Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces

Satoru Takahashi ${ }^{\text {a }}$, Wataru Takahashi ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Yokohama Publishers, 101, 6-27, Satsukigaoka, Aoba-ku, Yokohama 227-0053, Japan
${ }^{\mathrm{b}}$ Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan
Received 14 June 2006
Available online 26 September 2006
Submitted by G. Jungck

Abstract

In this paper, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with Combettes and Hirstoaga's result [P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136] and Wittmann's result [R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491]. Using this result, we obtain two corollaries which improve and extend their results.

© 2006 Elsevier Inc. All rights reserved.
Keywords: Viscosity approximation method; Equilibrium problem; Fixed point; Nonexpansive mapping

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let F be a bifunction of $C \times C$ into \mathbf{R}, where \mathbf{R} is the set of real numbers. The equilibrium problem for $F: C \times C \rightarrow \mathbf{R}$ is to find $x \in C$ such that

$$
\begin{equation*}
F(x, y) \geqslant 0 \quad \text { for all } y \in C . \tag{1.1}
\end{equation*}
$$

[^0]The set of solutions of (1.1) is denoted by $E P(F)$. Given a mapping $T: C \rightarrow H$, let $F(x, y)=$ $\langle T x, y-x\rangle$ for all $x, y \in C$. Then, $z \in E P(F)$ if and only if $\langle T z, y-z\rangle \geqslant 0$ for all $y \in C$, i.e., z is a solution of the variational inequality. Numerous problems in physics, optimization, and economics reduce to find a solution of (1.1). Some methods have been proposed to solve the equilibrium problem; see, for instance, [2,3]. Recently, Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to the initial data when $E P(F)$ is nonempty and proved a strong convergence theorem.

A mapping S of C into H is called nonexpansive if

$$
\|S x-S y\| \leqslant\|x-y\| \quad \text { for all } x, y \in C
$$

We denote by $F(S)$ the set of fixed points of S. If $C \subset H$ is bounded, closed and convex and S is a nonexpansive mapping of C into itself, then $F(S)$ is nonempty; for instance, see [8]. There are some methods for approximation of fixed points of a nonexpansive mapping. In 2000, Moudafi [4] proved the following strong convergence theorem.

Theorem 1.1. (Moudafi [4]) Let C be a nonempty closed convex subset of a Hilbert space H and let S be a nonexpansive mapping of C into itself such that $F(S)$ is nonempty. Let f be a contraction of C into itself and let $\left\{x_{n}\right\}$ be a sequence defined as follows: $x_{1}=x \in C$ and

$$
x_{n+1}=\frac{1}{1+\varepsilon_{n}} S x_{n}+\frac{\varepsilon_{n}}{1+\varepsilon_{n}} f\left(x_{n}\right)
$$

for all $n \in \mathbf{N}$, where $\left\{\varepsilon_{n}\right\} \subset(0,1)$ satisfies

$$
\lim _{n \rightarrow \infty} \varepsilon_{n}=0, \quad \sum_{n=1}^{\infty} \varepsilon_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|\frac{1}{\varepsilon_{n+1}}-\frac{1}{\varepsilon_{n}}\right|=0
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $z \in F(S)$, where $z=P_{F(S)} f(z)$ and $P_{F(S)}$ is the metric projection of H onto $F(S)$.

Such a method for approximation of fixed points is called the viscosity approximation method.
In this paper, motivated Combettes and Hirstoaga [2], Moudafi [4], and Tada and Takahashi [7], we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with Combettes and Hirstoaga's result [2] and Wittmann's result [11]. Using this result, we obtain two corollaries which improve and extend their results.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. When $\left\{x_{n}\right\}$ is a sequence in $H, x_{n} \rightharpoonup x$ implies that $\left\{x_{n}\right\}$ converges weakly to x and $x_{n} \rightarrow x$ means the strong convergence. In a real Hilbert space H, we have

