

Available online at www.sciencedirect.com



J. Math. Anal. Appl. 331 (2007) 506-515

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

# Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces

Satoru Takahashi<sup>a</sup>, Wataru Takahashi<sup>b,\*</sup>

<sup>a</sup> Yokohama Publishers, 101, 6-27, Satsukigaoka, Aoba-ku, Yokohama 227-0053, Japan <sup>b</sup> Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan

Received 14 June 2006

Available online 26 September 2006

Submitted by G. Jungck

#### Abstract

In this paper, we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with Combettes and Hirstoaga's result [P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117–136] and Wittmann's result [R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486–491]. Using this result, we obtain two corollaries which improve and extend their results.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Viscosity approximation method; Equilibrium problem; Fixed point; Nonexpansive mapping

# 1. Introduction

Let *H* be a real Hilbert space and let *C* be a nonempty closed convex subset of *H*. Let *F* be a bifunction of  $C \times C$  into **R**, where **R** is the set of real numbers. The equilibrium problem for  $F: C \times C \rightarrow \mathbf{R}$  is to find  $x \in C$  such that

 $F(x, y) \ge 0$  for all  $y \in C$ .

(1.1)

\* Corresponding author.

E-mail addresses: info@ybook.co.jp (S. Takahashi), wataru@is.titech.ac.jp (W. Takahashi).

<sup>0022-247</sup>X/\$ – see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.08.036

The set of solutions of (1.1) is denoted by EP(F). Given a mapping  $T: C \to H$ , let  $F(x, y) = \langle Tx, y - x \rangle$  for all  $x, y \in C$ . Then,  $z \in EP(F)$  if and only if  $\langle Tz, y - z \rangle \ge 0$  for all  $y \in C$ , i.e., z is a solution of the variational inequality. Numerous problems in physics, optimization, and economics reduce to find a solution of (1.1). Some methods have been proposed to solve the equilibrium problem; see, for instance, [2,3]. Recently, Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to the initial data when EP(F) is nonempty and proved a strong convergence theorem.

A mapping S of C into H is called nonexpansive if

$$||Sx - Sy|| \le ||x - y|| \quad \text{for all } x, y \in C.$$

We denote by F(S) the set of fixed points of S. If  $C \subset H$  is bounded, closed and convex and S is a nonexpansive mapping of C into itself, then F(S) is nonempty; for instance, see [8]. There are some methods for approximation of fixed points of a nonexpansive mapping. In 2000, Moudafi [4] proved the following strong convergence theorem.

**Theorem 1.1.** (Moudafi [4]) Let C be a nonempty closed convex subset of a Hilbert space H and let S be a nonexpansive mapping of C into itself such that F(S) is nonempty. Let f be a contraction of C into itself and let  $\{x_n\}$  be a sequence defined as follows:  $x_1 = x \in C$  and

$$x_{n+1} = \frac{1}{1 + \varepsilon_n} S x_n + \frac{\varepsilon_n}{1 + \varepsilon_n} f(x_n)$$

for all  $n \in \mathbb{N}$ , where  $\{\varepsilon_n\} \subset (0, 1)$  satisfies

$$\lim_{n \to \infty} \varepsilon_n = 0, \quad \sum_{n=1}^{\infty} \varepsilon_n = \infty \quad and \quad \lim_{n \to \infty} \left| \frac{1}{\varepsilon_{n+1}} - \frac{1}{\varepsilon_n} \right| = 0$$

Then,  $\{x_n\}$  converges strongly to  $z \in F(S)$ , where  $z = P_{F(S)} f(z)$  and  $P_{F(S)}$  is the metric projection of H onto F(S).

Such a method for approximation of fixed points is called the viscosity approximation method.

In this paper, motivated Combettes and Hirstoaga [2], Moudafi [4], and Tada and Takahashi [7], we introduce an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert space. Then, we prove a strong convergence theorem which is connected with Combettes and Hirstoaga's result [2] and Wittmann's result [11]. Using this result, we obtain two corollaries which improve and extend their results.

