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Abstract

In this paper, we introduce an iterative scheme by the viscosity approximation method for finding a
common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonex-
pansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with
Combettes and Hirstoaga’s result [P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert
spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136] and Wittmann’s result [R. Wittmann, Approximation
of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486—-491]. Using this result, we obtain
two corollaries which improve and extend their results.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let F be
a bifunction of C x C into R, where R is the set of real numbers. The equilibrium problem for
F:C x C— Risto find x € C such that

F(x,y)>0 forallyeC. (1.1)
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The set of solutions of (1.1) is denoted by EP(F). Given amapping 7 : C — H,let F(x,y) =
(Tx,y—x) forall x,y € C. Then, z € EP(F) if and only if (Tz,y —z) >0 forall y € C, i.e.,
z is a solution of the variational inequality. Numerous problems in physics, optimization, and
economics reduce to find a solution of (1.1). Some methods have been proposed to solve the
equilibrium problem; see, for instance, [2,3]. Recently, Combettes and Hirstoaga [2] introduced
an iterative scheme of finding the best approximation to the initial data when EP(F’) is nonempty
and proved a strong convergence theorem.

A mapping S of C into H is called nonexpansive if

1Sx =Syl <|lx—y| forallx,yeC.

We denote by F(S) the set of fixed points of S. If C C H is bounded, closed and convex and
S is a nonexpansive mapping of C into itself, then F(S) is nonempty; for instance, see [8].
There are some methods for approximation of fixed points of a nonexpansive mapping. In 2000,
Moudafi [4] proved the following strong convergence theorem.

Theorem 1.1. (Moudafi [4]) Let C be a nonempty closed convex subset of a Hilbert space H
and let S be a nonexpansive mapping of C into itself such that F(S) is nonempty. Let f be a
contraction of C into itself and let {x,} be a sequence defined as follows: x; = x € C and

LS f ()
X, = X, X
n+1 1+8n n 1+8n n

forall n e N, where {&,} C (0, 1) satisfies

1 1

=0.

o
lim ¢, =0, Zan =00 and lim
n—oo ot n—>00| &4 En
Then, {x,} converges strongly to z € F(S), where z = Pr(s) f (z) and Pr(s) is the metric projec-
tion of H onto F(S).

Such a method for approximation of fixed points is called the viscosity approximation method.

In this paper, motivated Combettes and Hirstoaga [2], Moudafi [4], and Tada and Taka-
hashi [7], we introduce an iterative scheme by the viscosity approximation method for finding
a common element of the set of solutions of (1.1) and the set of fixed points of a nonexpansive
mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected
with Combettes and Hirstoaga’s result [2] and Wittmann’s result [11]. Using this result, we obtain
two corollaries which improve and extend their results.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. When {x,} is a sequence
in H, x, — x implies that {x,} converges weakly to x and x,, — x means the strong convergence.
In a real Hilbert space H, we have

2
|Ax + (1 =0y =2lxl? + A =) yI* =21 = Vllx — )2

for all x,y € H and A € R. Let C be a nonempty closed convex subset of H. Then, for any
x € H, there exists a unique nearest point in C, denoted by Pc (x), such that

x—Pc)| <llx—y|l forallyecC.



508 S. Takahashi, W. Takahashi / J. Math. Anal. Appl. 331 (2007) 506-515

Such a Pc is called the metric projection of H onto C. We know that Pc is nonexpansive.
Further, forx € H and z € C,

z=Pcx & (x—z,z2—y)=20 forallyeC.

We also know that for any sequence {x,} C H with x, — x, the inequality
liminf || x, — x|| < liminf|x, — y||
n=00 n=00

holds for every y € H with x # y; see [5,8] for more details.

For solving the equilibrium problem for a bifunction F:C x C — R, let us assume that F
satisfies the following conditions:

(Al) F(x,x)=0forall x € C;
(A2) F is monotone, i.e., F(x,y)+ F(y,x) <Oforallx,y e C;
(A3) foreachx,y,zeC,

li&} F(tz+ (1 —0x,y) < F(x, y);
t

(A4) foreach x € C, y— F(x, y) is convex and lower semicontinuous.
The following lemma appears implicitly in [1].

Lemma 2.1. [1] Let C be a nonempty closed convex subset of H and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

1
F(z,y)+;(y—z,z—x)>0 forall y e C.

The following lemma was also given in [2].

Lemma 2.2. [2] Assume that F:C x C — R satisfies (A1)—(A4). For r > 0 and x € H, define
a mapping T, : H — C as follows:

1
Tr(X)={z€C: F(z,y)+;<y—z,z—x)>0, VyGC}

forall z € H. Then, the following hold:

(1) T; is single-valued,
(2) T, is firmly nonexpansive, i.e., forany x,y € H,

ITrx = Try* < (Trx — Ty, x — y);

(3) F(T,) =EP(F);
(4) EP(F) is closed and convex.

