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ABSTRACT Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a
stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming
agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water
and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level
is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the
trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular
trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting
that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other
than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellu-
larly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of
~22�C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate
a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This
approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and dis-
tribution with the tolerance to drying in mammalian cells.
INTRODUCTION
Lyopreservation, the storage of biologics in a desiccated
state at ambient temperature, is a simple and cost-effective
biobanking method that is an attractive alternative to cryo-
preservation (1–3). It has the potential to facilitate the broad
dissemination of emerging technologies such as cellular and
regenerative therapies (4–6), cell-based diagnostic assays,
and biosensors (7,8). The idea of dry storage of mammalian
cells stems from the discovery of the naturally evolved pro-
tection strategies in anhydrobiotic organisms, which include
bacteria, yeast, nematodes, rotifers, tardigrades, certain
crustaceans, and an insect, to survive hostile conditions
including extreme heat and drought (9,10). A common pro-
tection strategy among anhydrobiotic organisms is the intra-
cellular synthesis and accumulation of several osmolytes,
including the disaccharide trehalose (11,12). The exact
mechanism by which trehalose offers protection against
desiccation has attracted a significant amount of interest.
The early studies on the protective action of trehalose sug-
gested that trehalose maintained the membrane in a liquid
Submitted August 6, 2014, and accepted for publication September 25,

2014.

*Correspondence: mtoner@hms.harvard.edu

Mehmet Toner’s present address is The Center for Engineering in Medicine,

114, 16th Street, Charlestown, MA 02129.

Editor: Leonid Brown.

� 2014 by the Biophysical Society

0006-3495/14/11/2253/10 $2.00
crystalline state by substituting water through interacting
with membrane hydrophilic headgroups, which is referred
to as the water replacement hypothesis (13,14). Alterna-
tively, glass formation hypothesis suggests that upon
removal of water, the sugars assist in the formation of an
intracellular glass with extremely high viscosity that hinders
the molecular motion and decreases residual water mobility
(15,16). The latter describes how trehalose contributes to the
stability of intracellular milieu, whereas the former explains
the beneficial direct interaction of trehalose with cellular
membranes and structures. Another hypothesis, namely
water entrapment, suggests that at low water contents, treha-
lose entraps residual water at the protein-sugar interface by
glass formation, thereby preserving the structure of the pro-
teins as well as membranes (17). These hypotheses are not
necessarily mutually exclusive, but rather complementary
in describing the protective action of trehalose in biological
systems.

In recent years, the lyopreservation field has advanced in
many fronts including understanding of the protective
mechanisms of trehalose, the techniques for loading of
trehalose into mammalian cells, and improved desiccation
methods. Nonetheless, the successful desiccation and
long-term storage of mammalian cells at ambient tempera-
ture is yet to be achieved, with the most notable exception
being the dried storage of anucleated platelets (1,19–24).
http://dx.doi.org/10.1016/j.bpj.2014.09.032

https://core.ac.uk/display/82356989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mtoner@hms.harvard.edu
http://dx.doi.org/10.1016/j.bpj.2014.09.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.09.032&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.09.032
http://dx.doi.org/10.1016/j.bpj.2014.09.032
http://dx.doi.org/10.1016/j.bpj.2014.09.032
http://dx.doi.org/10.1016/j.bpj.2014.09.032


2254 Abazari et al.
It is suggested that spatial heterogeneity and incomplete
desiccation is a potential reason for the failure of cell desic-
cation attempts (25–29). Desiccation of cells in sessile drop-
lets, as performed in most studies, is prone to formation of a
glassy skin at the air-liquid interface. The glassy skin re-
duces the drying rate and causes significant heterogeneities
in the water and trehalose distributions within the drying
sample (28). More recently, we developed a spin-drying
technique for uniform and rapid desiccation of attached
nucleated mammalian cells (30). However, there is no infor-
mation available at single-cell level yet on how the intracel-
lular trehalose may affect the drying of the intracellular
milieu after spin-drying. Therefore, a detailed examination
and quantification of water and trehalose at the single-cell
level in spin-dried samples is needed to identify any poten-
tial heterogeneity that could cause instability of the intracel-
lular glass.

