N ote

A Geometry of Rank 5 Associated with *PGOs(3)*

MICHEL DEHON'

Département de Mathématique, C.P. 216, Université Libre de Bruxelles, *Boulevard du Triomphe, B-1050 Brussels, Belgium*

Communicated by Francis Buekenhout

Received May 21, 1992

We construct a thin, residually connected, primitive, and flag-transitive geometry of rank 5. Its residues of type $\{i, i+1 \pmod{5}\}$ $(i=0, ..., 4)$ are hexagons; the other rank 2 residues are triangles. © 1994 Academic Press, Inc.

1. INTRODUCTION

Let I be a set of *n* elements (called *types*) and let $\Gamma = (X, \ast, t)$ be a triple such that X is a set, $*$ is a reflexive and symmetric relation on X (called the *incidence relation*) and t is a surjective function from X to I. The type of a subset $Y \subset X$ is the set $t(Y)$ and for every $i \in I$, the elements of $t^{-1}(i)$ are called the *i-varieties*. A *flag* of Γ is a set of pairwise incident elements of X ; a flag of type I is called a *chamber. F* is a *geometry* if

- 1. $x * y$ and $t(x) = t(y)$ implies $x = y$,
- 2. every flag of Γ is contained into a chamber.

The rank of a geometry *F* is $n = |I|$. If *F* is a flag of *F*, the triple $\Gamma_F =$ $(X_F, *_F, t_F)$ where X_F is the set of varieties of type belonging to $I-t(F)$ which are incident to all the elements of F , $*_F$, and t_F are the restrictions of $*$ and t to X_F is a geometry of rank $n - |t(F)|$ which is called the *residue* of *F* in *F*. The *type* of Γ_F is the set $I-t(F)$.

A permutation α of X is an *automorphism* of Γ if it preserves the incidence and the types; i.e., if

- (a) $x * y \Leftrightarrow \alpha(x) * \alpha(y)$, for every x, $y \in X$
- (b) $t(\alpha(x))=t(x)$, for every $x \in X$.
	- 164

0097-3165/94 \$6.00 Copyright © 1994 by Academic Press, Inc. All rights of reproduction in any form reserved. A permutation verifying (a) but not necessarily (b) is called an *extended automorphism* of Γ . Clearly, the set Aut(Γ) of all the automorphisms of Γ is a subgroup of the group of all the extended automorphisms.

Let $G \subset Aut(\Gamma)$, we say that G is *flag-transitive* if, for every $J \subset I$, G acts transitively on the flags of type *J.* Γ is *flag-transitive* if $Aut(\Gamma)$ is flagtransitive. In a flag-transitive geometry, all the residues of a given type are isomorphic.

The *diagram* of a flag-transitive geometry Γ of rank n is the complete graph on the set of types of Γ , provided with the following information:

on each vertex *i*, we indicate the cardinality of the residue of a flag of type $I - \{i\}$, diminished by 1

 $-$ on each edge $\{i, j\}$, we indicate parameters concerning the incidence graph of the residue of a flag of type $I - \{i, j\}$; namely, from i to i , the diameter of this incidence graph starting from an *i*-variety, the gonality of the graph (i.e., the half of the length of a smallest circuit) and the diameter starting from a j-variety.

Usually, the edges labelled 2, 2, 2 are omitted, the labels 3, 3, 3 are omitted, and the labels *n*, *n*, *n* ($n \ge 4$) are replaced by a simple *n*.

Now, let Γ be a rank *n* flag-transitive geometry and $G = Aut(\Gamma)$. Γ is *firm* if every non-maximal flag is contained in at least two chambers, it is *thin* if every flag of rank $n-1$ is contained in exactly two chambers. Γ is *residually connected* if the incidence graphs of Γ and of all its residues of rank ≥ 2 are connected graphs. As it can be rather long to check if a geometry is residually connected, the following result that we can apply using a CAYLEY algorithm is useful:

THEOREM. [3] *Let* $F = \{x_1, ..., x_n\}$ *be a chamber of* Γ *and, for every* $i=1, ..., n$, let G_i be the stabilizer of x_i in G. For every $J\subset I$, we define $G_j = \bigcap_{i \in J} G_i$. *F is residually connected if and only if for every* $J \subset I$ *such that* $|J| \le n-2$, G_j *is generated by its subgroups* $G_{J \cup \{k\}}$ ($k \in I-J$).