## 2. Preliminaries

Let *H* be a real Hilbert space with inner product  $\langle \cdot, \cdot \rangle$  and norm  $\|\cdot\|$ . When  $\{x_n\}$  is a sequence in *H*,  $x_n \rightarrow x$  implies that  $\{x_n\}$  converges weakly to *x* and  $x_n \rightarrow x$  means the strong convergence. In a real Hilbert space *H*, we have

$$\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2$$

for all  $x, y \in H$  and  $\lambda \in \mathbf{R}$ . Let *C* be a nonempty closed convex subset of *H*. Then, for any  $x \in H$ , there exists a unique nearest point in *C*, denoted by  $P_C(x)$ , such that

 $||x - P_C(x)|| \leq ||x - y||$  for all  $y \in C$ .

Such a  $P_C$  is called the metric projection of H onto C. We know that  $P_C$  is nonexpansive. Further, for  $x \in H$  and  $z \in C$ ,

 $z = P_C x \quad \Leftrightarrow \quad \langle x - z, z - y \rangle \ge 0 \quad \text{for all } y \in C.$ 

We also know that for any sequence  $\{x_n\} \subset H$  with  $x_n \rightharpoonup x$ , the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for every  $y \in H$  with  $x \neq y$ ; see [5,8] for more details.

For solving the equilibrium problem for a bifunction  $F: C \times C \rightarrow \mathbf{R}$ , let us assume that *F* satisfies the following conditions:

(A1) F(x, x) = 0 for all  $x \in C$ ; (A2) F is monotone, i.e.,  $F(x, y) + F(y, x) \leq 0$  for all  $x, y \in C$ ; (A3) for each  $x, y, z \in C$ ,

$$\lim_{t \downarrow 0} F(tz + (1-t)x, y) \leqslant F(x, y);$$

(A4) for each  $x \in C$ ,  $y \mapsto F(x, y)$  is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

**Lemma 2.1.** [1] Let C be a nonempty closed convex subset of H and let F be a bifunction of  $C \times C$  into **R** satisfying (A1)–(A4). Let r > 0 and  $x \in H$ . Then, there exists  $z \in C$  such that

$$F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0 \quad \text{for all } y \in C.$$

The following lemma was also given in [2].

**Lemma 2.2.** [2] Assume that  $F: C \times C \rightarrow \mathbf{R}$  satisfies (A1)–(A4). For r > 0 and  $x \in H$ , define a mapping  $T_r: H \rightarrow C$  as follows:

$$T_r(x) = \left\{ z \in C \colon F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \ \forall y \in C \right\}$$

for all  $z \in H$ . Then, the following hold:

- (1)  $T_r$  is single-valued;
- (2)  $T_r$  is firmly nonexpansive, i.e., for any  $x, y \in H$ ,

$$||T_r x - T_r y||^2 \leq \langle T_r x - T_r y, x - y \rangle;$$

(3)  $F(T_r) = EP(F);$ 

(4) EP(F) is closed and convex.

### 3. Strong convergence theorem

In this section, we deal with an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of the equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space.

As in the proof of [9, p. 171] or [6, Lemma 1], we can prove the following lemma; see also [10].

**Lemma 3.1.** [10] Let  $\{a_n\} \subset [0, \infty)$ ,  $\{b_n\} \subset [0, \infty)$  and  $\{c_n\} \subset [0, 1)$  be sequences of real numbers such that

$$a_{n+1} \leq (1-c_n)a_n + b_n \quad \text{for all } n \in \mathbb{N},$$
  
 $\sum_{n=1}^{\infty} c_n = \infty \quad and \quad \sum_{n=1}^{\infty} b_n < \infty.$ 

Then,  $\lim_{n\to\infty} a_n = 0$ .

**Theorem 3.2.** Let C be a nonempty closed convex subset of H. Let F be a bifunction from  $C \times C$  to **R** satisfying (A1)–(A4) and let S be a nonexpansive mapping of C into H such that  $F(S) \cap EP(F) \neq \emptyset$ . Let f be a contraction of H into itself and let  $\{x_n\}$  and  $\{u_n\}$  be sequences generated by  $x_1 \in H$  and

$$\begin{cases} F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, & \forall y \in C, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S u_n \end{cases}$$

for all  $n \in \mathbb{N}$ , where  $\{\alpha_n\} \subset [0, 1]$  and  $\{r_n\} \subset (0, \infty)$  satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \qquad \sum_{n=1}^{\infty} \alpha_n = \infty, \qquad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty,$$
$$\liminf_{n \to \infty} r_n > 0 \quad and \quad \sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty.$$

Then,  $\{x_n\}$  and  $\{u_n\}$  converge strongly to  $z \in F(S) \cap EP(F)$ , where  $z = P_{F(S) \cap EP(F)} f(z)$ .

