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We construct a thin, residually connected, primitive, and flag-transitive geometry 
of rank 5. Its residues of type {i, i +  l (mod 5)) ( i = 0  ..... 4) are hexagons; the other 
rank 2 residues are triangles. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

Let I be a set of n elements (called types) and let F = (X, , ,  t) be a triple 
such that X is a set, • is a reflexive and symmetric relation on X (called the 
incidence relation) and t is a surjective function from X to I. The type of a 
subset Y c X  is the set t(Y) and for every i~L  the elements of t - l ( i )  are 
called the i-varieties. A flag of F is a set of pairwise incident elements of X; 
a flag of type I is called a chamber. F is a geometry if 

1. x * y and t(x) = t(y) implies x =  y, 

2. every flag of F is contained into a chamber. 

The rank of a geometry F is n = I I [ .  If F is a flag of F, the triple FF = 
(XF, *F, tF) where XF is the set of varieties of type belonging to I -  t(F) 
which are incident to all the elements of F, ,F, and tF are the restrictions 
of * and t to XF is a geometry of rank n - It(F)] which is called the residue 
of F in F. The type of FF is the set I -  t(F). 

A permutat ion ~ of X is an automorphism of F if it preserves the 
incidence and the types; i.e., if 

(a) x ,  y ~ ( x ) , o ~ ( y ) ,  f o r e v e r y x ,  y ~ X  

(b) t(~(x))=t(x), for every x~X.  
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A permutation verifying (a) but not necessarily (b) is called an extended 
automorphism of F. Clearly, the set Aut(F) of all the automorphisms of F 
is a subgroup of the group of all the extended automorphisms. 

Let G c Aut(F), we say that G is flag-transitive if, for every J c / ,  G acts 
transitively on the flags of type J. F is flag-transitive if Aut(F) is flag- 
transitive. In a flag-transitive geometry, all the residues of a given type are 
isomorphic. 

The diagram of a flag-transitive geometry F of rank n is the complete 
graph on the set of types of F, provided with the following information: 

- -  on each vertex i, we indicate the cardinality of the residue of a flag 
of type I -  {i}, diminished by 1 

- -  on each edge {i, j}, we indicate parameters concerning the 
incidence graph of the residue of a flag of type I -  {i, j}; namely, from i to 
j, the diameter of this incidence graph starting from an /-variety, the 
gonality of the graph (i.e., the half of the length of a smallest circuit) and 
the diameter starting from a j-variety. 

Usually, the edges labelled 2, 2, 2 are omitted, the labels 3, 3, 3 are omitted, 
and the labels n, n, n (n/> 4) are replaced by a simple n. 

Now, let F be a rank n flag-transitive geometry and G = Aut(F). F is 
firm if every non-maximal flag is contained in at least two chambers, it is 
thin if every flag of rank n - 1 is contained in exactly two chambers. F is 
residually connected if the incidence graphs of F and of all its residues of 
rank ~> 2 are connected graphs. As it can be rather long to check if a 
geometry is residually connected, the following result that we can apply 
using a CAYLEY algorithm is useful: 

THEOREM. [3] Let F =  {x I . . . .  , xn} be a chamber of  F and, for every 
i= 1 ..... n, let Gi be the stabilizer of  xi in G. For every J c I ,  we define 
Gj= (']j~jGj. F is residually connected if  and only if  for every J c I  such 
that [J[ ~< n - 2, Gj is generated by its subgroups Gj~ {k} (k ~ I -  J). 

Finally, it is well known that G acts primitively on the set of all 
/-varieties of F if and only if the stabilizer of a fixed/-variety is a maximal 
subgroup of G. F is called primitive if G acts primitively on the /-varieties 
for every i 6/.  

In this paper we construct a thin, residually connected, primitive, and 
flag-transitive geometry F having the diagram shown in Fig. 1. 

The group G = Aut(F) is the group PG05(3) of the projectivities 
stabilizing a non-degenerate quadric in PG(4, 3). This group of order 51840 
is, among others, isomorphic to the automorphism group of the Sch~ifli 
graph constructed on the 27 lines of a general cubic surface and to the 
group generated by the 36 reflections in the set of minimal vectors of the 
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FIGURE 1. 

E 6 lattice. The stabilizer of a chamber of F is the identity and the extended 
automorphism group of F induces the dihedral group D5 on the set of 
types. 

