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Abstract

We consider the Banach Lie–Poisson space iR ⊕ U L1
res and its complexification C ⊕ L1

res, where the
first one of them contains the restricted Grassmannian Grres as a symplectic leaf. Using the Magri method
we define an involutive family of Hamiltonians on these Banach Lie–Poisson spaces. The hierarchy of
Hamilton equations given by these Hamiltonians is investigated. The operator equations of Ricatti-type are
included in this hierarchy. For a few particular cases we give the explicit solutions.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The foundation of Banach Poisson differential geometry was developed in [11]. This theory, in
particular, gives us a possibility to formulate geometrically and analytically rigorous language for
the theory of infinite dimensional Hamiltonian systems. A special place in this theory is occupied
by the Banach Lie–Poisson spaces. Recall that by definition b is a Banach Lie–Poisson space if
its dual b∗ is a Banach Lie algebra such that ad∗

x b ⊂ b ⊂ b∗∗ for x ∈ b∗, where ad∗
x : b∗∗ → b∗∗

is dual to the adjoint representation adx := [x, ·] : b∗ → b∗.
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Many infinite dimensional physical systems can be considered as systems on some Banach
Lie–Poisson space b in the Hamilton way

d

dt
ρ = − ad∗

Dh(ρ) ρ, (1.1)

where ρ ∈ b and h ∈ C∞(b), e.g. see [13].
The first aim of this paper is to investigate Banach Lie–Poisson spaces related to the restricted

Grassmannian Grres, see [2,12]. The restricted Grassmannian Grres has its own long story as
one of the most important infinite dimensional Kähler manifolds in mathematical physics. It
is a set of Hilbert subspaces W ⊂ H of a polarized Hilbert space H = H+ ⊕ H− such that
the projectors P+ : W → H+ and P− : W → H− are Fredholm and Hilbert–Schmidt operators
respectively. The geometry of Grres and its symmetry group play an important role in the quantum
field theory [14,22,23,25,26], the loop group theory [15,21], and the integration of the KdV and
KP hierarchies [8,17,20].

The second aim is to define and investigate a hierarchy of the Hamilton equations on the
Banach Lie–Poisson space iR ⊕ U L1

res and on its complexification C ⊕ L1
res. This hierarchy is

obtained from the involutive system of Hamiltonians constructed on iR ⊕ U L1
res and C ⊕ L1

res by
the Magri method [7].

The pair of coupled operator Ricatti equations, see (3.41), belongs to this hierarchy. As we
show in Example 4.3 the finite dimensional version of the hierarchy provides the non-trivial
example of an integrable Hamiltonian system.

In our considerations we use the functional analytical methods as well as Banach differential
geometric methods. All the results we have obtained are also valid in finite dimension case.

Since the hierarchy consists of Hamilton equations, the flows preserve symplectic leaves of
iR⊕ U L1

res and C⊕L1
res. In particular, they preserve Grres, which is one of the symplectic leaves

of iR ⊕ U L1
res, see [2]. We show in Example 4.1 that after restriction to Grres the flows linearize

in natural complex coordinates.
The central place of the paper is occupied by Section 3, where (using the Magri method) we

construct the infinite hierarchy under consideration. We also discuss its various realizations, see
(3.20), (3.19), (3.38), (3.52) and (3.54).

In Section 2 we prepare the material necessary for the application of Magri method, i.e. we
find explicit formulas for coadjoint representation of central extension G̃Lres,0 of GLres,0, the
Poisson bracket and Casimirs of the Banach Lie–Poisson spaces C ⊕ L1

res and iR ⊕ U L1
res.

Finally Section 4 gives formulas for solutions in some particular cases.
We also include in the paper two appendices, where we present the Magri method and the

theory of extensions of Banach Lie–Poisson spaces.

2. Banach Lie–Poisson spaces related to restricted Grassmannian

We investigate the extensions of Banach Lie groups, Banach Lie algebras and Banach Lie–
Poisson spaces related to the restricted Grassmannian Grres. One of the aims of this section is to
obtain explicit formulas for adjoint and coadjoint actions of constructed Banach Lie groups and
Banach Lie algebras. To this end we apply the methods described in Appendix A.

Before that let us recall the definitions of objects we are going to use and fix the notation. For
more information see [15,21,26].
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2.1. Preliminary definitions and notation

Let us consider a complex separable Hilbert space with a fixed decomposition into two or-
thogonal Hilbert subspaces

H = H+ ⊕ H−. (2.1)

Let P+ and P− denote the orthogonal projectors onto H+ and H− respectively. We assume
that in general both Hilbert subspaces are infinite dimensional. However we also admit the case
when one (or both) of them is finite dimensional. In this case many analytical problems are
considerably simplified.

In what follows we omit the symbols H and H± in the notation for various operator algebras
and groups and put the subscript ± if we mean that the operators act in H±. In this way, for
example instead of L2(H) or L2(H+) we write L2 or L2+.

In order to simplify our notation we use the block decomposition

P+AP+ =
(

A++ 0
0 0

)
, P+AP− =

(
0 A+−
0 0

)
,

P−AP+ =
(

0 0
A−+ 0

)
, P−AP− =

(
0 0
0 A−−

)
(2.2)

and we identify the operators A++ : H+ → H+, A−− : H− → H−, A−+ : H+ → H− and
A+− : H− → H+ with P+AP+, P−AP−, P−AP+, P+AP− respectively when there is no risk
of confusion.

By Lp we denote the Schatten classes of operators acting in H equipped with the norm ‖ · ‖p .
The Lp spaces are ideals in associative algebra L∞ of bounded operators in H. In particular L1

denotes the ideal of trace-class operators and L2 is the ideal of Hilbert–Schmidt operators. By
L0 ⊂ L∞ one denotes the ideal of compact operators, which is ‖ · ‖∞-norm closure Lp = L0 of
any Lp ideal, see [4,18].

Let GL∞ be the Banach Lie group of invertible bounded operators in H. By UL∞ ⊂ GL∞
we denote the real Banach Lie group of the unitary operators and its Lie algebra is denoted by
U L∞. By GL1+ we denote the group of invertible operators on H+ which have a determinant
(i.e. they differ from identity by a trace-class operator) and by SL1+—its subgroup which consists
of operators with the determinant equal to 1. See [5,16] for the definition and properties of the
determinant for this case.

The unitary restricted group ULres is defined as

ULres := {
u ∈ UL∞ ∣∣ [u,P+] ∈ L2}. (2.3)

It possesses the Banach Lie group structure given by the embedding

ULres 	 u 
→ (u,u−+) ∈ UL∞ × L2+−. (2.4)

This structure is not compatible with Banach Lie group structure of UL∞. The Banach Lie alge-
bra of ULres is

U Lres := {
x ∈ L∞ ∣∣ x+ = −x, [x,P+] ∈ L2} (2.5)
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with the norm

‖x‖res := ‖x++‖∞ + ‖x−−‖∞ + ‖x−+‖2 + ‖x+−‖2, (2.6)

where x+ is the operator adjoint to x. Note that the topology of U Lres is strictly stronger than the
operator topology on L∞.

The complexifications of ULres and U Lres are ULC
res = GLres and U LC

res = Lres respectively,
where

GLres = {
g ∈ GL∞ ∣∣ [g,P+] ∈ L2} (2.7)

and

Lres = {
x ∈ L∞ ∣∣ [x,P+] ∈ L2}. (2.8)

By definition the restricted Grassmannian Grres consists of Hilbert subspaces W ⊂ H such
that:

i) the projection P+ restricted to W is a Fredholm operator;
ii) the projection P− restricted to W is a Hilbert–Schmidt operator;

see e.g. [15,26].
The restricted Grassmannian is a Hilbert manifold modelled on the Hilbert space L2+−. The

groups ULres and GLres act on it transitively. In this way the tangent space to the restricted
Grassmannian in the point H+ can be described as follows

TH+Grres ∼= U Lres/
(

U L∞+ × U L∞−
)
. (2.9)

Both ULres and GLres are disconnected and their connected components are ULres,k and
GLres,k , where g ∈ ULres,k and g ∈ GLres,k iff the Fredholm index indg++ of the upper left block
g++ of the operator g is equal to k, see [3,15]. The maximal connected subgroups ULres,0 and
GLres,0 will be of special interest. In a similar fashion, connected components of the restricted
Grassmannian Grres are the sets Grres,k consisting of elements of Grres such that the index of the
orthogonal projection P+ restricted to that element is equal to k. Let us note that ULres,0 acts
transitively on Grres,0.