Spectroscopic methods are extensively used for studying
protein-water-trehalose interactions in mixtures, liposomes,
and cells (17,31–34). Because of its label-free detection
capabilities, Raman spectroscopy has recently been used
in studying biological cells (35). In this study, we used
confocal Raman microspectroscopy to measure water con-
tent in desiccated cells. First, we describe a characterization
technique for the application of Raman microspectroscopy
to estimate the water content in drying samples. Our charac-
terization technique reintroduces Raman microspectroscopy
as a useful technique for measurement of residual water, to
the field of lyopreservation where accurate measurement of
residual water is of interest. We then apply this technique to
resolve the water content and distribution in our spin-dried
samples at a single-cell level. Our findings suggest that,
spin-drying of cell monolayers under saturated trehalose
solution resulted in a small amount of residual water with
a 2:1water/trehalose molar ratio (0.05 g/g dry weight) in
both the intra- and extracellular milieus. Such low intracel-
lular water content could facilitate glass formation at room
temperature by intracellular proteins. In the extracellular
milieu, we found direct evidence of amorphous trehalose
formation. We also found strong evidence that trehalose
intracellular presence reduced desiccation-induced confor-
mational changes in proteins. In this study, we introduce a
method for simultaneous measurement of water and treha-
lose in spin-dried samples using Raman microspectroscopy.
We envision that this method can be easily adapted in cell
desiccation studies to accurately measure water and treha-
lose contents and to examine the state of intra/extracellular
milieus as well as protein-trehalose interactions and confor-
mational changes, which are the key factors for assessment
of the efficacy of lyopreservation strategies.
MATERIALS AND METHODS

HepG2-TRET1 (36), a genetically modified line of human hepatoma cell

line, HepG2-C3A (ATCC, Manassas, VA) cells were used in this study.
Biophysical Journal 107(10) 2253–2262
The HepG2-TRET1 line is genetically modified to express trehalose trans-

porter membrane proteins to allow intracellular loading of extracellular

trehalose. The HepG2-C3A cells were used as the control group. We will

refer to these two cell lines as TRET and C3A, respectively, for the sake

of brevity.
Cell culture

TRET and C3A cells were grown to 70–90% confluence in 75 cm2 tissue

culture-treated flasks (Corning, Sigma-Aldrich, St. Louis, MO) with

Dulbecco’s modified Eagle medium (DMEM, Invitrogen, Life Technolo-

gies, Grand Island, NY), supplemented with filtered heat-inactivated fetal

bovine serum, at 37�C with 5% CO2. Phosphate buffered saline solution

(PBS) was prepared by dissolving 1 PBS tablet (Sigma-Aldrich) in

200 ml distilled water and sterile-filtering using a 0.2 mm bottle-top vacuum

filter (Corning, Sigma-Aldrich).
Trehalose-cell lysate samples

At least 107 C3A cells were washed twice by pelleting and resuspending in

PBS. The cells were lysed after the removal of supernatant in the last step

by resuspending in distilled water. The suspension was freeze-thawed thrice

by alternating between liquid nitrogen and a 37�C bath. The cell lysate was

then homogenized by sonicating 3 times for 10 s using a Branson Sonifier

450 (VWR, Radnor, PA). The cell lysate was then filtered using a 0.2 mm

Nalgene syringe filter (ThermoScientific, Waltham, MA). To obtain the

dry mass of the cell suspension, a volume of the cell lysate was carefully

weighed before and after drying overnight in the oven at 70�C. For com-

plete removal of water, and also to reduce the degradation of biological

matter, 70�C was found suitable (37,38). To make trehalose-cell lysate mix-

tures at known weight ratios, trehalose was weighed and added to the cell

lysate solution at 1:1, 2:1, 4:1, and 10:1 mass ratios. Small volumes of

cell lysate-trehalose mixtures were smeared on a clean, dry CaF2 disk.