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in \mathbf{R}$. Let C be a nonempty closed convex subset of H. Then, for any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C}(x)$, such that

$$
\left\|x-P_{C}(x)\right\| \leqslant\|x-y\| \quad \text { for all } y \in C
$$

Such a P_{C} is called the metric projection of H onto C. We know that P_{C} is nonexpansive. Further, for $x \in H$ and $z \in C$,

$$
z=P_{C} x \quad \Leftrightarrow \quad\langle x-z, z-y\rangle \geqslant 0 \quad \text { for all } y \in C
$$

We also know that for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $x \neq y$; see $[5,8]$ for more details.
For solving the equilibrium problem for a bifunction $F: C \times C \rightarrow \mathbf{R}$, let us assume that F satisfies the following conditions:
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leqslant 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C$,

$$
\lim _{t \downarrow 0} F(t z+(1-t) x, y) \leqslant F(x, y) ;
$$

(A4) for each $x \in C, y \mapsto F(x, y)$ is convex and lower semicontinuous.
The following lemma appears implicitly in [1].
Lemma 2.1. [1] Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbf{R} satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geqslant 0 \quad \text { for all } y \in C
$$

The following lemma was also given in [2].
Lemma 2.2. [2] Assume that $F: C \times C \rightarrow \mathbf{R}$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geqslant 0, \forall y \in C\right\}
$$

for all $z \in H$. Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leqslant\left\langle T_{r} x-T_{r} y, x-y\right\rangle ;
$$

(3) $F\left(T_{r}\right)=E P(F)$;
(4) $E P(F)$ is closed and convex.

3. Strong convergence theorem

In this section, we deal with an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of the equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space.

As in the proof of [9, p. 171] or [6, Lemma 1], we can prove the following lemma; see also [10].

Lemma 3.1. [10] Let $\left\{a_{n}\right\} \subset[0, \infty),\left\{b_{n}\right\} \subset[0, \infty)$ and $\left\{c_{n}\right\} \subset[0,1)$ be sequences of real numbers such that

$$
\begin{aligned}
& a_{n+1} \leqslant\left(1-c_{n}\right) a_{n}+b_{n} \quad \text { for all } n \in \mathbf{N} \\
& \sum_{n=1}^{\infty} c_{n}=\infty \text { and } \sum_{n=1}^{\infty} b_{n}<\infty
\end{aligned}
$$

Then, $\lim _{n \rightarrow \infty} a_{n}=0$.
Theorem 3.2. Let C be a nonempty closed convex subset of H. Let F be a bifunction from $C \times C$ to \mathbf{R} satisfying (A1)-(A4) and let S be a nonexpansive mapping of C into H such that $F(S) \cap E P(F) \neq \emptyset$. Let f be a contraction of H into itself and let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant 0, \quad \forall y \in C \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}
\end{array}\right.
$$

for all $n \in \mathbf{N}$, where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty \\
& \liminf _{n \rightarrow \infty} r_{n}>0 \quad \text { and } \quad \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty
\end{aligned}
$$

Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $z \in F(S) \cap E P(F)$, where $z=P_{F(S) \cap E P(F)} f(z)$.
Proof. Let $Q=P_{F(S) \cap E P(F)}$. Then $Q f$ is a contraction of H into itself. In fact, there exists $a \in[0,1)$ such that $\|f(x)-f(y)\| \leqslant a\|x-y\|$ for all $x, y \in H$. So, we have that

$$
\|Q f(x)-Q f(y)\| \leqslant\|f(x)-f(y)\| \leqslant a\|x-y\|
$$

for all $x, y \in H$. So, $Q f$ is a contraction of H into itself. Since H is complete, there exists a unique element $z \in H$ such that $z=Q f(z)$. Such a $z \in H$ is an element of C.