2.2. Extensions of GLres,0

The central object in the following construction is the group E defined as

E := {
(q,A) ∈ GL∞+ × GLres,0

∣∣ A++ − q ∈ L1+
}

(2.10)

with pairwise multiplication. The topology and Banach manifold structure on E is given by the
embedding

(q,A) 
→ (A++ − q,A) ∈ L1+ × GLres, (2.11)

see [15,26].
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Let us consider the Banach Lie group extensions presented in the following commutative
diagram:

{1} {1} {1}

{1} C
× ι

G̃Lres,0
π

GLres,0 {1}

{1} GL1+
ι1

det

E
π2

δ

GLres,0

id

{1}

{1} SL1+
ι1

SL1+ × {1} π2 {1}

{1} {1}

(2.12)

The map ι1 is defined by ι1(q) := (q,1) and the map π2 is a projection onto the second
component of the Cartesian product GL∞+ × GLres,0. Thus ι1(SL1+) is a normal subgroup of E
and the group G̃Lres,0 is defined as the quotient group

G̃Lres,0 := E /ι1
(
SL1+

)
. (2.13)

The maps ι and π in upper row of diagram (2.12) are given as quotients of ι1 and π2 respectively.
The map δ is the quotient map E → E /ι1(SL1+) = G̃Lres,0. In this way all rows and columns in
diagram (2.12) are exact sequences of Banach Lie groups.

Using the approach described in Appendix A we define a local section (A.2) of the bundle
GL1+ → E → GLres,0 by

σ(A) := (A++,A) (2.14)

for A ∈ GLres,0 such that A++ is invertible. The Banach Lie group E can be locally identified with
GL1+ ×Φ,Ω GLres,0 through the isomorphism Ψ : GL1+ ×Φ,Ω GLres,0 → E given in the properly
chosen neighborhood of identity by

Ψ (n,A) = (nA++,A). (2.15)

The maps Φ : GLres,0 → Aut GL1+ and Ω : GLres,0 × GLres,0 → GL1+ defined in the general case
by (A.7) and (A.8) in this case can be expressed locally as follows:
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Φ(A)(n) = A++nA−1++, (2.16)

Ω(A1,A2) = A1++A2++(A1A2)
−1++ (2.17)

for n ∈ GL1+, A,A1,A2 ∈ GLres,0 such that A++,A1++,A2++ and (A1A2)++ are invertible.
The map Φ(A) descends to the trivial automorphism of C

×. Thus the Banach Lie group
G̃Lres,0 can be identified with C

× ×id,Ω̃ GLres,0 for

Ω̃ := det ◦ Ω (2.18)

and it is a central extension of GLres,0.

2.3. Extensions of Lres

The Banach Lie algebra counterpart of diagram (2.12) is the following:

{0} {0} {0}

{0} C C ⊕ Lres Lres {0}

{0} L1+
ι1

Tr

L1+ ⊕ Lres
π2

Tr1

Lres

id

{0}

{0} S L1+
ι1

S L1+ ⊕ {0} π2 {0}

{0} {0}

(2.19)

where

S L1+ := {
ρ ∈ L1+

∣∣ Trρ = 0
}

(2.20)

is the Banach Lie algebra of the group SL1+. The Banach Lie algebra (L1+ ⊕ Lres)/(S L1+ ⊕ {0})
of the quotient group G̃Lres,0 is naturally identified by DΨ (1,1) with C ⊕ Lres. The map Tr1 is
given by taking trace of the first component of (ρ,X) ∈ L1+ ⊕ Lres. The direct sums in diagram
(2.19) are understood as direct sums of Banach spaces.

Similarly as in the group case, all rows and columns in diagram (2.19) are exact sequences of
Banach Lie algebras.
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By using formula (A.14) with functions (2.16) and (2.17) we obtain a local formula for the
adjoint action

Ad(n,A)(ρ,X) = (
nA++(ρ + X++)(A++)−1n−1 − (

AXA−1)
++,AXA−1) (2.21)

for (n,A) in some open set in GL1+ ×Φ,Ω GLres,0 and (ρ,X) ∈ L1+ ⊕ Lres. From (A.16) and
(A.17) we get that

ϕ(X) := [X++, ·], (2.22)

ω(X,Y ) := −X+−Y−+ + Y+−X−+. (2.23)

Bracket (A.15) for ϕ and ω given by (2.22) and (2.23) assumes the form

[
(ρ,X),

(
ρ′, Y

)] = ([
ρ,ρ′] + [

X++, ρ′] − [Y++, ρ]
− X+−Y−+ + Y+−X−+, [X,Y ]) (2.24)

where (ρ,X), (ρ′, Y ) ∈ L1+ ⊕Lres. This Banach Lie algebra was presented in [12] (up to the sign
conventions) as an example of extensions of Banach Lie algebras.

The structure of Banach Lie algebra on C ⊕ Lres is given by the function

ϕ̃(X) ≡ 0 (2.25)

and the cocycle

ω̃(X,Y ) = −s(X,Y ) = −Tr(X+−Y−+ − Y+−X−+), (2.26)

where s(X,Y ) is called the Schwinger term, see [19,26]. Thus the adjoint representation of the
Lie group C

× ×id,Ω̃ GLres,0 on C ⊕ Lres is given by

Ad(γ,A)(λ,X) = (
λ + Tr

(
P+ − A−1P+A

)
,AXA−1) (2.27)

for (γ,A) ∈ C
× ×id,Ω̃ GLres,0, (λ,X) ∈ C⊕Lres. Moreover, the Lie bracket for (λ,X), (λ′, Y ) ∈

C ⊕ Lres is the following

[
(λ,X),

(
λ′, Y

)] = (−s(X,Y ), [X,Y ]). (2.28)

Let us note that formula (A.14) allows one to express Ad only locally. However the right-hand
side of formula (2.27) defines some global representation of C

× ×id,Ω̃ GLres,0, which coincides
with Ad on an open neighborhood of (1,1). However every open neighborhood of the unit ele-
ment in Banach Lie group generates a connected component, and C

× ×id,Ω̃ GLres,0 is connected.
Thus the formula (2.27) is valid for all (γ,A) ∈ C

× × ˜ GLres,0.
id,Ω
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2.4. Extensions of complex Banach Lie–Poisson space L1
res

In order to find a Banach space predual to the Banach Lie algebra Lres, we define the Banach
space

L1
res := {

μ ∈ Lres
∣∣ μ++ ∈ L1+, μ−− ∈ L1−

}
(2.29)

with the norm

‖μ‖∗ := ‖μ++‖1 + ‖μ−−‖1 + ‖μ−+‖2 + ‖μ+−‖2. (2.30)

Moreover we define the restricted trace Trres : L1
res → C by

Trresμ := Tr(μ++ + μ−−), (2.31)

for μ ∈ L1
res. The domain of Trres is larger than L1 since L1 ⊂ Lres. However for trace-class

operators the restricted trace Trres coincides with the standard trace Tr. The properties of the
restricted trace are similar to the properties of the standard trace but one needs to replace L∞
with Lres.

Proposition 2.1. The Banach space L1
res is an ideal (in the sense of commutative algebras) in the

Banach space Lres. Moreover for μ ∈ L1
res, ν ∈ Lres we have

Trres(μν) = Trres(νμ). (2.32)

Proof. The conclusion that L1
res is an ideal follows from the fact that L1 and L2 are ideals in

L∞ and a product of two operators from L2 is trace-class. To prove formula (2.32) we expand
its left-hand side

Trres(μν) = Tr(μ++ν++ + μ+−ν−+ + μ−+ν+− + μ−−ν−−). (2.33)

By assumptions of the proposition, we conclude that each term in the right-hand side is a trace-
class operator. Since for A ∈ L∞ and B ∈ L1 or for A,B ∈ L2 one has

Tr(AB) = Tr(BA), (2.34)

we conclude that

Trres(μν) = Trres(νμ). � (2.35)

As a corollary to this proposition we get that for g ∈ GLres and μ ∈ L1
res, the operator μg−1

belongs to L1
res and

Trres
(
gμg−1) = Trres(μ). (2.36)
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Using the pairing between μ ∈ L1
res, A ∈ Lres given by

〈μ,A〉 := Trres(μA) = Tr(μ++A++) + Tr(μ+−A−+)

+ Tr(μ−+A+−) + Tr(μ−−A−−), (2.37)

we conclude that (L1
res)

∗ ∼= Lres, i.e. the Banach space L1
res is predual of Lres. This duality can

be found in [2,12].