Raman spectra of the drying layer were collected at intervals and the weight

was recorded before and after each acquisition for calculation of water loss.

Finally, the samples were placed in a 70�C oven overnight to allow for evap-

oration of any residual water (higher temperatures were avoided to reduce

the degradation of biological matter). Weight loss was then recorded and the

final spectrum was collected from each sample in the same manner.
Cell sample preparation

Forty-eight hours before the experiment, the cells were detached from the

flask by incubating with 5 ml of 10� diluted 0.5% Trypsin-EDTA (Gibco,

Life Technologies, Grand Island, NY) in PBS for 5 min. Trypsin was then

neutralized by adding an equal volume of DMEM and the cells were pel-

leted by centrifuging at 750 � g for 5 min. After aspirating the supernatant,

cells were resuspended in DMEM and were seeded on clean CaF2 disks

(Thor Labs, Newton, NJ) at a density of 2 � 105 cell/disk. CaF2 disks

were chosen to reduce the background fluorescence that is a problem

with regular glass disks. The cells were allowed to attach for 2 h before

replacing the medium with fresh DMEM. Similar steps were followed for

TRET cells, except that in the last step, the media was replaced with

DMEM containing 100 mM trehalose (Ferro-Pfanstiehl, Waukegan, IL)

after 24 h.
Spin-drying experiments

The desiccation medium containing 1.8 M trehalose (Ferro-Pfanstiehl),

10 mM KCl (Sigma-Aldrich), 5 mM glucose (Sigma-Aldrich), 20 mM

HEPES (Sigma-Aldrich), and 120 mM choline chloride (Sigma-Aldrich)

was prepared. Spin-drying was performed using a commercially available

spinning machine (model Cee 200, Brewer Science, Rolla, MO) as
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described previously (22). Before spin-drying, the cell monolayer grown on

the disks was washed with PBS. PBS was then removed and an excess

amount of desiccation medium was added to cover the cells. The nitrogen

flow was adjusted using a gas flow meter to provide an inert environment

above the disk. At this point, the disks were spun at 1000 rpm for 60 s. After

spinning, the samples were immediately transferred to plastic bags,

vacuum-packed, and sealed. The disks were then transferred to the confocal

Raman microscope and the spectra were collected within 4 h of the

experiments.
Raman spectroscopy setup

AWITEC Alpha-300 system (WITEC, Ulm, Germany) with confocal capa-

bilities with a 532 nm Ar-ion laser with 15 mWof power was used for exci-

tation of samples. Single spectra from trehalose-cell lysate mixtures

collected at 50–100 times with 0.1 s integration times. For cell samples,

spectrum collection and integration time was set to 1 and 0.5 s, respectively.

A cross section of the desiccated cell monolayers of C3A and TRET cells

and the surrounding were scanned confocally starting a few microns over

the cell (in the air) down to a few microns below the monolayer (within

the CaF2 disk). The theoretical confocal resolution of the microscope was

set to ~200 nm in the XZ plane, as a result of an optic fiber cable with inner

diameter of 50 mm, which collected and directed the scattered Raman

photons to a DV401 charged-coupled device detector (WITEC) cooled

down to �60�C with 600/mm grating and 3 cm�1 spectral resolution.

The laser light was directed to the samples placed on a controlled motorized

stage using a 100� air objective (NA ¼ 0.90; Nikon Instruments, Melville,

NY) and a maximum theoretical resolution of ~1 mm in the XY plane.
Spectral analysis and calibration

Savitzky-Golay smoothing and background subtraction were performed on

the collected spectra using WITEC Project software (version 2.10). The

analysis was performed based on magnitude and location of the peaks of

interest, as the following: All the peak assignments in this article are based

on (39,40) listed in Table 1, unless otherwise mentioned. In the C3A and

TRET cell samples, for comparing the intracellular and extracellular treha-

lose and water contents, the collected spectra were spatially averaged over

representative volumes (see the Supporting Material Fig. S1).