3. Strong convergence theorem

In this section, we deal with an iterative scheme by the viscosity approximation method for
finding a common element of the set of solutions of the equilibrium problem and the set of fixed
points of a nonexpansive mapping in a Hilbert space.

As in the proof of [9, p. 171] or [6, Lemma 1], we can prove the following lemma; see
also [10].
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Lemma 3.1. [10] Let {a,} C [0, 00), {b,} C [0, 00) and {c,} C [0, 1) be sequences of real num-
bers such that

an+1 < (1 —cy)ap +b, foralln €N,

o0 o0
chzoo and an<oo.

Then, lim,, s oo a, = 0.

Theorem 3.2. Let C be a nonempty closed convex subset of H. Let F be a bifunction from
C x C to R satisfying (A1)-(A4) and let S be a nonexpansive mapping of C into H such that
F(S)NEP(F) # . Let f be a contraction of H into itself and let {x,} and {u,} be sequences
generated by x1 € H and

1
F(un,y)+r—(y—un,un—xn)20, VyeC,

n
Xng1 = oy [ (xp) + (1 — o) Suy
for all n € N, where {a,} C [0, 1] and {r,} C (0, 00) satisfy

o o
lim Oy = O, E oy = 00, § |an+l - (Xn| < 00,
n—>oo
n=1 n=1
o
liminfr, >0 and E |rpe1 — 1rnl| < 00.
n—0oo 1
n=

Then, {x,} and {u,} converge strongly to z € F(S) N EP(F), where z = Pr(s)nep(F) f (2).

Proof. Let Q = Pr(s)nep(r). Then Qf is a contraction of H into itself. In fact, there exists
a €10, 1) such that | f(x) — f(¥)| <allx — y| forall x, y € H. So, we have that

[0 @) = Of W] <[ f@) = f»] <allx =yl

for all x,y € H. So, Qf is a contraction of H into itself. Since H is complete, there exists a
unique element z € H such that z = Qf(z). Such a z € H is an element of C.
Let v € F(S) N EP(F). Then from u, = T, x,, we have

lun — vl =15, %0 — Tp,, 0|l < llxn — vl
for all n € N. Put M = max{||x; —v||, ﬁ Il f(v) —v]}. Itis obvious that ||x; — v|| < M. Suppose
llxn, — v|| < M. Then, we have

%1 = vll = [|etn f (n) + (1 = ) Sun — v

N

anl| £ o) — v + (1 — )| Sup — vl

an([| £ ) = O] + [ f@) =) + A —an)lun — vl
an(alxn — vl + ]| fF@) = v]) + A —an)lun — vl
an(allxy — vl + || f@) —v]) + A =) llxy — vll

1
@

<(l—-an(l—a))M+ay(1 —a)M =M.

NN N

(1= an(1 =) lxy = vll + ey (1 — a)
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So, we have that ||x, — v|| < M for any n € N and hence {x,} is bounded. We also obtain that
{un}, {Sx,} and { f (x,)} are bounded. Next, we show that ||x,+1 — x| — 0. We have
1 =l = [lotn £ Cin) + (1= 0) Sty — @1 f (—1) = (1 = &) St |
= |lotn f (tn) — ot f Ctn—1) + o f (Xn—1) — &n—1 f (kn—1)
+ (1 —ap)Sup — (1 — o) Sup—1 + (1 — p) Sun—1
— (I = ap—1)Sup—1
Sapallxn = xp-1ll + lon — 11K + (1 —an) lup — up—1l
+ lan —an-1lK, 3.
where K = sup{|| f(x,)|l + [|Suxn|l: n € N}. On the other hand, from u, = T, x, and u,+| =

Ty, Xn+1, we have
f(un,y)+rl(y—un,un—x,,>20 forally e C (3.2)
n
and
S Wnyr, ) + P (y —tnt1,unp1 —xp41) 20 forally e C. (3.3)

Putting y = u,4+1 in (3.2) and y = u,, in (3.3), we have

1
Sfuy, ”n—H) + r_(un+l —Up, Uy —Xy) 20
n

and

fngr,un) + (Up — Upg1, Ungs1 — Xpg1) = 0.