Let $v \in F(S) \cap E P(F)$. Then from $u_{n}=T_{r_{n}} x_{n}$, we have

$$
\left\|u_{n}-v\right\|=\left\|T_{r_{n}} x_{n}-T_{r_{n}} v\right\| \leqslant\left\|x_{n}-v\right\|
$$

for all $n \in \mathbf{N}$. Put $M=\max \left\{\left\|x_{1}-v\right\|, \frac{1}{1-a}\|f(v)-v\|\right\}$. It is obvious that $\left\|x_{1}-v\right\| \leqslant M$. Suppose $\left\|x_{n}-v\right\| \leqslant M$. Then, we have

$$
\begin{aligned}
\left\|x_{n+1}-v\right\| & =\left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}-v\right\| \\
& \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|+\left(1-\alpha_{n}\right)\left\|S u_{n}-v\right\| \\
& \leqslant \alpha_{n}\left(\left\|f\left(x_{n}\right)-f(v)\right\|+\|f(v)-v\|\right)+\left(1-\alpha_{n}\right)\left\|u_{n}-v\right\| \\
& \leqslant \alpha_{n}\left(a\left\|x_{n}-v\right\|+\|f(v)-v\|\right)+\left(1-\alpha_{n}\right)\left\|u_{n}-v\right\| \\
& \leqslant \alpha_{n}\left(a\left\|x_{n}-v\right\|+\|f(v)-v\|\right)+\left(1-\alpha_{n}\right)\left\|x_{n}-v\right\| \\
& =\left(1-\alpha_{n}(1-a)\right)\left\|x_{n}-v\right\|+\alpha_{n}(1-a) \frac{1}{1-a}\|f(v)-v\| \\
& \leqslant\left(1-\alpha_{n}(1-a)\right) M+\alpha_{n}(1-a) M=M .
\end{aligned}
$$

So, we have that $\left\|x_{n}-v\right\| \leqslant M$ for any $n \in \mathbf{N}$ and hence $\left\{x_{n}\right\}$ is bounded. We also obtain that $\left\{u_{n}\right\},\left\{S x_{n}\right\}$ and $\left\{f\left(x_{n}\right)\right\}$ are bounded. Next, we show that $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$. We have

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|= & \left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}-\alpha_{n-1} f\left(x_{n-1}\right)-\left(1-\alpha_{n-1}\right) S u_{n-1}\right\| \\
= & \| \alpha_{n} f\left(x_{n}\right)-\alpha_{n} f\left(x_{n-1}\right)+\alpha_{n} f\left(x_{n-1}\right)-\alpha_{n-1} f\left(x_{n-1}\right) \\
& +\left(1-\alpha_{n}\right) S u_{n}-\left(1-\alpha_{n}\right) S u_{n-1}+\left(1-\alpha_{n}\right) S u_{n-1} \\
& -\left(1-\alpha_{n-1}\right) S u_{n-1} \| \\
\leqslant & \alpha_{n} a\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right| K+\left(1-\alpha_{n}\right)\left\|u_{n}-u_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right| K, \tag{3.1}
\end{align*}
$$

where $K=\sup \left\{\left\|f\left(x_{n}\right)\right\|+\left\|S u_{n}\right\|: n \in \mathbf{N}\right\}$. On the other hand, from $u_{n}=T_{r_{n}} x_{n}$ and $u_{n+1}=$ $T_{r_{n+1}} x_{n+1}$, we have

$$
\begin{equation*}
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant 0 \quad \text { for all } y \in C \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(u_{n+1}, y\right)+\frac{1}{r_{n+1}}\left\langle y-u_{n+1}, u_{n+1}-x_{n+1}\right\rangle \geqslant 0 \quad \text { for all } y \in C . \tag{3.3}
\end{equation*}
$$

Putting $y=u_{n+1}$ in (3.2) and $y=u_{n}$ in (3.3), we have

$$
f\left(u_{n}, u_{n+1}\right)+\frac{1}{r_{n}}\left\langle u_{n+1}-u_{n}, u_{n}-x_{n}\right\rangle \geqslant 0
$$

and

$$
f\left(u_{n+1}, u_{n}\right)+\frac{1}{r_{n+1}}\left\langle u_{n}-u_{n+1}, u_{n+1}-x_{n+1}\right\rangle \geqslant 0 .
$$