Since we have to work intensively in a generalized quadrangle to 
construct F, let me also recall the following definition: 

A generalized quadrangle of order (s, t) is an incidence structure S = (P, D) 
consisting of a set P of points and a set D of lines such that 

1. every pair of points is contained in at most one line, 

2. every line contains exactly s + 1 points and every point is 
contained in exactly t + 1 lines, 

3. for every point p and every line d not containing p, there exists 
exactly one point p'  and one line d'  such that p, p ' e  d', and p ' s  d. 

2. THE GEOMETRY 

Let Q be a non-degenerate quadric in the four-dimensional projective 
space over GF(3). It is well known that the 40 points and the 40 lines 
of PG(4, 3) which are contained in Q have a structure of generalized 
quadrangle S = (P, D) of order (3, 3). This generalized quadrangle is not 
self-dual. The 81 points of PG(4, 3 ) - Q  are divided into two orbits for 
PG05(3): there are 36 points each of which is contained in 10 tangent 
hyperplanes of Q, and each of the 45 remaining points lies in 16 tangent 
hyperplanes. 

The group G = PG05(3) of all the projectivities stabilizing Q has order 
51840, it is the full automorphism group of S. 

Let De (i = 0 ..... 4) be five disjoint copies of the set D of lines of S, let 
X =  [.)4=0 De and let us denote by di, / (i = 0 ..... 4; j =  1 .... ,40) the elements 
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of Di in such a way that, for every j, the elements d0.j, ..., d4d correspond 
to the same line of D which is denoted by dj. For every j, j ' =  1 .... ,40 we 
define xj.y = [dj c~ d;[ in S. For convenience, let us take the convention that 
all the additions and subtractions appearing in this paper have to be 
computed in 7/5 (except when they correspond obviously to operations in 
GF(3)). 

We define an incidence relation * on D as 

d~,~, dk.i.**,(xj. I and i - k =  +_l) or (x jd=0 and i - k =  +_2) 

and an application t: D ~ {0, 1, 2, 3, 4} by t(d~.j) = i. 
Let us prove the following results: 

LEMMA 1. G acts transitively on all the 5-tuples (d,, d2, d3, d4, ds) of  
lines of  S such that xi . j= 1 if  i - j =  +_1 and xi, j=O if  i - j =  +_2. 

Proof  Let (d,, d2, d3, d4, ds) be such a 5-tuple. Every intersection of 
Q with a three-dimensional subspace of PG(4, 3) consists of four lines 
meeting in a common point (tangent hyperplane) or of a non-degenerate 
three-dimensional quadric. None of these three-dimensional quadrics can 
contain a configuration of five lines intersecting as .d~ .... , d 5. Thus 
{d, ..... d5 } is not contained in a proper subspace of PG(4, 3). The subspace 
of PG(4,3) generated by { d i c ~ d i + l [ i = l  ..... 5} contains the lines d; 
because the points di n d~+ 1 are different; so this set of five points generates 
PG(4, 3). Now, let c~ be a projectivity stabilizing Q and each line d~; ~ fixes 
the points d; n d~+~ (i = 1, ..., 5) and the pole of the hyperplane H generated 
by dr, d2, d3. So a fixes a basis of PG(4, 3) and is the identity. 

On the other hand, let us compute the total number of configurations 
(dl, d2, d3, d4, ds) verifying the hypothesis. We have 40 choices for d~. 
There are 12 lines intersecting d,;  let us choose one of them as d2. There 
are nine lines intersecting d2 in a point different from d, n d2 and all these 
lines are disjoint from d,,  so we choose one of them as d3. Among the nine 
lines intersecting d3 at a point distinct from dz c~ d3 there are three lines 
which also intersect dl, so we have six possibilities for d4. Finally, each 
point of d4 is contained in one line intersecting d~; for ds, we cannot 
choose the line joining d a n  d2 to a point of d4 or the line joining d 3 c~ d4 
to a point of d,,  so two possibilities remain. The total number of 
configurations is thus 40.12.9.6.2=51840 and the lemma is proved 
because this is equal to ]G[ and the only element of G fixing a possible 
configuration of five lines in the identity. 

It follows from this lemma that G acts transitively on the chambers of F. 