Finally, it is well known that G acts primitively on the set of all *i*-varieties of Γ if and only if the stabilizer of a fixed *i*-variety is a maximal subgroup of G . Γ is called *primitive* if G acts primitively on the *i*-varieties for every $i \in I$.

In this paper we construct a thin, residually connected, primitive, and flag-transitive geometry Γ having the diagram shown in Fig. 1.

The group $G = Aut(\Gamma)$ is the group $PGO₅(3)$ of the projectivities stabilizing a non-degenerate quadric in *PG(4,* 3). This group of order 51840 is, among others, isomorphic to the automorphism group of the Schäfli graph constructed on the 27 lines of a general cubic surface and to the group generated by the 36 reflections in the set of minimal vectors of the

 $E₆$ lattice. The stabilizer of a chamber of Γ is the identity and the extended automorphism group of Γ induces the dihedral group D_5 on the set of types.

Since we have to work intensively in a generalized quadrangle to construct Γ , let me also recall the following definition:

A generalized quadrangle of order (s, t) is an incidence structure $S = (P, D)$ consisting of a set P of *points* and a set D of *lines* such that

1. every pair of points is contained in at most one line,

2. every line contains exactly $s + 1$ points and every point is contained in exactly $t + 1$ lines,

3. for every point p and every line d not containing p , there exists exactly one point p' and one line d' such that p, $p' \in d'$, and $p' \in d$.

2. THE GEOMETRY

Let Q be a non-degenerate quadric in the four-dimensional projective space over $GF(3)$. It is well known that the 40 points and the 40 lines of $PG(4, 3)$ which are contained in Q have a structure of generalized quadrangle $S = (P, D)$ of order (3, 3). This generalized quadrangle is not self-dual. The 81 points of $PG(4, 3)-Q$ are divided into two orbits for $PGO₅(3)$: there are 36 points each of which is contained in 10 tangent hyperplanes of Q , and each of the 45 remaining points lies in 16 tangent hyperplanes.

The group $G = PGO₅(3)$ of all the projectivities stabilizing Q has order 51840, it is the full automorphism group of S.

Let D, $(i = 0, ..., 4)$ be five disjoint copies of the set D of lines of S, let $X = \bigcup_{i=0}^{4} D_i$ and let us denote by $d_{i,j}$ ($i = 0, ..., 4; j = 1, ..., 40$) the elements

of D_i in such a way that, for every j, the elements $d_{0,i}$, ..., $d_{4,i}$ correspond to the same line of D which is denoted by d_i . For every j, $j' = 1, ..., 40$ we define $x_{i,j} = |d_i \cap d_j|$ in S. For convenience, let us take the convention that all the additions and subtractions appearing in this paper have to be computed in \mathbb{Z}_5 (except when they correspond obviously to operations in $GF(3)$).

We define an incidence relation $*$ on D as

$$
d_{i,i} * d_{k,i} \Leftrightarrow (x_{i,i} \text{ and } i-k = \pm 1)
$$
 or $(x_{i,i} = 0 \text{ and } i-k = \pm 2)$

and an application $t: D \rightarrow \{0, 1, 2, 3, 4\}$ by $t(d_{i,j}) = i$.

Let us prove the following results:

LEMMA 1. G acts transitively on all the 5-tuples $(d_1, d_2, d_3, d_4, d_5)$ of *lines of S such that* $x_{i,j}=1$ *if* $i-j=\pm 1$ *and* $x_{i,j}=0$ *if* $i-j=\pm 2$ *.*