**Proof.** Let  $Q = P_{F(S) \cap EP(F)}$ . Then Qf is a contraction of H into itself. In fact, there exists  $a \in [0, 1)$  such that  $||f(x) - f(y)|| \le a ||x - y||$  for all  $x, y \in H$ . So, we have that

$$\left\| Qf(x) - Qf(y) \right\| \leq \left\| f(x) - f(y) \right\| \leq a \|x - y\|$$

for all  $x, y \in H$ . So, Qf is a contraction of H into itself. Since H is complete, there exists a unique element  $z \in H$  such that z = Qf(z). Such a  $z \in H$  is an element of C.

Let  $v \in F(S) \cap EP(F)$ . Then from  $u_n = T_{r_n} x_n$ , we have

 $||u_n - v|| = ||T_{r_n}x_n - T_{r_n}v|| \le ||x_n - v||$ 

for all  $n \in \mathbb{N}$ . Put  $M = \max\{||x_1 - v||, \frac{1}{1-a} ||f(v) - v||\}$ . It is obvious that  $||x_1 - v|| \leq M$ . Suppose  $||x_n - v|| \leq M$ . Then, we have

$$\begin{aligned} \|x_{n+1} - v\| &= \|\alpha_n f(x_n) + (1 - \alpha_n) Su_n - v\| \\ &\leq \alpha_n \|f(x_n) - v\| + (1 - \alpha_n) \|Su_n - v\| \\ &\leq \alpha_n (\|f(x_n) - f(v)\| + \|f(v) - v\|) + (1 - \alpha_n) \|u_n - v\| \\ &\leq \alpha_n (a \|x_n - v\| + \|f(v) - v\|) + (1 - \alpha_n) \|u_n - v\| \\ &\leq \alpha_n (a \|x_n - v\| + \|f(v) - v\|) + (1 - \alpha_n) \|x_n - v\| \\ &= (1 - \alpha_n (1 - a)) \|x_n - v\| + \alpha_n (1 - a) \frac{1}{1 - a} \|f(v) - v\| \\ &\leq (1 - \alpha_n (1 - a)) M + \alpha_n (1 - a) M = M. \end{aligned}$$

So, we have that  $||x_n - v|| \leq M$  for any  $n \in \mathbb{N}$  and hence  $\{x_n\}$  is bounded. We also obtain that  $\{u_n\}, \{Sx_n\}$  and  $\{f(x_n)\}$  are bounded. Next, we show that  $||x_{n+1} - x_n|| \to 0$ . We have

$$\|x_{n+1} - x_n\| = \|\alpha_n f(x_n) + (1 - \alpha_n) Su_n - \alpha_{n-1} f(x_{n-1}) - (1 - \alpha_{n-1}) Su_{n-1}\|$$
  

$$= \|\alpha_n f(x_n) - \alpha_n f(x_{n-1}) + \alpha_n f(x_{n-1}) - \alpha_{n-1} f(x_{n-1}) + (1 - \alpha_n) Su_n - (1 - \alpha_n) Su_{n-1} + (1 - \alpha_n) Su_{n-1} - (1 - \alpha_{n-1}) Su_{n-1}\|$$
  

$$\leq \alpha_n a \|x_n - x_{n-1}\| + |\alpha_n - \alpha_{n-1}| K + (1 - \alpha_n) \|u_n - u_{n-1}\| + |\alpha_n - \alpha_{n-1}| K, \qquad (3.1)$$

where  $K = \sup\{\|f(x_n)\| + \|Su_n\|: n \in \mathbb{N}\}$ . On the other hand, from  $u_n = T_{r_n}x_n$  and  $u_{n+1} = T_{r_{n+1}}x_{n+1}$ , we have

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0 \quad \text{for all } y \in C$$
(3.2)

and

$$f(u_{n+1}, y) + \frac{1}{r_{n+1}} \langle y - u_{n+1}, u_{n+1} - x_{n+1} \rangle \ge 0 \quad \text{for all } y \in C.$$
(3.3)