LEMMA 2. Each flag of  F which is not a chamber is contained in at least 
two chambers. 
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Proof It is easy to compute the number of chambers containing a given 
flag of F, using the axioms defining a generalized quadrangle as in the 
proof of Lemma L Vge obtain the results 

Rank Description of the flag Number of chambers containing such a flag 

4 {dil,jl, di2,j2, di3,j 3, di4,j 4 } 2 
i4=i3+1=i2+2=i1+3 

3 {di.s,, di2,j2, di3,j~} 12 
i3=iz + l =il + 2 

{ di,.j~, di2j 2, di3,A} 6 
i3=i2+2=i1+3 

2 { dlj.Sl, di2d2 } 108 
i2 = il + 1 

{ dil,j,, di2,j2 } 48 
i2=i1+2 

1 {d~,,s, } 1296 

LEMMA 3. F & flag-transitive. 

Proof  We have to prove that if two flags F and F'  have the same type, 
then there exists an element g e G such that g ( F ) =  F'. This follows from 
Lemma 1 if F and F'  are chambers. If not, let F1 (resp., F~) be a chamber 
containing F (resp., F'); there exists g e G  such that g(F1)=F~ and we 
have g(F) = F'. 

LEMMA 4. F is residually connected. 

Proof  This can be verified by running the following CAYLEY 
program: 

G: permutation group (40); 
G. generators: 

a =  (1, 2, 5, 13) (3, 8, 10, 22) (4, 11, 15, 6) (7, 18, 25, 34) (9, 20, 23, 12) 
(14, 19, 21, 26) (16, 27, 31, 35) (17, 30, 24, 33) (28, 36, 40, 37) 
(29, 32, 38, 39), 

b = (1, 3, 9, 21, 10, 23) (2, 6, 16, 28, 4, 12) (5, 14) (7, 13, 22, 34, 40, 39) 
(8, 19, 18, 32, 24, 25) (11, 17, 31, 15, 26, 20) (27, 29, 37, 35, 38, 33) 
(30, 36), 
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c = (1, 4) (2, 7) (3, 10) (5, 15) (6, 17) (8, 9) (11, 24) (12, 20) (13, 25) 
(14, 19) (16, 29) (18, 33) (21, 26) (22, 23) (27, 35) (28, 36) (30, 34) 
(31, 38) (32, 39) (37, 40); 

X = empty; 
X=append  (X, stabilizer (G, [1, 4, 30, 343)); 
K=append  (X, stabilizer (G, [,15, 19, 28, 34])); 
X=append  (2, stabilizer (G, [10, 20, 28, 37])); 
X=append  (X, stabilizer (G, [11, 14, 25, 37])); 
X=append  (X, stabilizer (G, [4, 11, 23, 35])); 

"These statements define the group G acting on the 40 points of S and a 
sequence X containing the stabilizers of 5 lines of S corresponding to the 
varieties of a chamber of F" 

print G eq(X[1] ,  X[2],  X[3],  X[4],  X [ 5 ] ) ;  
T =  F1, 2, 3, 4, 5]; 
for i = l  to 5 do 

R = empty; 
for each j in T - [ i ]  do R=append  (R, X[i] meet X[ j ] ) ;  end; 
print X[i] eq(R[1] ,  R[2],  RF3], R [ 4 ] ) ;  

end; 
f o r i = l  t o 5 d o  

f o r j = i + l  to 5do  
Z = Y[i]  meet X[,j]; 
R = empty; 
for each k in T -  [,i,j] do R=append  (R, Z meet Y[k]);  end; 
print Z eq(R[,1], RF2], R [ 3 ] ) ;  

end; 
end; 
f o r i = l  t o 5 d o  

f o r j = i + l  to 5do  
for k = j + l  to 5do  

Z = X[i] meet X[ j ]  meet X[k] ;  
R = empty; 
for each l in T-[ , i , j ,  k] do R=append  (R, Z meet X[/]);  

end; 
print Z eq(R[1] ,  R [ 2 ] ) ;  

end; 
end; 

end; 

The geometry F is thin since each flag of rank 4 is contained in exactly 
two chambers. It is primitive because the stabilizer of a variety in G is the 



170 NOTE 

stabilizer of a line of S; this is a group of order 1296 which is maximal in 
G. Let us now construct the diagram of F. 

LEMMA 5. Every residue of  type { i , i + 1 }  ( i=0 , . . . , 4 )  of  F is an 
hexagon. 