Proposition 2.2. Space L1
res with norm ‖ · ‖∗ is Banach ∗-algebra.

Proof. The only point yet to be shown is the inequality

‖μρ‖∗ � ‖μ‖∗‖ρ‖∗ (2.38)

for μ,ρ ∈ L1
res. In order to prove it we observe that

‖μρ‖∗ = ∥∥(μρ)++
∥∥

1 + ∥∥(μρ)+−
∥∥

2 + ∥∥(μρ)−+
∥∥

2 + ∥∥(μρ)−−
∥∥

1

= ‖μ++ρ++ + μ+−ρ−+‖1 + ‖μ++ρ+− + μ+−ρ−−‖2

+ ‖μ−+ρ++ + μ−−ρ−+‖2 + ‖μ−−ρ−− + μ−+ρ+−‖1. (2.39)

Next, applying the following inequalities

‖ρ‖2 � ‖ρ‖1, (2.40)

‖ρμ‖1 � ‖ρ‖∞‖μ‖1 � ‖ρ‖1‖μ‖1 (2.41)

for ρ,μ ∈ L1 and the inequalities

‖ρμ‖1 � ‖ρ‖2‖μ‖2, (2.42)

‖ρμ‖2 � ‖ρ‖∞‖μ‖2 � ‖ρ‖2‖μ‖2 (2.43)

for ρ,μ ∈ L2, we obtain

‖μρ‖∗ � ‖μ++‖1‖ρ++‖1 + ‖μ+−‖2‖ρ−+‖2 + ‖μ++‖1‖ρ+−‖2 + ‖μ+−‖2‖ρ−−‖2

+ ‖μ−+‖2‖ρ++‖1 + ‖μ−−‖1‖ρ−+‖2 + ‖μ−−‖1‖ρ−−‖1 + ‖μ−+‖2‖ρ+−‖2

� ‖μ‖∗‖ρ‖∗ (2.44)

The latter inequality in (2.44) follows directly from (2.30). �
The Banach space predual to extended Banach Lie algebra L1+ ⊕Lres is L0+ ⊕L1

res with natural
component-wise pairing 〈

(A,μ), (ρ,X)
〉 = Tr(Aρ) + Trres(μX). (2.45)
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It follows from the fact that the Banach space dual to the ideal of compact operators L0+ is L1+,
see [24]. Analogously, the predual of C ⊕ Lres is C ⊕ L1

res with the pairing given by〈
(γ,μ), (λ,X)

〉 = γ λ + Trres(μX), (2.46)

for μ ∈ L1
res, X ∈ Lres, γ,λ ∈ C.

The map Tr∗ : C → L∞+ dual to Tr : L1+ → C is given by Tr∗(λ) = λ1. Since the ideal of
compact operators L0+ is the Banach space predual to L1+ and Tr∗ does not take values in L0+,
we conclude that Tr∗ cannot be restricted to predual spaces. Therefore only horizontal exact
sequences in diagram (2.19) have their predual counterparts

{0} L1
res

π∗
2

C ⊕ L1
res

ι∗1
C {0} (2.47)

{0} L1
res

π∗
2

L0+ ⊕ L1
res

ι∗1
L0+ {0} (2.48)

where the map π∗
2 is an injection into the second argument and the map ι∗1 is the projection onto

the first component of the respective direct sums.
It follows from (A.25) and from (2.16), (2.17) that the coadjoint representation of the Banach

Lie group GL1+ ×Φ,Ω GLres,0 on the predual Banach space L0+ ⊕ L1
res is given by

Ad∗
(n,A)(τ,μ) = (

(A++)−1n−1τnA++, (A++)−1n−1τnA++ − A−1τA + A−1μA
)

(2.49)

for (n,A) ∈ GL1+ ×Φ,Ω GLres,0 and (τ,μ) ∈ L0+ ⊕ L1
res. Similarly, the coadjoint representation

of C
× ×id,Ω̃ GLres,0 on C ⊕ L1

res is the following

Ad∗
(λ,A)(γ,μ) = (

γ,A−1μA + γ
(
P+ − A−1P+A

))
(2.50)

where (λ,A) ∈ C
× ×id,Ω̃ GLres,0 and (γ,μ) ∈ C ⊕ L1

res.
Let us also note that these coadjoint representations preserve the Banach subspaces

L0+ ⊕ L1
res ⊂ (L1+ ⊕ Lres)

∗ and C ⊕ L1
res ⊂ C ⊕ L∗

res respectively

Ad∗
(n,A)

(
L0+ ⊕ L1

res

) ⊂ L0+ ⊕ L1
res, (2.51)

Ad∗
(λ,A)

(
C ⊕ L1

res

) ⊂ C ⊕ L1
res. (2.52)

The coadjoint representation of the Banach Lie algebra L1+ ⊕ Lres on its predual L0+ ⊕ L1
res is

the following

ad∗
(ρ,X)(τ,μ) = ([−ρ, τ ] − [X++, τ ],−[X,μ] − [ρ, τ ] − τX+− + X−+τ

)
(2.53)

where (ρ,X) ∈ L1+ ⊕ Lres, (τ,μ) ∈ L0+ ⊕ L1
res.

The coadjoint representation of the Banach Lie algebra C ⊕ Lres on C ⊕ L1
res is given by

ad∗
(λ,X)(γ,μ) = (

0,−[X,μ] − γ (X+− − X−+)
)

(2.54)

where (λ,X) ∈ C ⊕ Lres, (γ,μ) ∈ C ⊕ L1 .
res
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We observe that the conditions (A.26) are satisfied for both extensions, thus the Banach
spaces L0+ ⊕ L1

res and C ⊕ L1
res are Banach Lie–Poisson spaces. The Poisson bracket for F,G ∈

C∞(C ⊕ L1
res) is obtained from the general formula (A.27) and is given by

{F,G}(γ,μ) = 〈
μ,

[
D2F(γ,μ),D2G(γ,μ)

]〉 − γ s
(
D2F(γ,μ),D2G(γ,μ)

)
, (2.55)

where D2 denotes the partial Fréchet derivative with respect to the second variable.

2.5. Extensions of real Banach Lie–Poisson space U L1
res

In previous subsections we considered the extensions of the complex linear restricted group
GLres,0, its Banach Lie algebra Lres and the complex Banach Lie–Poisson space L1

res, which is
Banach predual of Lres. As we mentioned above they are complexifications of ULres,0, U Lres and

(U Lres)∗ ∼= U L1
res := {

μ ∈ L1
res

∣∣ μ+ = −μ
}

(2.56)

respectively. The pairing between elements of U Lres and U L1
res as in the complex case is given

by (2.37).
By a construction similar to those for GLres,0, we obtain the central extension of ULres,0

by U(1)

{1} U(1) ŨLres,0 ULres,0 {1} . (2.57)

Namely we define the real Banach Lie group

U E := {
(A,q) ∈ E

∣∣ A ∈ ULres,0, q ∈ UL∞+
}
, (2.58)

which complexification U E C is E . The group ŨLres,0 in (2.57) is defined as

ŨLres,0 := U E /
(
ι1

(
SUL1+

))
, (2.59)

where SUL1+ := SL1+ ∩ UL∞ and ι1(q) := (q,1).
Restricting the Schwinger term (2.26) to U Lres we obtain the central extension

{0} iR iR ⊕ U Lres U Lres {0} (2.60)

of the real Banach Lie algebra U Lres. The exact sequence of Banach Lie–Poisson spaces predual
to (2.60) is

{0} iR iR ⊕ U L1
res U L1

res {0} . (2.61)

The complexification of (2.61) gives (2.47). All expressions obtained above, including the ones
for the Poisson bracket (2.55) and coadjoint representation (2.50), (2.54) are valid for the real
case if one assumes that γ = −γ and μ+ = −μ.