So, from (A2) we have

$$
\left\langle u_{n+1}-u_{n}, \frac{u_{n}-x_{n}}{r_{n}}-\frac{u_{n+1}-x_{n+1}}{r_{n+1}}\right\rangle \geqslant 0
$$

and hence

$$
\left\langle u_{n+1}-u_{n}, u_{n}-u_{n+1}+u_{n+1}-x_{n}-\frac{r_{n}}{r_{n+1}}\left(u_{n+1}-x_{n+1}\right)\right\rangle \geqslant 0 .
$$

Without loss of generality, let us assume that there exists a real number b such that $r_{n}>b>0$ for all $n \in \mathbf{N}$. Then, we have

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\|^{2} & \leqslant\left\langle u_{n+1}-u_{n}, x_{n+1}-x_{n}+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(u_{n+1}-x_{n+1}\right)\right\rangle \\
& \leqslant\left\|u_{n+1}-u_{n}\right\|\left\{\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|u_{n+1}-x_{n+1}\right\|\right\}
\end{aligned}
$$

and hence

$$
\begin{align*}
\left\|u_{n+1}-u_{n}\right\| & \leqslant\left\|x_{n+1}-x_{n}\right\|+\frac{1}{r_{n+1}}\left|r_{n+1}-r_{n}\right|\left\|u_{n+1}-x_{n+1}\right\| \\
& \leqslant\left\|x_{n+1}-x_{n}\right\|+\frac{1}{b}\left|r_{n+1}-r_{n}\right| L, \tag{3.4}
\end{align*}
$$

where $L=\sup \left\{\left\|u_{n}-x_{n}\right\|: n \in \mathbf{N}\right\}$. So, from (3.1) we have

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| \leqslant & \alpha_{n} a\left\|x_{n}-x_{n-1}\right\|+2\left|\alpha_{n}-\alpha_{n-1}\right| K \\
& +\left(1-\alpha_{n}\right)\left(\left\|x_{n}-x_{n-1}\right\|+\frac{1}{b}\left|r_{n}-r_{n-1}\right| L\right) \\
= & \left(1-\alpha_{n}+\alpha_{n} a\right)\left\|x_{n}-x_{n-1}\right\|+2\left|\alpha_{n}-\alpha_{n-1}\right| K \\
& +\left(1-\alpha_{n}\right) \frac{1}{b}\left|r_{n}-r_{n-1}\right| L \\
= & \left(1-\alpha_{n}(1-a)\right)\left\|x_{n}-x_{n-1}\right\|+2 K\left|\alpha_{n}-\alpha_{n-1}\right|+\frac{L}{b}\left|r_{n}-r_{n-1}\right| .
\end{aligned}
$$

Using Lemma 3.1, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

From (3.4) and $\left|r_{n+1}-r_{n}\right| \rightarrow 0$, we have

$$
\lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=0
$$

Since $x_{n}=\alpha_{n-1} f\left(x_{n-1}\right)+\left(1-\alpha_{n-1}\right) S u_{n-1}$, we have

$$
\begin{aligned}
\left\|x_{n}-S u_{n}\right\| & \leqslant\left\|x_{n}-S u_{n-1}\right\|+\left\|S u_{n-1}-S u_{n}\right\| \\
& \leqslant \alpha_{n-1}\left\|f\left(x_{n-1}\right)-S u_{n-1}\right\|+\left\|u_{n-1}-u_{n}\right\| .
\end{aligned}
$$

From $\alpha_{n} \rightarrow 0$, we have $\left\|x_{n}-S u_{n}\right\| \rightarrow 0$. For $v \in F(S) \cap E P(F)$, we have

$$
\begin{aligned}
\left\|u_{n}-v\right\|^{2} & =\left\|T_{r_{n}} x_{n}-T_{r_{n}} v\right\|^{2} \\
& \leqslant\left\langle T_{r_{n}} x_{n}-T_{r_{n}} v, x_{n}-v\right\rangle \\
& =\left\langle u_{n}-v, x_{n}-v\right\rangle \\
& =\frac{1}{2}\left(\left\|u_{n}-v\right\|^{2}+\left\|x_{n}-v\right\|^{2}-\left\|x_{n}-v_{n}\right\|^{2}\right)
\end{aligned}
$$

and hence

$$
\left\|u_{n}-v\right\|^{2} \leqslant\left\|x_{n}-v\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2} .
$$