Putting  $y = u_{n+1}$  in (3.2) and  $y = u_n$  in (3.3), we have

$$f(u_n, u_{n+1}) + \frac{1}{r_n} \langle u_{n+1} - u_n, u_n - x_n \rangle \ge 0$$

and

$$f(u_{n+1}, u_n) + \frac{1}{r_{n+1}} \langle u_n - u_{n+1}, u_{n+1} - x_{n+1} \rangle \ge 0.$$

So, from (A2) we have

$$\left(u_{n+1}-u_n, \frac{u_n-x_n}{r_n}-\frac{u_{n+1}-x_{n+1}}{r_{n+1}}\right) \ge 0$$

and hence

$$\left\langle u_{n+1} - u_n, u_n - u_{n+1} + u_{n+1} - x_n - \frac{r_n}{r_{n+1}}(u_{n+1} - x_{n+1}) \right\rangle \ge 0.$$

Without loss of generality, let us assume that there exists a real number *b* such that  $r_n > b > 0$  for all  $n \in \mathbb{N}$ . Then, we have

$$\|u_{n+1} - u_n\|^2 \leq \left\langle u_{n+1} - u_n, x_{n+1} - x_n + \left(1 - \frac{r_n}{r_{n+1}}\right)(u_{n+1} - x_{n+1})\right\rangle$$
$$\leq \|u_{n+1} - u_n\| \left\{ \|x_{n+1} - x_n\| + \left|1 - \frac{r_n}{r_{n+1}}\right| \|u_{n+1} - x_{n+1}\| \right\}$$

and hence

$$\|u_{n+1} - u_n\| \leq \|x_{n+1} - x_n\| + \frac{1}{r_{n+1}} |r_{n+1} - r_n| \|u_{n+1} - x_{n+1}\| \leq \|x_{n+1} - x_n\| + \frac{1}{b} |r_{n+1} - r_n| L,$$
(3.4)

510

where  $L = \sup\{||u_n - x_n||: n \in \mathbb{N}\}$ . So, from (3.1) we have

$$\begin{aligned} \|x_{n+1} - x_n\| &\leq \alpha_n a \|x_n - x_{n-1}\| + 2|\alpha_n - \alpha_{n-1}|K \\ &+ (1 - \alpha_n) \left( \|x_n - x_{n-1}\| + \frac{1}{b}|r_n - r_{n-1}|L \right) \\ &= (1 - \alpha_n + \alpha_n a) \|x_n - x_{n-1}\| + 2|\alpha_n - \alpha_{n-1}|K \\ &+ (1 - \alpha_n) \frac{1}{b}|r_n - r_{n-1}|L \\ &= \left( 1 - \alpha_n (1 - a) \right) \|x_n - x_{n-1}\| + 2K|\alpha_n - \alpha_{n-1}| + \frac{L}{b}|r_n - r_{n-1}|. \end{aligned}$$

Using Lemma 3.1, we have

 $\lim_{n\to\infty}\|x_{n+1}-x_n\|=0.$ 

From (3.4) and  $|r_{n+1} - r_n| \rightarrow 0$ , we have

$$\lim_{n\to\infty}\|u_{n+1}-u_n\|=0.$$

Since  $x_n = \alpha_{n-1} f(x_{n-1}) + (1 - \alpha_{n-1}) S u_{n-1}$ , we have

$$\|x_n - Su_n\| \le \|x_n - Su_{n-1}\| + \|Su_{n-1} - Su_n\|$$
  
$$\le \alpha_{n-1} \|f(x_{n-1}) - Su_{n-1}\| + \|u_{n-1} - u_n\|.$$

From  $\alpha_n \to 0$ , we have  $||x_n - Su_n|| \to 0$ . For  $v \in F(S) \cap EP(F)$ , we have

$$\|u_n - v\|^2 = \|T_{r_n} x_n - T_{r_n} v\|^2$$
  

$$\leq \langle T_{r_n} x_n - T_{r_n} v, x_n - v \rangle$$
  

$$= \langle u_n - v, x_n - v \rangle$$
  

$$= \frac{1}{2} (\|u_n - v\|^2 + \|x_n - v\|^2 - \|x_n - v_n\|^2)$$

and hence

 $||u_n - v||^2 \leq ||x_n - v||^2 - ||x_n - u_n||^2.$ 

Therefore, from the convexity of  $\|\cdot\|^2$ , we have

$$\|x_{n+1} - v\|^{2} = \|\alpha_{n} f(x_{n}) + (1 - \alpha_{n})Su_{n} - v\|^{2}$$
  

