is connected implies that #(Â·,n−1) > 2. Hence, the desired
inequality has been established in this case.

Finally, suppose that one of the lastn − p rows of A has three nonzero entries.
Without loss of generality we may assume rown has three nonzero entries and that
an,n−2, an,n−1 andan,n are nonzero. Thus,A has the form[

X u v w

O a b c

]
,

whereX is an(n − 1) by (n − 3) matrix. We may further assume that #(u) > #(v).
The orthogonality ofA implies that the null space of[u v w] is one-dimensional

and is spanned by the vector(a, b, c)T. In particular,uandv are linearly independent.
Sinceu andv are orthogonal to each column ofX,

Q′ = [
u′ v′ X

]
is an orthogonal matrix of ordern − 1, whereu′ andv′ are the vectors obtained from
u andv by applying the Gram–Schmidt process.

The assumption that #(u) > #(v) and the independence ofu andv, imply that
there exists ani such that theith entries ofu′ andv′ are both nonzero. Suppose
that Q′ can be written as a direct sum of two matrices. Then, sinceu′

i andv′
i are

nonzero, there exists anr by s zero submatrix,Q′[α, β], for some integersr and
s such thatr + s = n − 1, which intersects columnn − 2 and columnn − 1. But
thenQ[α, β ∪ {n}] is an r by (s + 1) zero submatrix ofQ, and we contradict the
assumption thatQ is connected.

By the induction hypothesis,

#(Q′) > (blg pc + 3)p − 2blgpc+1 + 4(n − p − 1)

Thus

#(Q) > (blg pc + 3)p − 2blgpc+1 + 4(n − p) − 1 + #(v) + #(w) − #(v′).

Since rows 1, 2, . . . , n − 1 of Q are orthogonal to the last row ofQ, no row of
[u v w] contains exactly one nonzero entry. Thus, each row of[v w] contains at
least as many nonzero entries as the corresponding row ofv′. Since the(n − 1)th
andnth columns ofQ are orthogonal, some row of[v w] has no zero entries. Thus,
for somei, row i of [v w] has more nonzero entries than rowi of v′. It follows that

#(Q) > (blg pc + 3)p − 2blgpc+1 + 4(n − p). �
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