Proof. Let $(d_1, d_2, d_3, d_4, d_5)$ be such a 5-tuple. Every intersection of Q with a three-dimensional subspace of $PG(4, 3)$ consists of four lines meeting in a common point (tangent hyperplane) or of a non-degenerate three-dimensional quadric. None of these three-dimensional quadrics can contain a configuration of five lines intersecting as $d_1, ..., d_5$. Thus ${d_1, ..., d_5}$ is not contained in a proper subspace of $PG(4, 3)$. The subspace of PG(4, 3) generated by $\{d_i \cap d_{i+1} | i=1, ..., 5\}$ contains the lines d_i because the points $d_i \n\cap d_{i+1}$ are different; so this set of five points generates *PG*(4, 3). Now, let α be a projectivity stabilizing Q and each line d_i ; α fixes the points $d_i \cap d_{i+1}$ (i = 1, ..., 5) and the pole of the hyperplane H generated by d_1 , d_2 , d_3 . So α fixes a basis of $PG(4, 3)$ and is the identity.

On the other hand, let us compute the total number of configurations $(d_1, d_2, d_3, d_4, d_5)$ verifying the hypothesis. We have 40 choices for d_1 . There are 12 lines intersecting d_1 ; let us choose one of them as d_2 . There are nine lines intersecting d_2 in a point different from $d_1 \n\cap d_2$ and all these lines are disjoint from d_1 , so we choose one of them as d_3 . Among the nine lines intersecting d_3 at a point distinct from $d_2 \cap d_3$ there are three lines which also intersect d_1 , so we have six possibilities for d_4 . Finally, each point of d_4 is contained in one line intersecting d_1 ; for d_5 , we cannot choose the line joining $d_1 \nightharpoonup d_2$ to a point of d_4 or the line joining $d_3 \nightharpoonup d_4$ to a point of d_1 , so two possibilities remain. The total number of configurations is thus $40.12.9.6.2 = 51840$ and the lemma is proved because this is equal to $|G|$ and the only element of G fixing a possible configuration of five lines in the identity.

It follows from this lemma that G acts transitively on the chambers of Γ .

LEMMA 2. *Each flag of F which is not a chamber is contained in at least two chambers.*

 168 NOTE

Proof. It is easy to compute the number of chambers containing a given flag of Γ , using the axioms defining a generalized quadrangle as in the proof of Lemma 1. We obtain the results

LEMMA 3. *F* is flag-transitive.

Proof. We have to prove that if two flags F and F' have the same type, then there exists an element $g \in G$ such that $g(F) = F'$. This follows from Lemma 1 if F and F' are chambers. If not, let F_1 (resp., F'_1) be a chamber containing F (resp., F'); there exists $g \in G$ such that $g(F_1) = F'_1$ and we have $g(F) = F'$.

LEMMA *4. F is residually connected.*

Proof. This can be verified by running the following CAYLEY program:

G: permutation group (40); G generators:

- $a = (1, 2, 5, 13)$ $(3, 8, 10, 22)$ $(4, 11, 15, 6)$ $(7, 18, 25, 34)$ $(9, 20, 23, 12)$ (14, 19, 21, 26) (16, 27, 31, 35) (17, 30, 24, 33) (28, 36, 40, 37) (29, 32, 38, 39),
- $b = (1, 3, 9, 21, 10, 23)$ $(2, 6, 16, 28, 4, 12)$ $(5, 14)$ $(7, 13, 22, 34, 40, 39)$ (8, 19, 18, 32, 24, 25) (11, 17, 31, 15, 26, 20) (27, 29, 37, 35, 38, 33) (30, 36),

```
c = (1, 4) (2, 7) (3, 10) (5, 15) (6, 17) (8, 9) (11, 24) (12, 20) (13, 25)(14, 19) (16, 29) (18, 33) (21, 26) (22, 23) (27, 35) (28, 36) (30, 34) 
   (31, 38) (32, 39) (37, 40);
```
 $X =$ empty;

 $X =$ append $(X,$ stabilizer $(G, [1, 4, 30, 34])$; $X =$ append (X, stabilizer (G, [15, 19, 28, 34])); $X =$ append *(X, stabilizer <i>(G,* [10, 20, 28, 37])); $X =$ append $(X,$ stabilizer $(G, \lceil 11, 14, 25, 37 \rceil)$; $X =$ append $(X,$ stabilizer $(G, \lceil 4, 11, 23, 35 \rceil)$;