$$\leq \alpha_{n} \|f(x_{n}) - v\|^{2} + (1 - \alpha_{n})\|Su_{n} - v\|^{2}$$
  

$$\leq \alpha_{n} \|f(x_{n}) - v\|^{2} + (1 - \alpha_{n})\|u_{n} - v\|^{2}$$
  

$$\leq \alpha_{n} \|f(x_{n}) - v\|^{2} + (1 - \alpha_{n})(\|x_{n} - v\|^{2} - \|x_{n} - u_{n}\|^{2})$$
  

$$\leq \alpha_{n} \|f(x_{n}) - v\|^{2} + \|x_{n} - v\|^{2} - (1 - \alpha_{n})\|x_{n} - u_{n}\|^{2}$$

and hence

$$(1 - \alpha_n) \|x_n - u_n\|^2 \leq \alpha_n \|f(x_n) - v\|^2 + \|x_n - v\|^2 - \|x_{n+1} - v\|^2$$
  
$$\leq \alpha_n \|f(x_n) - v\|^2 + \|x_n - x_{n+1}\| (\|x_n - v\| + \|x_{n+1} - v\|).$$

So, we have  $||x_n - u_n|| \to 0$ . From

$$||Su_n - u_n|| \leq ||Su_n - x_n|| + ||x_n - u_n||,$$

we also have  $||Su_n - u_n|| \to 0$ . Next, we show that

$$\limsup_{n\to\infty}\langle f(z)-z, x_n-z\rangle\leqslant 0,$$

where  $z = P_{F(S) \cap EP(F)} f(z)$ . To show this inequality, we choose a subsequence  $\{u_{n_i}\}$  of  $\{u_n\}$  such that

$$\lim_{i\to\infty} \langle f(z)-z, x_{n_i}-z\rangle = \limsup_{n\to\infty} \langle f(z)-z, x_n-z\rangle.$$

Since  $\{u_{n_i}\}$  is bounded, there exists a subsequence  $\{u_{n_{ij}}\}$  of  $\{u_{n_i}\}$  which converges weakly to w. Without loss of generality, we can assume that  $u_{n_i} \rightarrow w$ . From  $||Su_n - u_n|| \rightarrow 0$ , we obtain  $Su_{n_i} \rightarrow w$ . Let us show  $w \in EP(F)$ . By  $u_n = T_{r_n}x_n$ , we have

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in C.$$

From (A2), we also have

$$\frac{1}{r_n}\langle y - u_n, u_n - x_n \rangle \ge f(y, u_n)$$

and hence

$$\left(y-u_{n_i},\frac{u_{n_i}-x_{n_i}}{r_{n_i}}\right) \ge f(y,u_{n_i}).$$

Since  $\frac{u_{n_i} - x_{n_i}}{r_{n_i}} \to 0$  and  $u_{n_i} \rightharpoonup w$ , from (A4) we have

$$0 \ge f(y, w)$$

for all  $y \in C$ . For t with  $0 < t \le 1$  and  $y \in C$ , let  $y_t = ty + (1 - t)w$ . Since  $y \in C$  and  $w \in C$ , we have  $y_t \in C$  and hence  $f(y_t, w) \le 0$ . So, from (A1) and (A4) we have

$$0 = f(y_t, y_t)$$
  

$$\leq tf(y_t, y) + (1 - t)f(y_t, w)$$
  

$$\leq tf(y_t, y)$$

and hence  $0 \leq f(y_t, y)$ . From (A3), we have

$$0 \leq f(w, y)$$

for all  $y \in C$  and hence  $w \in EP(F)$ . We shall show  $w \in F(S)$ . Assume  $w \notin F(S)$ . Since  $u_{n_i} \rightharpoonup w$  and  $w \neq Sw$ , from Opial's theorem [5] we have

$$\begin{split} \liminf_{i \to \infty} \|u_{n_i} - w\| &< \liminf_{i \to \infty} \|u_{n_i} - Sw\| \\ &\leq \liminf_{i \to \infty} \{\|u_{n_i} - Su_{n_i}\| + \|Su_{n_i} - Sw\|\} \\ &\leq \liminf_{i \to \infty} \|u_{n_i} - w\|. \end{split}$$