T. Goliński, A. Odzijewicz / Journal of Functional Analysis 258 (2010) 3266–3294 3277
3. Hierarchy of Hamilton equations on Banach Lie–Poisson spaces CCC ⊕ L1
res and

iRRR ⊕ UL1
res

In this section we use the Magri method (see [7]), to introduce the hierarchy of the Hamilto-
nian systems on the Banach Lie–Poisson spaces C ⊕ L1

res and iR ⊕ U L1
res, which were investi-

gated in Section 2. Short description of Magri method is presented in Appendix B.
To this end we define for any k ∈ N the function

I k(γ,μ) := Trres
(
(μ − γP+)k+1 − (−γ )k(μ − γP+)

)
(3.1)

on C ⊕ L1
res. Note that the expression under Trres is a polynomial in variable μ without a free

term, thus from Proposition 2.1 it follows that the function I k is well defined.
We observe that I k is invariant with respect to the coadjoint representation (2.50)

I k
(
Ad∗[n,A](γ,μ)

) = I k
(
γ,A−1μA + γ

(
P+ − A−1P+A

))
= Trres

(
A−1(μ − γP+ + γAP+A−1 − γAP+A−1)k+1

A

− A−1(−γ )k
(
μ − γP+ + γAP+A−1 − γAP+A−1)A)

= Trres
(
(μ − γP+)k+1 − (−γ )k(μ − γP+)

) = I k(γ,μ). (3.2)

Thus the functions I k , k ∈ N, are Casimirs{
I k, ·} = 0 (3.3)

for Poisson bracket (2.55). Note that the coordinate function γ is a Casimir too.
Observing that Poisson brackets for F,G ∈ C∞(C ⊕ L1

res) given by

{F,G}1(γ,μ) := 〈
μ,

[
D2F(γ,μ),D2G(γ,μ)

]〉
(3.4)

and by

{F,G}2(γ,μ) := −γ s
(
D2F(γ,μ),D2G(γ,μ)

)
(3.5)

are compatible, we introduce a Poisson pencil

{F,G}ε(γ,μ) := {F,G}1(γ,μ) + ε{F,G}2(γ,μ)

= 〈
μ,

[
D2F(γ,μ),D2G(γ,μ)

]〉 − εγ s
(
D2F(γ,μ),D2G(γ,μ)

)
(3.6)

on C ⊕ L1
res. Compatibility of {·,·}1 and {·,·}2 follows from the fact that the Poisson tensor for

{·,·}2 is constant with respect to the variable μ and {·,·}1 depends only on the derivations with
respect to the variable μ.

Due to the latter equality in (3.6) the Casimirs for {·,·}ε are:

I k
ε (γ,μ) = Trres

(
(μ − εγP+)k+1 − (−εγ )k(μ − εγP+)

)
(3.7)
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where k ∈ N. According to Magri method, we expand these Casimirs with respect to the param-
eter −εγ

Ik
ε (γ,μ) =

k−1∑
n=0

(−εγ )nTrresW
k+1
n (μ) + (−εγ )kTrres

(
Wk+1

k (μ) − μ
)
, (3.8)

where the operators Wk
n (μ) are polynomials in operator arguments μ and P+ defined by the

equality

(μ + λP+)k =
k∑

n=0

λnWk
n (μ), λ ∈ R. (3.9)

In this way from (B.7) it follows that we obtain a family

hk
n(γ,μ) = γ nTrresW

k+1
n (μ), 0 � n � k − 1, (3.10a)

hk
k(γ,μ) = γ kTrres

(
Wk+1

k − μ
)

(3.10b)

of Hamiltonians in involution {
hk

n,h
l
m

}
ε
= 0 (3.11)

with respect to the brackets {·,·}ε for ε ∈ R. In the particular case ε = 1 they are in involution
with respect to the bracket {·,·} given by (2.55).

Let us now investigate the infinite system of the Hamilton equations on the Banach Lie–
Poisson space C ⊕ L1

res

∂

∂tkn
(γ,μ) = − ad∗

(D1h
k
n(γ,μ),D2h

k
n(γ,μ))

(γ,μ) (3.12)

defined by the hierarchy of Hamiltonians hk
n, k ∈ N, n = 0,1, . . . , k. Using the explicit form of

coadjoint action (2.54) one sees that observe that Eq. (3.12) take the form

∂

∂tkn
γ = 0, (3.13a)

∂

∂tkn
μ = −[

μ,D2h
k
n(γ,μ)

] + γ
(
P+D2h

k
n(γ,μ)P− − P−D2h

k
n(γ,μ)P+

)
. (3.13b)

In (3.13) the real parameter tkn parametrizes the Hamiltonian flow generated by hk
n. In order to

compute D2h
k
n(γ,μ) we apply the partial derivative operator D2 to both sides of equality (3.8).

Since

D2I
k
ε (γ,μ) = (k + 1)(μ − εγP+)k − (−εγ )k1 (3.14)

we get that

D2h
k
n(γ,μ) = (k + 1)γ nWk

n (μ) (3.15a)
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for 0 � n � k − 1, and

D2h
k
k(γ,μ) = γ k

(
(k + 1)Wk

k (μ) − 1
)
. (3.15b)

Substituting (3.15) into (3.13) we obtain

∂

∂tkn
μ = −(k + 1)γ n

[
μ − γP+,Wk

n (μ)
]

(3.16)

for 0 � n � k.
From (3.9) we the following recurrence rules

Wk+1
n (μ) = Wk

n (μ)μ + Wk
n−1(μ)P+,

Wk+1
n (μ) = μWk

n (μ) + P+Wk
n−1(μ) (3.17)

which yield the commutation relation[
μ,Wk

n (μ)
] + [

P+,Wk
n−1(μ)

] = 0, (3.18)

where 0 � n � k and we put Wk
−1 := 0. Using (3.18) we can express the Hamilton equations

(3.16) in the following two ways

∂

∂tkn
μ = −(k + 1)γ n

[
μ,Wk

n (μ) + γWk
n+1(μ)

]
, (3.19)

∂

∂tkn
μ = (k + 1)γ n

[
P+, γWk

n (μ) + Wk
n−1(μ)

]
, (3.20)

where 0 � n � k. Rewriting (3.20) in the block form (2.2) we obtain

∂

∂tkn
μ++ = 0,

∂

∂tkn
μ−− = 0 (3.21)

and ⎧⎪⎪⎨⎪⎪⎩
∂

∂tkn
μ+− = (k + 1)γ nP+

(
γWk

n (μ) + Wk
n−1(μ)

)
P−,

∂

∂tkn
μ−+ = −(k + 1)γ nP−

(
γWk

n (μ) + Wk
n−1(μ)

)
P+.

(3.22)

Let us observe that Eq. (3.19) is a Hamilton equation for the Poisson bracket {·,·}1 and the
Hamiltonian hk

n + hk
n+1, while Eq. (3.20) is a Hamilton equation for the Poisson bracket {·,·}2

and the Hamiltonian hk
n + hk

n−1. From (3.21) we conclude that diagonal blocks μ++ and μ−−
are invariants for all Hamiltonian flows under consideration.

The symplectic leaves for C ⊕ L1
res and iR ⊕ U L1

res with Poisson bracket {·,·}2 are the affine
spaces obtained by shifting the vector spaces L2+−⊕L2−+ or L2+− respectively by diagonal blocks
μ++ and μ−−. This fact explain why we have obtained additional integrals of motion (3.21).
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Eqs. (3.16) and (3.19) are in the Lax form. In the first case it is an equation on μ−γP+, while
it is on μ in the other.

Let us calculate several operators Wk
n (μ). We can do this by iterating the recurrence (3.17).