"These statements define the group G acting on the 40 *points of S and a sequence X containing the stabilizers of 5 lines of S corresponding to the varieties of a chamber of* F"

```
print G eq\langle X[1], X[2], X[3], X[4], X[5] \rangle;
T = [1, 2, 3, 4, 5];
for i=1 to 5 do
  R =empty;
  for each j in T - [i] do R =append (R, X[i]) meet X[j]; end;
  print X[i] eq\langle R[1], R[2], R[3], R[4] \rangle;
end; 
for i=1 to 5 do
  for i=i+1 to 5 do
            Z = X[i] meet X[i];
            R =empty:
            for each k in T - [i, j] do R =append (R, Z \text{ meet } X[k]); end;
            print Z eq\langle R[1], R[2], R[3]\rangle;
  end; 
end; 
for i=1 to 5 do
  for j=i+1 to 5 do
            for k = j + 1 to 5 do
               Z = X[i] meet X[j] meet X[k];
               R =empty;
               for each l in T - [i, j, k] do R = append (R, Z \text{ meet } X[1]);
                 end; 
               print Z eq\langle R[1], R[2]\rangle;
            end; 
  end; 
end;
```
The geometry Γ is thin since each flag of rank 4 is contained in exactly two chambers. It is primitive because the stabilizer of a variety in G is the stabilizer of a line of S ; this is a group of order 1296 which is maximal in G. Let us now construct the diagram of Γ .

LEMMA 5. *Every residue of type* $\{i, i+1\}$ $(i=0, ..., 4)$ *of* Γ *is an hexagon.*

Proof. Since all the non-degenerate quadrics of *PG(4, 3)* are equivalent under the action of G we can suppose that Q is the quadric

$$
X_1 X_3 + X_1 X_4 + X_2 X_4 + X_2 X_5 + X_3 X_5 = 0.
$$

All the flags of type $\{j, j+1, j+2\}$ of Γ are equivalent under the extended automorphisms group of the geometry; it is thus sufficient to prove the result for the residue of the flag $F = \{d_{0,0}, d_{1,1}, d_{2,2}\}$ so that d_0, d_1 , and d_2 are the following lines of Q :

$$
d_0: X_1 = X_2 = X_3 = 0
$$

$$
d_1: X_1 = X_2 = X_5 = 0
$$

$$
d_2: X_1 = X_4 = X_5 = 0.
$$

We have $x_{0,1} = x_{1,2} = 1$ and $x_{0,2} = 0$ so F is effectively a flag. The 3-varieties incident to d_0 , d_1 , and d_2 correspond to the six lines of Q which have one point in common with d_2 and no point in common with d_0 and d_1 . The equations of these lines are

$$
d_{a}\begin{cases} X_{1} + 2X_{5} = 0 \\ X_{2} + 2X_{3} = 0 \\ X_{4} = 0 \end{cases} d_{c}\begin{cases} X_{1} + 2X_{4} = 0 \\ X_{2} + X_{3} + X_{4} = 0 \\ X_{5} = 0 \end{cases} d_{c}\begin{cases} X_{1} + X_{3} = 0 \\ X_{3} + 2X_{4} = 0 \\ X_{4} + X_{5} = 0 \end{cases}
$$

$$
d_{g}\begin{cases} X_{1} + X_{4} = 0 \\ X_{1} + X_{2} + 2X_{3} = 0 \\ X_{5} = 0 \end{cases} d_{f}\begin{cases} X_{1} + 2X_{4} = 0 \\ X_{2} + X_{3} + X_{4} + X_{5} = 0 \\ X_{4} + 2X_{5} = 0 \end{cases} d_{f}\begin{cases} X_{3} = 0 \\ X_{4} = 0 \\ X_{5} = 0 \end{cases}
$$