This is a contradiction. So, we get  $w \in F(S)$ . Therefore  $w \in F(S) \cap EP(F)$ . Since  $z = P_{F(T) \cap EP(F)} f(z)$ , we have

$$\lim_{n \to \infty} \sup \langle f(z) - z, x_n - z \rangle = \lim_{i \to \infty} \langle f(z) - z, x_{n_i} - z \rangle$$
$$= \langle f(z) - z, w - z \rangle \leq 0.$$
(3.5)

From  $x_{n+1} - z = \alpha_n (f(x_n) - z) + (1 - \alpha_n)(Su_n - z)$ , we have

$$(1 - \alpha_n)^2 \|Su_n - z\|^2 \ge \|x_{n+1} - z\|^2 - 2\alpha_n \langle f(x_n) - z, x_{n+1} - z \rangle$$

So, we have

$$\begin{aligned} \|x_{n+1} - z\|^2 &\leq (1 - \alpha_n)^2 \|Su_n - z\|^2 + 2\alpha_n \langle f(x_n) - z, x_{n+1} - z \rangle \\ &\leq (1 - \alpha_n)^2 \|u_n - z\|^2 + 2\alpha_n \langle f(x_n) - f(z), x_{n+1} - z \rangle \\ &+ 2\alpha_n \langle f(z) - z, x_{n+1} - z \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - z\|^2 + 2\alpha_n a \|x_n - z\| \|x_{n+1} - z\| \\ &+ 2\alpha_n \langle f(z) - z, x_{n+1} - z \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - z\|^2 + \alpha_n a \{ \|x_n - z\|^2 + \|x_{n+1} - z\|^2 \} \\ &+ 2\alpha_n \langle f(z) - z, x_{n+1} - z \rangle. \end{aligned}$$

This implies that

$$\begin{aligned} \|x_{n+1} - z\|^2 &\leq \frac{(1 - \alpha_n)^2 + \alpha_n a}{1 - \alpha_n a} \|x_n - z\|^2 + \frac{2\alpha_n}{1 - \alpha_n a} \langle f(z) - z, x_{n+1} - z \rangle \\ &= \frac{1 - 2\alpha_n + \alpha_n a}{1 - \alpha_n a} \|x_n - z\|^2 + \frac{\alpha_n^2}{1 - \alpha_n a} \|x_n - z\|^2 \\ &+ \frac{2\alpha_n}{1 - \alpha_n a} \langle f(z) - z, x_{n+1} - z \rangle \\ &\leq \left(1 - \frac{2(1 - a)\alpha_n}{1 - \alpha_n a}\right) \|x_n - z\|^2 \\ &+ \frac{2(1 - a)\alpha_n}{1 - \alpha_n a} \left\{\frac{\alpha_n M}{2(1 - a)} + \frac{1}{1 - a} \langle f(z) - z, x_{n+1} - z \rangle \right\}, \end{aligned}$$

where  $M = \sup\{||x_n - z||^2: n \in \mathbb{N}\}$ . Put  $\beta_n = \frac{2(1-a)\alpha_n}{1-a\alpha_n}$ . Then, we have  $\sum_{n=1}^{\infty} \beta_n = \infty$  and  $\lim_{n \to \infty} \beta_n = 0$ . Let  $\varepsilon > 0$ . From (3.5), there exists  $m \in \mathbb{N}$  such that

$$\frac{\alpha_n M}{2(1-a)} \leqslant \frac{\varepsilon}{2}$$
 and  $\frac{1}{1-a} \langle f(z) - z, x_{n+1} - z \rangle \leqslant \frac{\varepsilon}{2}$ 

for all  $n \ge m$ . Then, we have

$$||x_{n+1} - z||^2 \le (1 - \beta_n) ||x_n - z||^2 + (1 - (1 - \beta_n))\varepsilon$$

Similarly, we have

$$\|x_{m+n} - z\|^2 \leq \prod_{k=m}^{m+n-1} (1 - \beta_k) \|x_m - z\|^2 + \left(1 - \prod_{k=m}^{m+n-1} (1 - \beta_k)\right) \varepsilon.$$