The result is:

Wk
k = P+, (3.23)

Wk
k−1 = μP+ + P+μ + (k − 2)P+μP+, k � 2, (3.24)

Wk
k−2 = μ2P+ + μP+μ + P+μ2 + (k − 3)

(
P+μ2P+ + P+μP+μ + μP+μP+

)
+ (k − 3)(k − 4)

2
P+μP+μP+, k � 4, (3.25)

...

Wk
1 = P+μk−1 + μP+μk−2 + · · · + μk−1P+, (3.26)

Wk
0 = μk. (3.27)

It is obvious that the Hamiltonians hk
n are functionally interdependent and it implies the inter-

dependence of tkn -flows given by (3.22). The above formulas suggest the introduction of the
homogeneous polynomials

Hl
n(μ) :=

1∑
i0,i1,...il=0
i0+···+il=n

P
i0+ μP

i1+ μ. . .μP
il+ (3.28)

of the degree l ∈ N in the operator variable μ ∈ L1
res, where n � l + 1. These polynomials are

linearly independent and they satisfy the recurrences

Hl+1
n+1(μ) = P+μHl

n(μ) + μHl
n+1(μ) (3.29a)

for n � l, l ∈ N and

Hl+1
l+2 (μ) = P+μHl

l+1(μ) (3.29b)

for l ∈ N.

Proposition 3.1. Polynomials Wk
n are linear combinations of the homogeneous polynomials Hl

n

Wk
k−l(μ) =

l+1∑
n=1

max
{
0,pl

n(k)
}
Hl

n(μ) (3.30)

for l < k and

Wk
0 (μ) = Hk

0 (μ), (3.31)

where pl ∈ Rn−1[x] are polynomials of degree n − 1 that are defined by the recurrences:
n
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pl
n+1(k) =

k−1∑
i=l+1

max
{
0,pl

n(i)
}
, (3.32)

pl+1
n (k) = pl

n(k − 1) (3.33)

with initial condition pl
1(k) = 1.

Proof. We prove formula (3.30) by induction with respect to l. From recurrence (3.32) we infer
that p1

2(k) = k − 2 and thus from (3.23) and (3.24) we see that formula (3.30) is satisfied for
l = 0 and l = 1. From (3.17) we conclude that

Wk
k−l (μ) = μWk−1

k−l (μ) + P+μ

k−l∑
i=1

Wk−i−1
k−l−i (μ). (3.34)

We apply (3.34) to Wk
k−l assuming that (3.30) is satisfied for l − 1 and obtain

Wk
k−l(μ) = μ

l∑
n=1

max
{
0,pl−1

n (k − 1)
}
Hl−1

n (μ)

+ P+μ

k−l−1∑
i=1

l∑
n=1

max
{
0,pl−1

n (k − i − 1)
}
Hl−1(μ) + P+μHl−1

0 (μ). (3.35)

Changing the order of summation and using recurrences (3.32) and (3.33) we get

Wk
k−l (μ) = μ

l−1∑
n=0

max
{
0,pl−1

n+1(k − 1)
}
Hl−1

n+1(μ)

+ P+μ

l∑
n=1

max
{
0,pl−1

n+1(k − 1)
}
Hl−1

n (μ) + P+μHl−1
0 (μ). (3.36)

By rearranging terms in the sums and applying (3.29) we end up with (3.30). Direct check
shows that relations (3.32) and (3.33) are compatible. The fact that degpl

n = n − 1 follows
from (3.32). �

From Proposition 3.1 we conclude:

Corollary 3.2.

i) The dimension of the complex vector space spanned by {Wk
k−l}∞k=l+1 is equal to l + 1 and

{Hl
n}l+1

n=1 is a basis of this space;
ii) Using (3.30) one can express Hl

n, 0 � n � l+1 as a finite linear combination of Wk
k−l , where

k � l + 1.
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Proof. i) From (3.30) it follows that all elements of the set {Wk
k−l}∞k=l+1 are linear combinations

of {Hl
n}l+1

n=1. Let us also note that the polynomials pl
n assume positive values pl

n(k) > 0 for k

large enough and that the set {pl
n}l+1

n=1 spans an (l + 1)-dimensional vector space. This concludes
the proof.

ii) This statement is a consequence of i). �
Introducing new variables τ l

n ∈ R through the linear combination

tkk−l = (k − 1)γ k−l
l+1∑
n=1

max
{
0,pl

n(k)
}
τ l
n, (3.37)

we rewrite the hierarchy (3.16) in the equivalent form

∂

∂τ l
n

μ = [
μ − γP+,H l

n(μ)
]

(3.38)

where l ∈ N and n = 1, . . . , l + 1.
Let us write out explicitly several equations from hierarchy (3.38). For Hk

0 and Hk
1 in block

notation (2.2) we obtain ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂τ k
0

μ+− = −γ
(
μk

)
+−,

∂

∂τ k
0

μ−+ = γ
(
μk

)
−+

(3.39)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂τ k
1

μ+− = −(
μk+1

)
+− − γ

∑k−1
i=0

(
μi

)
++

(
μk−i

)
+−,

∂

∂τ k
1

μ−+ = (
μk+1

)
−+ + γ

∑k
i=1

(
μi

)
−+

(
μk−i

)
++

(3.40)

respectively. For k = 1 and k = 2 we get from (3.39) linear equations and for k = 3 we obtain
from (3.39) a pair of coupled operator Ricatti-type equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂τ 3
0

μ+− = −γ
(
(μ++)2μ+− + μ+−μ−+μ+− + μ++μ+−μ−− + μ+−(μ−−)2

)
,

∂

∂τ 3
0

μ−+ = γ
(
μ−+(μ++)2 + μ−−μ−+μ++ + μ−+μ+−μ−+ + (μ−−)2μ−+

)
.

(3.41)

Let us recall that blocks μ++ and μ−− are constant with respect to all flows. Moreover if we
assume that μ++ = 0 or μ−− = 0 then Eqs. (3.38) become linear.

After certain modifications we can also consider the hierarchy of Eqs. (3.38) on the real Ba-
nach Lie–Poisson iR ⊕ U L1

res. To this end we have to modify the Hamiltonians hk is such a way
n
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that they will take real values when restricted to iR ⊕ U L1
res. In consequence we obtain the

following equations

∂

∂τ l
n

μ = il+1[μ − γP+,H l
n(μ)

]
(3.42)

where μ ∈ U L1
res, γ ∈ iR.

Now we express the Hamiltonian hierarchy (3.16) in a more compact and elegant form. To
this end let us define the “generating” Hamiltonian for the Hamiltonians (3.10)

hκ,λ(γ,μ) :=
∞∑

k=1

1

k + 1
κk

k+1∑
n=0

λnhk
n(γ,μ), (3.43)

where κ,λ ∈ R. In order to show that the series of functions (3.43) is convergent on some non-
empty open subset of C ⊕ L1

res we observe that

k+1∑
n=0

λnhk
n(γ,μ) = Trres

(
(μ + γ λP+)k+1 − (γ λ)k(μ + γ λP+)

)
. (3.44)

Equality (3.44) follows from (3.10) and (3.9). Next, let us prove the following lemma.

Lemma 3.3. One has∥∥(μ + βP+)k+1 − βk(μ + βP+)
∥∥∗ �

(‖μ‖∗ + |β|)k+1 − |β|k(‖μ‖∗ + |β|), (3.45)

where β ∈ C and μ ∈ L1
res.