The 4-varieties incident to d_0 , d_1 , and d_2 correspond to the six lines of Q which have one point in common with d_0 and no point in common with d_1 and d_2 . The equations of these lines are

$$
d_{b} \begin{cases} X_{1} + 2X_{2} = 0 \\ X_{1} + 2X_{3} = 0 \\ X_{2} + X_{3} + X_{4} = 0 \end{cases} d_{d} \begin{cases} X_{1} + X_{3} = 0 \\ X_{2} = 0 \\ X_{3} + X_{4} + 2X_{5} = 0 \end{cases} d_{f} \begin{cases} X_{1} + X_{3} = 0 \\ X_{1} + X_{4} = 0 \\ X_{2} + X_{3} = 0 \end{cases}
$$

$$
d_{b} \begin{cases} X_{1} + 2X_{3} = 0 \\ X_{2} = 0 \\ X_{3} + X_{4} + X_{5} = 0 \end{cases} d_{f} \begin{cases} X_{1} + 2X_{2} = 0 \\ X_{3} = 0 \\ X_{4} + 2X_{5} = 0 \end{cases} d_{f} \begin{cases} X_{2} = 0 \\ X_{3} = 0 \\ X_{4} = 0. \end{cases}
$$

It is easy to verify that $x_{a,b} = x_{b,c} = \cdots = x_{k,l} = x_{l,a} = 1$ and that all the other intersections of a line of $\{d_a, d_c, d_e, d_g, d_i, d_k\}$ with a line of ${d_a, d_d, f_f, d_b, d_i, d_i}$ are empty; this proves the lemma.

LEMMA 6. *Every residue of type* $\{i, i+2\}$ $(i = 0, ..., 4)$ *of* Γ *is a triangle.*

Proof. We can suppose that $i = 0$. Let $F = \{d_{1,j_1}, d_{3,j_3}, d_{4,j_4}\}\)$ be a flag; we have $x_{i_1,j_1} = 1$ and $x_{i_1,j_1} = x_{i_1,j_2} = 0$. In S, let p be the unique point of d_{i_1} which is collinear with $d_{i_3} \cap d_{i_4}$ and let $\{a, b, c\} = d_{i_1} - \{p\}$. We denote by d_{a_0} (resp., d_{b_0} , d_{c_0}) the unique line containing a (resp., b, c) and one point of $d_{j_4} - d_{j_3}$. Similarly, let d_{a_2} (resp., d_{b_2} , d_{c_2}) be the unique line containing a (resp., b, c) and one point of $d_{j3}-d_{j4}$, d_{0,a_0} , d_{0,b_0} , and d_{0,c_0} are the 0-varieties of Γ_F and d_{2,a_2} , d_{2,b_2} , d_{2,c_2} are its 2-varieties. We have x_{a_0,a_2} = $x_{b_0,b_2} = x_{c_0,c_2} = 1$ and $x_{a_0,b_2} = x_{a_0,c_2} = x_{a_1,c_0} = x_{a_1,c_2} = x_{a_2,c_0} = x_{a_2,c_1} = 0$ since the six lines intersect d_i and S contains no triangle. I_F is a triangle because a variety of type 0 and a variety of type 2 are incident in Γ_F if and only if the corresponding lines of S have an empty intersection.

We have thus proved the theorem:

THEOREM. *1" is a thin, residually connected, primitive, and flag-transitive geometry of rank 5. Its residues of type* $\{i, i+1\}$ $(i=0, ..., 4)$ *are hexagons; its residue of type* $\{i, i+2\}$ *are triangles.*

ACKNOWLEDGMENT

The author thanks F. Buekenhout for stimulating discussions.

REFERENCES

- 1. F. BUEKENHOUT, The geometry of the finite simple groups, *in* "Buildings and the Geometry of Diagrams," Lecture Notes in Math., Vol. 1181, pp. 1-78, Springer, New York, 1986.
- 2. J. CANNON, "A Language for Group Theory," University Sydney, 1982.
- 3. M. HERMAND, "Géométries Langage CAYLEY et Groupe de Hall-Janko," Thèse de doctorat, Université Libre de Bruxelles, 1990.
- 4. J. W. P. HmSCHrELD, "Projective Geometries over Finite Fields," Oxford Mathematical Monographs, 1979.

Printed in Belgium Uitgever: Academic Press, Inc. Verantwoordelijke uitgever voor Belgi& Hubert Van Maele Altenastraat 20, B-8310 Sint-Kruis