Therefore, from the convexity of $\|\cdot\|^{2}$, we have

$$
\begin{aligned}
\left\|x_{n+1}-v\right\|^{2} & =\left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S u_{n}-v\right\|^{2} \\
& \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|^{2}+\left(1-\alpha_{n}\right)\left\|S u_{n}-v\right\|^{2} \\
& \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-v\right\|^{2} \\
& \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|^{2}+\left(1-\alpha_{n}\right)\left(\left\|x_{n}-v\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right) \\
& \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|^{2}+\left\|x_{n}-v\right\|^{2}-\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|^{2} & \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|^{2}+\left\|x_{n}-v\right\|^{2}-\left\|x_{n+1}-v\right\|^{2} \\
& \leqslant \alpha_{n}\left\|f\left(x_{n}\right)-v\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-v\right\|+\left\|x_{n+1}-v\right\|\right) .
\end{aligned}
$$

So, we have $\left\|x_{n}-u_{n}\right\| \rightarrow 0$. From

$$
\left\|S u_{n}-u_{n}\right\| \leqslant\left\|S u_{n}-x_{n}\right\|+\left\|x_{n}-u_{n}\right\|,
$$

we also have $\left\|S u_{n}-u_{n}\right\| \rightarrow 0$. Next, we show that

$$
\limsup _{n \rightarrow \infty}\left\langle f(z)-z, x_{n}-z\right\rangle \leqslant 0,
$$

where $z=P_{F(S) \cap E P(F)} f(z)$. To show this inequality, we choose a subsequence $\left\{u_{n_{i}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\lim _{i \rightarrow \infty}\left\langle f(z)-z, x_{n_{i}}-z\right\rangle=\limsup _{n \rightarrow \infty}\left\langle f(z)-z, x_{n}-z\right\rangle
$$

Since $\left\{u_{n_{i}}\right\}$ is bounded, there exists a subsequence $\left\{u_{n_{i j}}\right\}$ of $\left\{u_{n_{i}}\right\}$ which converges weakly to w. Without loss of generality, we can assume that $u_{n_{i}} \rightharpoonup w$. From $\left\|S u_{n}-u_{n}\right\| \rightarrow 0$, we obtain $S u_{n_{i}} \rightharpoonup w$. Let us show $w \in E P(F)$. By $u_{n}=T_{r_{n}} x_{n}$, we have

$$
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant 0, \quad \forall y \in C .
$$

From (A2), we also have

$$
\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant f\left(y, u_{n}\right)
$$

and hence

$$
\left\langle y-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle \geqslant f\left(y, u_{n_{i}}\right) .
$$

Since $\frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}} \rightarrow 0$ and $u_{n_{i}} \rightharpoonup w$, from (A4) we have

$$
0 \geqslant f(y, w)
$$

for all $y \in C$. For t with $0<t \leqslant 1$ and $y \in C$, let $y_{t}=t y+(1-t) w$. Since $y \in C$ and $w \in C$, we have $y_{t} \in C$ and hence $f\left(y_{t}, w\right) \leqslant 0$. So, from (A1) and (A4) we have

$$
\begin{aligned}
0 & =f\left(y_{t}, y_{t}\right) \\
& \leqslant t f\left(y_{t}, y\right)+(1-t) f\left(y_{t}, w\right) \\
& \leqslant t f\left(y_{t}, y\right)
\end{aligned}
$$

and hence $0 \leqslant f\left(y_{t}, y\right)$. From (A3), we have

$$
0 \leqslant f(w, y)
$$

for all $y \in C$ and hence $w \in E P(F)$. We shall show $w \in F(S)$. Assume $w \notin F(S)$. Since $u_{n_{i}} \rightharpoonup w$ and $w \neq S w$, from Opial's theorem [5] we have