'n+1
So, from (A2) we have

Up — Xn Upn+1 — Xn+1

<un+l — Up, >>0

I'n n4+1
and hence

T'n

<un+l —Up, Uy — Upt1 + Upt] — Xp — . (Upy1 _xn+l)> = 0.

n+1

Without loss of generality, let us assume that there exists a real number b such that r, > b >0
for all n € N. Then, we have

2 I'n
ltps1 — unll” < <un+1 — Up, Xp+1 — Xp + (1 - ; )(un+l - xn+l)>
n+1

T'n

< luny1 — unll{llxn+1 —xll + ‘1 - ltnt1 — Xnt1 II}

n+1

and hence

i1 — unll < llxpr1 — x|l + [Fn+1 — rallltns1 — Xpg1l

n+1

1
< lxpg1 — xall + E|rn+1 —rulL, 34
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where L = sup{||u,, — x,||: n € N}. So, from (3.1) we have
X041 — X0l < atnallxn — xn—1ll + 2|atn — p-11K
+a —an)<||xn ol gl rn_1|L)
= —ap +ana)llxy — xp—1ll + 2|ty — an—11K

1
+(1 _an)zvn —rp—1|L

L
= (1 —a,(1 _a))”xn — Xp—1ll + 2K oy — oty —1| + Z|rn —rp—1l.

Using Lemma 3.1, we have
lim [lxp1 — %[l =0.
n—oo
From (3.4) and |r,+1 — rn| = 0, we have
lim [lup41 —uy| =0.
n—oo
Since x, = a1 f(xp—1) + (1 —otpy—1)Sup—1, we have
lxn — Supll < llxp — Sup—1ll + ISup—1 — Suyl|
S ap-1 Hf(xnfl) — Sup—1 H + lun—1 — unll.
From «,, — 0, we have ||x,, — Su,|| — 0. For v € F(S) N EP(F), we have
lln — I = 1T, %0 — T, v]|
< (Trnxn —T,,v,x, — v)
=(up —v,x, — V)
1
= 5 (lln = VI + 10 = VI = 10 = val?)
and hence
i — 1% < otw = 0l = 10 — unll*.

112

Therefore, from the convexity of || - ||, we have

X1 — vl = [ £ (n) + (1 — @) Su, — v

an | £ Gen) = v * + (1 = @)1 Sutn — ]2

o £ Gen) = 0|2+ (1 = )l — v])?

o || £ ) = o> 4 (1= et) (Il — 011 = Il — un?)

o) £ o) = 07 A 1t — 011 = (1 = @) 10 — tn)?

INCININN

and hence

2
(1 —ap)llxn — unll* <o | f ) = 0]~ + lxn — vlI* = lxnsr — vl?
<

) £ o) = 0|7+ 11t = xug 1 11 (10 — vl + K01 — v1).

511
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So, we have ||x,, — u,|| — 0. From
1 Sun — unll < ISun — x|l + llxn — unll,
we also have ||Su, — u,|| — 0. Next, we show that

limsup(f(z) — z,x, — 2) <0,

n—oo
where z = Pr(s)nep(r) f(z). To show this inequality, we choose a subsequence {u,,} of {u,}
such that

tim (f(2) = 2, xp; — ) =limsup(f (z) — 2, x, —z).

Since {uy,} is bounded, there exists a subsequence {up;;} of {u,} which converges weakly
to w. Without loss of generality, we can assume that u,, — w. From || Su, — u,|| — 0, we
obtain Su,, — w. Let us show w € EP(F). By u,, = T,,x,, we have

1
f(un,y)—l—r—(y—un,un —xp) 20, VyeC.

n
From (A2), we also have

1
—(y —up, uy — xp) = (¥, un)

'n

and hence
Up. — Xp:
<y _un,—a u> > f(ya un,—)'
I'n;

. Up. —Xp.
Since ~— — 0 and u,, = w, from (A4) we have

nj

0= f(y,w)

forall ye C.Fort withO<r<land ye C,let y, =ty + (1 —t)w. Since y e C and w € C,
we have y; € C and hence f(y;, w) < 0. So, from (A1) and (A4) we have

0= f(e, )
<tf e, y) + A =0 f(yr, w)
<tf (e, y)
and hence 0 < f (3¢, y). From (A3), we have
0< f(w,y)

forall y € C and hence w € EP(F). We shall show w € F(S). Assume w ¢ F(S). Since u,, = w
and w # Sw, from Opial’s theorem [5] we have

liminf ||u,, — w| < liminf|u,, — Sw]|
i—00 1—>00
<liminf{[lun, — Sttn, | + [|Sttn, — Sw]l}
11— 00
< liminf |lu,, — w].
1—> 00

This is a contradiction. So, we get w € F(S). Therefore w € F(S) N EP(F). Since z =
Prrynepcr) f(z), we have
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limsup(f (z) — z,x, — 2) = lim (f(2) — 2, Xp; — 2)