Proof Since all the non-degenerate quadrics of PG(4, 3) are equivalent 
under the action of G we can suppose that Q is the quadric 

Xl X3 -~- X1 J~4 -4- X 2 X 4 -4- X 2 X 5 -q- X 3 X 5 -~- 0. 

All the flags of type {j, j + 1, j + 2 } of F are equivalent under the extended 
automorphisms group of the geometry; it is thus sufficient to prove the 
result for the residue of the flag F =  {do, o, d1,1, d2,2} so that do, dl, and d2 
are the following lines of Q: 

d O : X  1 = X 2 = X  3 = 0  

d I : X "  1 = X 2 = X S = 0  

d 2 : X  l = J ( 4 = z ~ 5 = 0 .  

We have Xo,1 = x~,2 = 1 and Xo, 2 ~---0 SO F is effectively a flag. The 3-varieties 
incident to do, dl, and d 2 correspond to the six lines of Q which have one 
point in common with d 2 and no point in common with d o and dl. The 
equations of these lines are 

I X + 2X 5 = 0 
.d  a X2 + 2X3 = 0 

( X 4 = O  

I X ~ + X 4 = O  
dg X1 + J(2 + 2X3 = 0 

(X5 = 0 

I X1 + 2X4 = 0 
dc X2 + X3 + X4=O 

IX5 = 0 

X1 + 2X4 = 0 
d i X2 -q- X3 --~ J[r4 --[- ~5 ~-- 0 

X 4 "4- 2X5 = 0 

X "F- X 3 = 0 

d e ~ X  3 -~" 2 X  4 = 0 

( X  4 "-[- X 5 = 0 

(X3 = 0 
d d X 4  = 0 

(X5 = 0 

The 4-varieties incident to do, dl, and d2 correspond to the six lines of 
Q which have one point in common with do and no point in common with 
dl and dz. The equations of these lines are 

ab 
X1 + 2X: = 0 IX1 + X3 = 0 ~X1 + X3 = 0 
X 1 -4- 2X" 3 = 0 d d ~ X  2 = 0 d f  ~ X  1 -4- X 4 = 0 

X 2 "4- X 3 --[- X 4 = 0 I X 3  + X4 + 2X5 = 0 {,X2 + X3 = 0 

X1 + 2X3 = 0 (X1 + 2X2 = 0 [ X2 = 0 
X2 = 0 dj ~X3 = 0 dt~ X3 = 0 
~f 3 "[- ~'~4 "q- X5 = 0 L ~'4 + 2Xs = 0 [ X 4 = O. 
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It is easy to verify that  Xa.b = Xb, e = . . . .  Xk,~= Xl, a = 1 and that  all the 
other  intersections of a line of {d~, d~, de, dg, d~, dk} with a line of 
{db, dd, f f ,  d,,, dj, d,} are empty;  this proves the lemma. 

LEMMA 6. Every residue of  type { i, i + 2 } (i = 0 ..... 4) of  1" is a triangle. 

Proof  We can suppose that  i = 0. Let F =  {d l , j l  , d3,j3,  d4,j4 } be a flag; 
we have xj3,j 4 = 1 and xjl,j 3 = xj~,j 4 = 0. In S, let p be the unique point  of djl 
which is collinear with dj3 c~ dj, and let {a, b, c} = dj~-: {p}. We denote by 
da0 (resp., db0, d~0) the unique line containing a (resp., b, c) and one point  
of dj4 - dj3. Similarly, let da2 (resp., db2, dc2) be the unique line containing 
a (resp., b, c) and one point  of dj3-dj4, do.ao, do, bo, and do, c0 are the 
0-varieties of 1"F and d2.a2, d2,b2, d2.c2 are its 2-varieties. We have xa0,~ 2 = 

Xbo,b2 = Xco.c2 = 1 and X a o , b  2 = Xao ,c  2 = X a l , c  0 ~- X a l , c  2 = Xa2,e  0 = Xa2,c  1 = 0 since 
the six lines intersect djl and S contains no triangle. 1"F is a triangle because 
a variety of type 0 and a variety of type 2 are incident in 1"F if and only 
if the corresponding lines of S have an empty intersection. 

We have thus proved the theorem: 

THEOREM. 1" is a thin, residually connected, primitive, and flag-transitive 
geometry o f  rank 5. Its residues o f  type {i, i+ 1} ( i = 0  ..... 4) are hexagons; 
its residue o f  type { i, i+ 2} are triangles. 
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