Proof. We expand the left-hand side and apply the triangle inequality and Proposition 2.2. More-
over we note that ‖νP+‖∗ � ‖ν‖∗ for ν ∈ L1

res. In this way we get

∥∥(μ + βP+)k+1 − βk(μ + βP+)
∥∥∗ �

k+1∑
i=1

(
k + 1

i

)
‖μ‖i∗|β|k−i+1 − |β|k‖μ‖∗. (3.46)

By adding and subtracting the term |β|k+1 and collecting terms we obtain the right-hand
side. �

From this lemma and Proposition 2.2 we conclude:

Proposition 3.4. One has

hκ,λ(γ,μ) = Trres

(
− 1

κ
log

(
1 − κ(μ + γ λP+)

) + (μ + γ λP+)
log(1 − κλγ )

κλγ

)
(3.47)

and

{hκ,λ, hκ ′,λ′ } = 0 (3.48)

for |κ|(‖μ‖∗ + |λγ |) < 1 and |κ ′|(‖μ‖∗ + |λ′γ |) < 1, where the Poisson bracket in (3.48) is
given by (2.55).
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Now we find the explicit form of the Hamilton equation

∂

∂tκ,λ

(γ,μ) = − ad∗
Dhκ,λ(γ,μ)(γ,μ) (3.49)

generated by Hamiltonian (3.43). Using (2.54) we obtain

∂

∂tκ,λ

γ = 0, (3.50a)

∂

∂tκ,λ

μ = −[
μ,D2hκ,λ(γ,μ)

] + γ
(
P+D2hκ,λ(γ,μ)P− − P−D2hκ,λ(γ,μ)P+

)
. (3.50b)

Since

D2hκ,λ(γ,μ) = (
1 − κ(μ + λγP+)

)−1 + log(1 − κλγ )

κλγ
(3.51)

we get

∂

∂tκ,λ

x = −α
[
P+, (1 − x)−1], (3.52)

where

x := κ(μ + λγP+), (3.53)

and α := κ(1 + λ)γ . Replacing x in (3.52) by y := (1 − x)−1 we get the hierarchy of equations

∂

∂tκ,λ

y = α[y, yP+y], λ, κ ∈ C (3.54)

equivalent to the hierarchy (3.16).
In this paper we don’t intend to address the problem of finding general solutions for the

considered Hamiltonian systems but in the next section we will present several examples of
solutions.

Let us also observe that if H+ is finite dimensional, then the operator μ − γP+ has a discrete
spectrum. Formula (2.50) shows that orbits of coadjoint action of group G̃Lres,0 coincide with
orbits of standard coadjoint action of GLres,0 ⊂ GL∞ shifted by γP+. Thus one can use the spec-
trum spec(μ − γP+) to distinguish partially symplectic leaves of the Banach Lie–Poisson space
iR ⊕ U L1

res, i.e. if spec(μ1 − γP+) �= spec(μ2 − γP+) then they belong to different symplectic
leaves. If the dimension of H+ is infinite then the shift μ − γP+ of the operator μ ∈ L1

res by the
operator γP+ is not an element of L1

res, but of Lres. However from Weyl’s criterion (see [16]) we
deduce that the set spec(μ− γP+) \ {0,−γ } is discrete. Therefore if H+ is infinite dimensional,
one can use also elements of spec(μ − γP+) for the partial indexation of the symplectic leaves.
The problem of description of these leaves is complicated, see [2] for more information.
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4. Examples of solutions

In this section we present several examples of explicit solutions to Eqs. (3.38) in some partic-
ular cases.

Example 4.1 (Restricted Grassmannian). The connected component Grres,0 of the restricted
Grassmannian Grres can be identified with the coadjoint orbit Oγ of the group ŨLres,0 in the
Banach Lie–Poisson space iR ⊕ U L1

res generated from point (γ,0), see [2]. Namely from (2.50)
we see that

Ad∗
(λ,g)(γ,0) = (

γ, γ
(
P+ − g−1P+g

))
(4.1)

for (λ, g) ∈ U(1)×id,Ω̃ ULres,0 and γ ∈ iR. This suggests to define the map ιγ : Grres,0 → Oγ in
the following way

ιγ (W) := (
γ, γ (P+ − PW)

)
. (4.2)

Since ULres,0 acts transitively on Grres,0, we see that ιγ maps Grres,0 bijectively on Oγ .
Let us introduce homogeneous coordinates on some open subset in Grres. To this end we fix a

basis {|n〉}, n ∈ Z in H, such that |n〉 for n < 0 spans H− and for n � 0 spans H+. Let us fix a
basis w1,w2, . . . in a subspace W ∈ Grres and put the coefficients of wk in the basis {|n〉}n∈Z in
the matrix form (

α

β

)
:= (〈n | wk〉

)
n∈Z,k∈N

, (4.3)

where α,β are blocks obtained for n � 0 and n < 0 respectively. Let us consider a subspace
W ∈ Grres such that there exists an orthonormal basis {wk}k∈N such that α is invertible. Then we
define

z := βα−1. (4.4)

Definition of z is independent of the choice of the basis {wk}k∈N.
The matrix of the projector PW is

(〈n|PWk〉)
n,k∈Z

=
(

α

β

)(
α+ β+)

. (4.5)

Thus ιγ (W) takes the following form

ιγ (W) =
(

(1 + z+z)−1 − 1 (1 + z+z)−1z+

z(1 + z+z)−1 z(1 + z+z)−1z+
)

, (4.6)

where we consider z as an operator z : H+ → H−.
Hamilton equations (3.13) can be written in terms of z. Due to (3.21) we note that z+z is

constant. Thus any polynomial of ιγ (W) has only constant and linear terms in z and Eqs. (3.13)
are linear in homogeneous coordinates on Oγ .
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Example 4.2 (Vector case). Let us consider a particular case of the equations given above. We
assume that dim H+ = 1. We introduce the block notation for elements μ ∈ L1

res

μ =
(

a v+

w A

)
, (4.7)

where a ∈ C, A ∈ L∞(H−), v,w ∈ L2(C, H−) ∼= �2. We consider Eqs. (3.38) as non-linear
equations for two vectors v,w coupled by interaction depending on constants a and A. Non-
linear behavior is due to the terms of the type 〈v | Alw〉.

First of all let us remark that in general all functions hk
l are linear combinations of func-

tions Trresμ
k = hk−1

0 (γ,μ) and Trres(μ
k1P+μk2P+ · · · + P+μknP+). However due to the fact

that dim H+ = 1 we have

Trres
(
μk1P+μk2P+ · · · + P+μknP+

) = 1

γ n

h
k1
1 (γ,μ)

k1 + 1
. . .

h
kn

1 (γ,μ)

kn + 1
. (4.8)

Thus all integrals of motion hk
l are functionally dependent on hk

0 and hk
1. Therefore one has only

two independent families of Hamilton equations, i.e. (3.39) and (3.40).
In order to solve these families we note that(

μk
)
−+ = Mk(γ,μ)w, (4.9)(

μk
)
+− = v+Mk(γ,μ), (4.10)

where

Mk(γ,μ) :=
(

hk−1
1 (γ,μ)

γ k
+ hk−2

1 (γ,μ)

γ (k − 1)
A + · · · + h2

1(γ,μ)

3γ
Ak−3 + aAk−2 + Ak−1

)
(4.11)

is a time independent operator.
Thus Eqs. (3.39) take the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂τ k
0

v = −γMk

(
γ ,μ+)

v,

∂

∂τ k
0

w = γMk(γ,μ)w.

(4.12)

In this way we have reduced system (3.39) to a linear system. Thus its solution is

v
(
τ 2

0 , τ 3
0 , . . .

) = exp

(
−γ

∞∑
k=2

Mk

(
γ,μ+(0,0, . . .)

)
τ k

0

)
v(0,0, . . .), (4.13)

w
(
τ 2

0 , τ 3
0 , . . .

) = exp

(
γ

∞∑
k=2

Mk

(
γ,μ(0,0, . . .)

)
τ k

0

)
w(0,0, . . .) (4.14)

where v(0,0, . . .),w(0,0, . . .) ∈ �2, A ∈ L∞(H−), a ∈ C are initial conditions.
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In the case of Eqs. (3.40) we get⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂τ k
1

v = −
(

k−1∑
j=1

h
j

1(γ ,μ+)

j + 1
Mk−j

(
γ ,μ+) + Mk+1

(
γ ,μ+))

v,

∂

∂τ k
1

w =
(

k−1∑
j=1

h
k−j

1 (γ,μ)

k − j + 1
Mj(γ,μ) + Mk+1(γ,μ)

)
w.

(4.15)

These equation are also linear and their solution can be obtained by exponentiation.