=(f(2) -z w—12)<0. (3.5)
From x,41 — z = a, (f (x,) — 2) + (1 — @) (Suy, — z), we have
(1 —an)?[1Sun — zII* = llxns1 — 20> = 2060 ( f (¥0) — 2, X1 — 2)-

So, we have

Ixn1 — 20> < (1= @)1 Sun — 2l + 200 ( f (i) — 2, X1 — 2)

< (= an)?llun — 201 + 2a0( f (n) — £ (@), Xng1 — 2)
+ 20 (f (2) — 2. Xng1 — 2)

< (= a)? [0 — 2l + 20tmallxy — zlll|xnt1 — 2|
+ 2an(f(z) —Z, Xp41 — Z)

<A =an)?llxn — 2l + ama{llxn — 21> + llxn41 — 2lI%}
+ 20, (f (2) — 2, Xnt1 — 2).

This implies that

l—«o 2+a a 20
(TSP D Gl L N L (f@ =z %41 —2)
1 —oyua 1 —oua
1 —2u, + a,a 2
= — T oy — 2l Xy — 2l
1 —oyua 1 —oyua
20,

g (f@ =z xn41—2)

2(1 —a)a
< (1——( ) ")nxn—zn2
1—aw,a

2(1 —a)ay, oy M
1 —apa {2(1 —a T T @ s Z)}’
where M = sup{||x, — z|I*>: n e N}. Put B, = 2(11__%"?” Then, we have ZZO:I Bn = oo and
lim,,—, o0 Bn = 0. Let € > 0. From (3.5), there exists m € N such that
oy M e 1 e
—— <2 d —— -z, —z)< =
TR R e UG R I A

for all n > m. Then, we have

Ixn1 — 2l < (4= B)llxa — 2> + (1 = (1 = Bu))e.
Similarly, we have

m+n—1 m+n—1
Xmn —2zl* < ] (1—ﬁk)||xm—z||2+(1— [1 (1—,3k)>8-
k=m

k=m
From ) 72, Bx = oo, we know that []2,, (1 — B¢) = 0. Therefore, we have

limsup [|x, — z/|* = limsup [|xpm4n — zI* <e.
n—oQ n—oo
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Since ¢ > 0 is arbitrary, we have
limsup ||x,, — zI* <0.
n—od
So, we conclude that {x,} converges strongly to z € F(S) N EP(F), where
2= Prsynepr) f(2). O

As direct consequences of Theorem 3.2, we obtain two corollaries.

Corollary 3.3. Let C be a nonempty closed convex subset of H and let S be a nonexpansive
mapping of C into H such that F(S) # (. Let f be a contraction of H into itself and let {x,} be
a sequence generated by x1 € H and

Xpg1 =0p f(xp) + (1 —an)SPcxy
forall n € N, where {a,} C [0, 1] and {r,} C (0, c0) satisfy

o0 o0
lim o, =0, E oy = 00, E |01 — ot | < 00.
n—>0o0

n=1 n=1

Then, {x,} converges strongly to z € F(S), where z = Pp(s) f (2).

Proof. Put F(x,y) =0 forall x, y € C and r, = 1 for all n € N in Theorem 3.2. Then, we have
u, = Pcxy. So, from Theorem 3.2, the sequence {x,} generated by x| € H and

Xn1 = 0 | (Xn) + (1 — 0n) SPcxy
for all n € N converges strongly to z € F(S), where z = Prs) f(z). O

Corollary 3.4. Let C be a nonempty closed convex subset of H. Let F be a bifunction from C x C
to R satisfying (A1)—(A4) such that EP(F) # (. Let f be a contraction of H into itself and let
{x,,} and {u,} be sequences generated by x; € H and

1
F(un,y)+r—(y—un,un—xn)>0, VyeC,

n
Xn4+1 = Olnf(xn) + (1 —ap)up
forall n e N, where {a,} C [0, 1] and {r,} C (0, 00) satisfy

0 0
lim o, =0, E a, = 00, E lotp41 — an| < 00,
n—>0oo

n=1 n=1

[o)0]
liminfr, >0 and E |rng1 — | < 00.
n—o0 l

n=

Then, {x,} and {u,} converge strongly to z € EP(F), where z = Pgp(r) f (2).

Proof. Put Sx = x for all x € C and r, = 1 in Theorem 3.2. Then, from Theorem 3.2 the
sequences {x,} and {u,} generated in Corollary 3.4 converge strongly to z € EP(F), where

2= Pepr) f(2). O

We obtain Wittmann’s theorem [11] in the case when f(y) =x; € C forall y € H and S is
a nonexpansive mapping of C into itself in Corollary 3.3. We also obtain Combettes and Hirstoa-
ga’s theorem [2] in the case when f(y) =x; € H for all y € H in Corollary 3.4.
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