From  $\sum_{k=m}^{\infty} \beta_k = \infty$ , we know that  $\prod_{k=m}^{\infty} (1 - \beta_k) = 0$ . Therefore, we have

$$\limsup_{n \to \infty} \|x_n - z\|^2 = \limsup_{n \to \infty} \|x_{m+n} - z\|^2 \leq \varepsilon$$

513

Since  $\varepsilon > 0$  is arbitrary, we have

 $\limsup_{n \to \infty} \|x_n - z\|^2 \leq 0.$ So, we conclude that  $\{x_n\}$  converges strongly to  $z \in F(S) \cap EP(F)$ , where  $z = P_{F(S) \cap EP(F)} f(z)$ .  $\Box$ 

As direct consequences of Theorem 3.2, we obtain two corollaries.

**Corollary 3.3.** Let C be a nonempty closed convex subset of H and let S be a nonexpansive mapping of C into H such that  $F(S) \neq \emptyset$ . Let f be a contraction of H into itself and let  $\{x_n\}$  be a sequence generated by  $x_1 \in H$  and

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S P_C x_n$$

for all  $n \in \mathbb{N}$ , where  $\{\alpha_n\} \subset [0, 1]$  and  $\{r_n\} \subset (0, \infty)$  satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \qquad \sum_{n=1}^{\infty} \alpha_n = \infty, \qquad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty.$$

Then,  $\{x_n\}$  converges strongly to  $z \in F(S)$ , where  $z = P_{F(S)} f(z)$ .

**Proof.** Put F(x, y) = 0 for all  $x, y \in C$  and  $r_n = 1$  for all  $n \in \mathbb{N}$  in Theorem 3.2. Then, we have  $u_n = P_C x_n$ . So, from Theorem 3.2, the sequence  $\{x_n\}$  generated by  $x_1 \in H$  and

 $x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S P_C x_n$ 

for all  $n \in \mathbb{N}$  converges strongly to  $z \in F(S)$ , where  $z = P_{F(S)}f(z)$ .  $\Box$ 

**Corollary 3.4.** Let *C* be a nonempty closed convex subset of *H*. Let *F* be a bifunction from  $C \times C$  to **R** satisfying (A1)–(A4) such that  $EP(F) \neq \emptyset$ . Let *f* be a contraction of *H* into itself and let  $\{x_n\}$  and  $\{u_n\}$  be sequences generated by  $x_1 \in H$  and

$$\begin{cases} F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, & \forall y \in C, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) u_n \end{cases}$$

for all  $n \in \mathbb{N}$ , where  $\{\alpha_n\} \subset [0, 1]$  and  $\{r_n\} \subset (0, \infty)$  satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \qquad \sum_{n=1}^{\infty} \alpha_n = \infty, \qquad \sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty,$$
$$\liminf_{n \to \infty} r_n > 0 \quad and \quad \sum_{n=1}^{\infty} |r_{n+1} - r_n| < \infty.$$

Then,  $\{x_n\}$  and  $\{u_n\}$  converge strongly to  $z \in EP(F)$ , where  $z = P_{EP(F)}f(z)$ .

**Proof.** Put Sx = x for all  $x \in C$  and  $r_n = 1$  in Theorem 3.2. Then, from Theorem 3.2 the sequences  $\{x_n\}$  and  $\{u_n\}$  generated in Corollary 3.4 converge strongly to  $z \in EP(F)$ , where  $z = P_{EP(F)}f(z)$ .  $\Box$ 

We obtain Wittmann's theorem [11] in the case when  $f(y) = x_1 \in C$  for all  $y \in H$  and S is a nonexpansive mapping of C into itself in Corollary 3.3. We also obtain Combettes and Hirstoaga's theorem [2] in the case when  $f(y) = x_1 \in H$  for all  $y \in H$  in Corollary 3.4.

### References

- E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123–145.
- [2] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117–136.
- [3] S.D. Flam, A.S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program. 78 (1997) 29– 41.
- [4] A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl. 241 (2000) 46-55.
- [5] Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 561–597.
- [6] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997) 3641–3645.
- [7] A. Tada, W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka (Eds.), Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2006, in press.
- [8] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [9] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (in Japanese).
- [10] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.
- [11] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491.