Example 4.3 (4-dimensional case). In this example we solve equation (3.41) in the iR ⊕ U L1
res

case assuming dim H+ = dim H− = 2. We will use the following notation

γ = iχ, μ = i

(
A Z

Z+ D

)
, (4.16)

where χ ∈ R and A = A+, D = D+, Z ∈ Mat2×2(C).
Substituting (4.16) into (3.41) we obtain

d

dt
A = 0,

d

dt
D = 0 (4.17)

and

d

dt
Z = −iχ

(
A2Z + ZD2 + AZD + ZZ+Z

)
, (4.18)

d

dt
Z+ = iχ

(
Z+A2 + D2Z+ + DZ+A + Z+ZZ+)

. (4.19)

Let us note that Eqs. (4.18) do not change their form with respect to the transformation
A 
→ UAU+, D 
→ V DV +, Z 
→ V ZU+, where UU+ = 1 and V V + = 1. So without loss
of the generality we can assume

A =
(

a1 0
0 a2

)
, D =

(
d1 0
0 d2

)
, Z =

(
a b

c d

)
, (4.20)

where a1, a2, d1, d2 ∈ R are constants and a, b, c, d are complex-valued functions of t ∈ R. From
(4.18) we obtain

d

dt
a = iχ

(
a2

1 + a1d1 + d2
1 + |a|2 + |b|2 + |c|2)a + iχbcd,

d

dt
b = iχ

(
a2

1 + a1d2 + d2
2 + |a|2 + |b|2 + |d|2)b + iχacd,

d

dt
c = iχ

(
a2

2 + a2d1 + d2
1 + |a|2 + |c|2 + |d|2)c + iχabd,

d
c = iχ

(
a2

2 + a2d2 + d2
2 + |b|2 + |c|2 + |d|2)c + iχabc. (4.21)
dt
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Now we consider the generic case, i.e. a1 �= a2 and d1 �= d2. In order to solve this system of
equations we calculate explicitly the integrals of motion h1

0(μ) = Trresμ
2, h2

0(μ) = Trresμ
3,

h2
1(μ) = γ Tr(μ2P+), h3

1(μ) = γ Tr(μ3P+) and h3
0(μ) = Trresμ

4. From that we conclude that

|a|2 + |b|2 =: p2 = const,

|a|2 + |c|2 =: q2 = const,

|c|2 + |d|2 =: r2 = const,

|b|2 + |d|2 =: s2 = const, (4.22)

|a|2a1d1 + |b|2a1d2 + |c|2a2d1 + |d|2a2d2 + |a|2|c|2 + |b|2|d|2 + 2 Re(abcd)

=: � = const, (4.23)

where p2 + r2 = q2 + s2. Using (4.22) and (4.21) we find

d

dt
|a|2 = − d

dt
|b|2 = − d

dt
|c|2 = d

dt
|d|2 = 2χ Im(abcd). (4.24)

Now from (4.23) and (4.24) we obtain the following equation

d

dt
x = ±√

w(x) (4.25)

on the function x := |a|2, where

w(x) := 4x
(
p2 − x

)(
q2 − x

)(
r2 − q2 − x

) − v2(x) (4.26)

and

v(x) := x(a1 − a2)(d1 − d2) − x
(
p2 − x

) − (
q2 − x

)(
r2 − q2 + x

)
− a1d2p

2 − a2d1q
2 − a2d2

(
r2 − q2). (4.27)

Since w is a polynomial of the fourth degree, this equation is solved by an elliptic integral of the
first kind

t =
∫

dx√
w(x)

. (4.28)

This allows us to express x(t) as an elliptic function of time parameter t .
By (4.22) we may calculate |b|2, |c|2 and |d|2 in terms of x(t). In order to find the functions

a(t), b(t), c(t) and d(t) we substitute their polar decompositions a = |a|eiα , b = |b|eiβ , c =
|c|eiγ and d = |d|eiδ into Eqs. (4.21). In this way we obtain
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d

dt
α = χ

(
a2

1 + a1d1 + d2
1 + p2 + q2 − x + v(x)

2x

)
,

d

dt
β = χ

(
a2

1 + a1d2 + d2
2 + p2 + r2 − q2 + x + v(x)

2(p2 − x)

)
,

d

dt
γ = χ

(
a2

2 + a2d1 + d2
1 + r2 + x + v(x)

2(q2 − x)

)
,

d

dt
δ = χ

(
a2

2 + a2d2 + d2
2 + p2 + r2 − x + v(x)

2(r2 − q2 + x)

)
. (4.29)

Since the right-hand sides of Eqs. (4.29) are known, we can find α(t), β(t), γ (t) and δ(t) by
integration. In this way we have solved equations (4.18) in quadratures.

The Hamiltonian system solved in this example have applications for example in the non-
linear optics, see [6].
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Appendix A. Extensions of Banach Lie groups and related Banach Lie–Poisson spaces

Let us present an abbreviated description of extensions of Banach Lie groups, Banach Lie
algebras and Banach Lie–Poisson spaces associated with them. Some of the results given below
can be found in papers [1,9,10,12]. Our main aim is to compute the formulas for the adjoint and
coadjoint actions of the extended Banach Lie group.

A.1. Extensions of Banach Lie groups

Let us consider an exact sequence of Banach Lie groups

{eN } N
ι

G
π

H {eH } . (A.1)

We assume that N → G → H is a smooth principal bundle, i.e. the maps ι and π are smooth
and there exists a smooth local section σ : U → G, where U ⊂ H is an open neighborhood of
identity. Additionally we impose on σ the normalization condition σ(eH ) = eG. One can extend
σ to a global section

σ : H −→ G, (A.2)

but in general such extension will not be smooth. Let us define the map Ψ : N × H −→ G by

Ψ (n,h) := ι(n)σ (h). (A.3)
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Since G/N ∼= H , we get that for g ∈ G there exists a unique n ∈ N such that g = ι(n)σ (π(g)).
Thus Ψ is a locally smooth bijection with the inverse Ψ −1 : G −→ N × H given by

Ψ −1(g) := (
ι−1(g(

σ
(
π(g)

))−1)
, σ

(
π(g)

))
. (A.4)

Using Ψ one defines the multiplication on N × H by

(n1, h1) · (n2, h2) := Ψ −1(Ψ (n1, h1)Ψ (n2, h2)
)

(A.5)

and can express it as follows

(n1, h1) · (n2, h2) = (
n1Φ(h1)(n2)Ω(h1, h2), h1h2

)
, (A.6)

where maps Φ : H → Aut(N) and Ω : H × H → N are defined by

Φ(h)(n) := ι−1(σ(h)ι(n)σ (h)−1), (A.7)

Ω(h1, h2) := ι−1(σ(h1)σ (h2)σ (h1h2)
−1). (A.8)

Let us denote by Φ the map

Φ : H × N 	 (h,n) 
→ Φ(h)(n) ∈ N. (A.9)

One has the following properties of Φ and Ω :

Φ(eH ) = id, (A.10a)

Ω(eH ,h) = Ω(h, eH ) = eN , (A.10b)

Ω(h1, h2)Ω(h1h2, h3) = Φ(h1)
(
Ω(h2, h3)

)
Ω(h1, h2h3), (A.10c)

Ω(h1, h2)Φ(h1h2)(n) = Φ(h1) ◦ Φ(h2)(n)Ω(h1, h2). (A.10d)

Forgetting about definitions (A.7), (A.8) we can consider Φ and Ω as abstract maps satis-
fying conditions (A.10). We assume that the map Φ is smooth on U × N and Ω is smooth
on some neighborhood of (eH , eH ). Moreover we have to assume that the map H 	 x 
→
Ω(h,x)Ω(hxh−1, h)−1 is smooth for all h ∈ H on a neighborhood of eH (if H is connected
then this condition is automatically satisfied). Under these conditions there exists on N × H a
structure of Banach Lie group defined by (A.6), see [10]. One denotes this Banach Lie group by
N ×Φ,Ω H .

We get that the inverse of (n,h) in N ×Φ,Ω H is given by

(n,h)−1 = (
Ω

(
h−1, h

)−1
Φ

(
h−1)(n−1), h−1) (A.11)

and the inner automorphism I(n,h)(m,g) := (n,h) · (m,g) · (n,h)−1 can be expressed in terms
of Φ and Ω as

I(n,h)(m,g) = (
nΦ(h)(m)Ω(h,g)Ω

(
hgh−1, h

)−1
Φ

(
hgh−1)(n−1), hgh−1). (A.12)

Now, let us pass to the extensions of related Banach Lie algebras.
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A.2. Extensions of Banach Lie algebras

We will denote the Banach Lie algebras of G, H , N by g, h, n respectively. Taking derivatives
of the maps in (A.1) we obtain the exact sequence of Banach Lie algebras

{0} n
Dι(eN )

g
Dπ(eG)

h {0} . (A.13)

The derivative DΨ −1(eG) : g → n⊕h of Ψ −1 at the point eG allows us to identify the Banach
space g with n ⊕ h.