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|u_{n_{i}}-w\right\| & <\liminf _{i \rightarrow \infty}\left\|u_{n_{i}}-S w\right\| \\
& \leqslant \liminf _{i \rightarrow \infty}\left\{\left\|u_{n_{i}}-S u_{n_{i}}\right\|+\left\|S u_{n_{i}}-S w\right\|\right\} \\
& \leqslant \liminf _{i \rightarrow \infty}\left\|u_{n_{i}}-w\right\| .
\end{aligned}
$$

This is a contradiction. So, we get $w \in F(S)$. Therefore $w \in F(S) \cap E P(F)$. Since $z=$ $P_{F(T) \cap E P(F)} f(z)$, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle f(z)-z, x_{n}-z\right\rangle & =\lim _{i \rightarrow \infty}\left\langle f(z)-z, x_{n_{i}}-z\right\rangle \\
& =\langle f(z)-z, w-z\rangle \leqslant 0 \tag{3.5}
\end{align*}
$$

From $x_{n+1}-z=\alpha_{n}\left(f\left(x_{n}\right)-z\right)+\left(1-\alpha_{n}\right)\left(S u_{n}-z\right)$, we have

$$
\left(1-\alpha_{n}\right)^{2}\left\|S u_{n}-z\right\|^{2} \geqslant\left\|x_{n+1}-z\right\|^{2}-2 \alpha_{n}\left\langle f\left(x_{n}\right)-z, x_{n+1}-z\right\rangle .
$$

So, we have

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leqslant & \left(1-\alpha_{n}\right)^{2}\left\|S u_{n}-z\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-z, x_{n+1}-z\right\rangle \\
\leqslant & \left(1-\alpha_{n}\right)^{2}\left\|u_{n}-z\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-f(z), x_{n+1}-z\right\rangle \\
& +2 \alpha_{n}\left\langle f(z)-z, x_{n+1}-z\right\rangle \\
\leqslant & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+2 \alpha_{n} a\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\| \\
& +2 \alpha_{n}\left\langle f(z)-z, x_{n+1}-z\right\rangle \\
\leqslant & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+\alpha_{n} a\left\{\left\|x_{n}-z\right\|^{2}+\left\|x_{n+1}-z\right\|^{2}\right\} \\
& +2 \alpha_{n}\left\langle f(z)-z, x_{n+1}-z\right\rangle .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leqslant & \frac{\left(1-\alpha_{n}\right)^{2}+\alpha_{n} a}{1-\alpha_{n} a}\left\|x_{n}-z\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} a}\left\langle f(z)-z, x_{n+1}-z\right\rangle \\
= & \frac{1-2 \alpha_{n}+\alpha_{n} a}{1-\alpha_{n} a}\left\|x_{n}-z\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha_{n} a}\left\|x_{n}-z\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} a}\left\langle f(z)-z, x_{n+1}-z\right\rangle \\
\leqslant & \left(1-\frac{2(1-a) \alpha_{n}}{1-\alpha_{n} a}\right)\left\|x_{n}-z\right\|^{2} \\
& +\frac{2(1-a) \alpha_{n}}{1-\alpha_{n} a}\left\{\frac{\alpha_{n} M}{2(1-a)}+\frac{1}{1-a}\left\langle f(z)-z, x_{n+1}-z\right\rangle\right\},
\end{aligned}
$$

where $M=\sup \left\{\left\|x_{n}-z\right\|^{2}: n \in \mathbf{N}\right\}$. Put $\beta_{n}=\frac{2(1-a) \alpha_{n}}{1-a \alpha_{n}}$. Then, we have $\sum_{n=1}^{\infty} \beta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$. Let $\varepsilon>0$. From (3.5), there exists $m \in \mathbf{N}$ such that

$$
\frac{\alpha_{n} M}{2(1-a)} \leqslant \frac{\varepsilon}{2} \quad \text { and } \quad \frac{1}{1-a}\left\langle f(z)-z, x_{n+1}-z\right\rangle \leqslant \frac{\varepsilon}{2}
$$

for all $n \geqslant m$. Then, we have

$$
\left\|x_{n+1}-z\right\|^{2} \leqslant\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|^{2}+\left(1-\left(1-\beta_{n}\right)\right) \varepsilon .
$$