The adjoint representation of N ×Φ,Ω H on g ∼= n ⊕ h can be locally computed from (A.12)
and it is the following

Ad(n,h)(ζ, η) = (
Adn

(
D2Φ(h, eN)(ζ ) + D2Ω(h, eH )(η) − D1Ω(eH ,h)(Adh η)

)
+ (

DLn

(
n−1) ◦ D1Φ

(
eH ,n−1) ◦ Adh

)
(η),Adh η

)
(A.14)

for (n,h) ∈ N ×Φ,Ω U , (η, ζ ) ∈ n ⊕ h, where Φ is defined by (A.9), and Di denotes partial
derivative with respect to the ith argument. We denote by Ln the left group action Lnm = nm,
n,m ∈ N , on itself.

Differentiating (A.14) we obtain the formula for the Lie bracket[
(ζ, η), (ν, ξ)

] := ([ζ, ν] + ϕ(η)(ν) − ϕ(ξ)(ζ ) + ω(η, ξ), [η, ξ ]), (A.15)

for (ζ, η), (ν, ξ) ∈ n ⊕ h, where ϕ : h → Aut(n) is the linear continuous map and ω : h × h → n

is the continuous bilinear skew symmetric map defined by Φ and Ω as follows:

ϕ(η)(ζ ) := D1D2Φ(eH , eN)(η, ζ ), (A.16)

ω(η, ξ) := D1D2Ω(eH , eH )(η, ξ) − D1D2Ω(eH , eH )(ξ, η). (A.17)

In these formulas D1D2 is the second mixed partial derivative.
The maps ϕ and ω satisfy the following infinitesimal version of conditions (A.10):

ω
([

η,η′], η′′) + ω
([

η′, η′′], η′) + ω
([

η′′, η
]
, η′)

− ϕ(η)
(
ω

(
η′, η′′)) − ϕ

(
η′)(ω(

η′′, η
)) − ϕ

(
η′′)(ω(

η,η′)) = 0, (A.18)

and

adω(η,η′) +ϕ
([

η,η′]) − [
ϕ(η),ϕ

(
η′)] = 0 (A.19)

for all η,η′, η′′ ∈ h.
If we forget about the underlying Banach Lie groups and consider their Banach Lie algebras

only, then the maps ϕ and ω satisfying conditions (A.18)–(A.19) with additional smoothness
conditions, define the structure of Banach Lie algebra on n ⊕ h, see [1,12].
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A.3. Extensions of Banach Lie–Poisson spaces

According to [11] the Banach Lie–Poisson space is a Banach space b such that its dual b∗ is
Banach Lie algebra with the property

ad∗
x b ⊂ b ⊂ b∗∗ (A.20)

for all x ∈ b∗. This property allows us to define the Poisson bracket on b

{f,g}(b) = 〈[
Df (b),Dg(b)

]
, b

〉
, (A.21)

where Df (b),Dg(b) ∈ b∗ are Fréchet derivatives at point b ∈ b. The bracket makes the Banach
space b a Banach Poisson space in the sense of [11].

Let us assume that Banach Lie algebras n, h and g possess predual Banach spaces n∗, h∗ and
g∗ satisfying condition (A.20). We also assume that maps (Dι(eN))∗, (Dπ(eG))∗(h∗) dual to
Dι(eN) and Dπ(eG) preserve predual spaces, i.e.(

Dι(eN)
)∗

(g∗) ⊂ n∗,
(
Dπ(eG)

)∗
(h∗) ⊂ g∗. (A.22)

In that situation one obtains the exact sequence of predual Banach spaces

{0} h∗
(Dπ(eG))∗

g∗
(Dι(eG))∗

n∗ {0} , (A.23)

see Lemma 3.7 in [12].
We can identify g∗ with n∗ ⊕ h∗ by the map dual to the derivative DΨ −1(eG) at the point eG.

This identification allows us to compute coadjoint actions of N ×Φ,Ω H and n ⊕ h on n∗ ⊕ h∗
as follows:

Ad∗
(n,h)(τ,μ) = ((

D2Φ(h, eN)
)∗ Ad∗

n τ,
((

D2Ω(h, eH )
)∗ Ad∗

n −Ad∗
h

(
D1Ω(eH ,h)

)∗ Ad∗
n

+ Ad∗
h

(
D1Φ

(
eH ,n−1))∗)

τ + Ad∗
h μ

)
, (A.24)

where (n,h) ∈ N ×Φ,Ω U , (τ,μ) ∈ n∗ ⊕ h∗ and

ad∗
(ζ,η)(τ,μ) = (

ad∗
ζ τ + (

ϕ(η)
)∗

τ,−(
ϕ( · )(ζ )

)∗
τ + (

ω(η, ·))∗
τ + ad∗

η μ
)

(A.25)

for (ζ, η) ∈ n ⊕ h, (τ,μ) ∈ n∗ ⊕ h∗.
The coadjoint representation (A.25) satisfies condition (A.20) if and only if(

ϕ(η)
)∗

(n∗) ⊂ n∗,
(
ϕ(·)(ζ )

)∗
(n∗) ⊂ h∗,

(
ω(η, ·))∗

(n∗) ⊂ h∗. (A.26)

So, under these conditions the Banach space n ⊕ h is a Banach Lie–Poisson space. Using defini-
tion (A.21) and Lie bracket (A.15) we obtain the Poisson bracket on n∗ ⊕ h∗:

{f,g}(τ,μ) = 〈[D1f,D1g] + ϕ(D2f )(D1g) − ϕ(D2g)(D1f ) + ω(D2f,D2g), τ
〉

+ 〈[D2f,D2g],μ〉
(A.27)

for f,g ∈ C∞(n∗ ⊕ h∗).
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Further investigation of extensions of Lie groups and Lie algebras is beyond the scope of this
paper, so for more information we refer to [1,9,10,12].

Appendix B. Magri method

We briefly recall the Magri method of constructing integrals of motion in involution. For more
details see e.g. [7].

Let us consider a pencil of compatible Poisson brackets

{·,·}ε := {·,·}1 + ε{·,·}2 (B.1)

where ε ∈ R. Compatibility of Poisson brackets means that {·,·}ε is also a Poisson bracket for
any parameter ε. Let I k

ε be a family of Casimirs for Poisson bracket {·,·}ε indexed by k ∈ N, i.e.

{
I k
ε , ·}

ε
= 0. (B.2)

Assuming that I k
ε depends analytically on the parameter ε one expands the equality (B.2) and

computes the coefficients in front of εn. Thus one obtains that {hk
0, ·}1 = 0 and

{
hk

l , ·
}

1 = {
hk

l+1, ·
}

2, l = 0,1, . . . (B.3)

where hk
l are defined by

I k
ε =

∞∑
l=0

hk
l ε

l . (B.4)

Due to relation (B.3), the sequence {hk
l }l∈N∪{0} is called a Magri chain.

By using (B.3) twice one gets that

{
hk

l , h
k′
n

}
1 = {

hk
l−1, h

k′
n+1

}
1. (B.5)

Next, by iterating this procedure one concludes that

{
hk

l , h
k′
n

}
1 = {

hk
0, h

k′
n+l

}
1 = 0. (B.6)

Thus functions hk
l are in involution

{
hk

l , h
k′
n

}
ε
= {

hk
l , h

k′
n

}
1 = {

hk
l , h

k′
n

}
2 = 0 (B.7)

for all Poisson brackets under consideration.



3294 T. Goliński, A. Odzijewicz / Journal of Functional Analysis 258 (2010) 3266–3294
References

[1] D. Alekseevsky, P.W. Michor, W. Ruppert, Extensions of Lie algebras, ESI preprint 881.
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