Similarly, we have

$$
\left\|x_{m+n}-z\right\|^{2} \leqslant \prod_{k=m}^{m+n-1}\left(1-\beta_{k}\right)\left\|x_{m}-z\right\|^{2}+\left(1-\prod_{k=m}^{m+n-1}\left(1-\beta_{k}\right)\right) \varepsilon .
$$

From $\sum_{k=m}^{\infty} \beta_{k}=\infty$, we know that $\prod_{k=m}^{\infty}\left(1-\beta_{k}\right)=0$. Therefore, we have

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-z\right\|^{2}=\limsup _{n \rightarrow \infty}\left\|x_{m+n}-z\right\|^{2} \leqslant \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-z\right\|^{2} \leqslant 0
$$

So, we conclude that $\left\{x_{n}\right\}$ converges strongly to $z \in F(S) \cap E P(F)$, where $z=P_{F(S) \cap E P(F)} f(z)$.

As direct consequences of Theorem 3.2, we obtain two corollaries.
Corollary 3.3. Let C be a nonempty closed convex subset of H and let S be a nonexpansive mapping of C into H such that $F(S) \neq \emptyset$. Let f be a contraction of H into itself and let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1} \in H$ and

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S P_{C} x_{n}
$$

for all $n \in \mathbf{N}$, where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty
$$

Then, $\left\{x_{n}\right\}$ converges strongly to $z \in F(S)$, where $z=P_{F(S)} f(z)$.
Proof. Put $F(x, y)=0$ for all $x, y \in C$ and $r_{n}=1$ for all $n \in \mathbf{N}$ in Theorem 3.2. Then, we have $u_{n}=P_{C} x_{n}$. So, from Theorem 3.2, the sequence $\left\{x_{n}\right\}$ generated by $x_{1} \in H$ and

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) S P_{C} x_{n}
$$

for all $n \in \mathbf{N}$ converges strongly to $z \in F(S)$, where $z=P_{F(S)} f(z)$.
Corollary 3.4. Let C be a nonempty closed convex subset of H. Let F be a bifunction from $C \times C$ to \mathbf{R} satisfying (A1)-(A4) such that $E P(F) \neq \emptyset$. Let f be a contraction of H into itself and let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by $x_{1} \in H$ and

$$
\left\{\begin{array}{l}
F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geqslant 0, \quad \forall y \in C \\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) u_{n}
\end{array}\right.
$$

for all $n \in \mathbf{N}$, where $\left\{\alpha_{n}\right\} \subset[0,1]$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \\
& \liminf _{n \rightarrow \infty} r_{n}>0 \quad \text { and } \quad \sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty .
\end{aligned}
$$

Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge strongly to $z \in E P(F)$, where $z=P_{E P(F)} f(z)$.
Proof. Put $S x=x$ for all $x \in C$ and $r_{n}=1$ in Theorem 3.2. Then, from Theorem 3.2 the sequences $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ generated in Corollary 3.4 converge strongly to $z \in E P(F)$, where $z=P_{E P(F)} f(z)$.

We obtain Wittmann's theorem [11] in the case when $f(y)=x_{1} \in C$ for all $y \in H$ and S is a nonexpansive mapping of C into itself in Corollary 3.3. We also obtain Combettes and Hirstoaga's theorem [2] in the case when $f(y)=x_{1} \in H$ for all $y \in H$ in Corollary 3.4.

References

[1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
[2] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136.
[3] S.D. Flam, A.S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program. 78 (1997) 2941.
[4] A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl. 241 (2000) 46-55.
[5] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 561-597.
[6] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997) 3641-3645.
[7] A. Tada, W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka (Eds.), Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2006, in press.
[8] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[9] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (in Japanese).
[10] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.
[11] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491.

[^0]: * Corresponding author.

 E-mail addresses: info@ybook.co.jp (S. Takahashi), wataru@is.titech.ac.jp (W. Takahashi).