To compare the average water and trehalose contents between samples,

the spectral intensities collected from the samples were normalized to the

protein peak at 1667 cm�1. The contribution of water to the protein peak

at 1667 cm�1 was accounted for by calibrating the intensity ratio of protein

to total organic matter (I1667/I2940) against water content, which was

measured gravimetrically. To calibrate for trehalose, spectra from spin-

dried trehalose (dissolved in distilled water), homogenized cell lysate,

and mixtures of known weight ratios of cell lysate to trehalose (LYS/

TRE ratios of 1:0, 1:1, 1:2, 1:4, and 1:10) were collected separately, and
TABLE 1 Selection of wavenumbers representing various vibration

Component Frequency (cm�1)

Trehalose 407, 528, 838, 912, 1120, 1149, and 1358 (only very stron

peaks are reported)

Proteins 1637 – a-helix and b-structure of Amide I

1650 – C¼C Amide I

1667 – C¼C stretching band

1685 – Amide I (disordered structure; nonhydrogen bonde

Organic material 2900–2915 – C-H stretch of lipids, proteins, and carbohydra

including disaccharides

Water ~3250 – O-H symmetric stretch (weak shoulder) low

energy – more structured

~3430 – O-H antisymmetric stretch (strong shoulder) weak

bound high energy – loosely structured
the ratio of I851/I1667 was calculated for each LYS/TRE ratio. In the analysis

of the water spectra, the peaks at 3300 cm�1 and 3430 cm�1 were consid-

ered to represent water in bound and free states, respectively (41). The con-

tributions of proteins and trehalose to the selected peaks for water were

dissociated by calibrating the intensity ratios of water peaks to total organic

matter (I3300/I2940 and I3430/I2940) against water content. For constructing

confocal Raman images of the cells embedded in the trehalose layer, the in-

tensity of the trehalose peak was corrected for the baseline induced by intra-

cellular matter, and an intensity heat map was produced using the WITEC

Project software.
RESULTS

Trehalose and water in dried cell lysate

The spectrum of dried homogenized cell lysate was obtained
from C3A cells (Fig. 1 a). The C-H vibration from amino
acids such as cytosine, guanine, tyrosine, and phenylalanine
(1170–1185 cm�1), C-H2 deformation vibrations (1437–
1453 cm�1), and the Amide I band (1630–1680 cm�1)
were identified in the dried cell spectrum. Water bending vi-
bration gives rise to a peak at ~1645 cm�1, which contrib-
utes to the Amide I band region. Furthermore, other less
strong but significant peaks could be observed at
754 cm�1, 790 cm�1, and 1009 cm�1, attributed to cyto-
chrome c (42), tryptophan (39), DNA and RNA (39), and
phenylalanine (39), respectively. The C-H stretch peak in
2800–3000 cm�1 is the most intense peak observed in the
cell lysate spectrum representing all the organic matter in
the sample.

Upon addition of trehalose to the cell lysate mixture,
distinct trehalose peaks at 485, 536, 851, 920, 1130, 1360,
and 1465 cm�1 were observed in the fingerprint region of
the spectra. These peaks increased in intensity with the
decrease in the LYS/TRE ratio at 1:1, 1:2, 1:4, and 1:10.
A C-H vibration peak originating from trehalose also
became more pronounced at 2910 cm�1. Trehalose peaks
in the fingerprint region (400–1800 cm�1) partially overlap
with the various peaks originating from the cells. The range
from 840 to 860 cm�1 is one of the most notable regions
where saccharides (mono-, di-, and poly-) exhibit distinct
and sharp Raman peaks due to resonance vibration from
C-O-C skeletal structure and C-C bond stretching. As cells
s of interest from trehalose, water, and proteins

Ref. Selected for this study

g (40) 851 cm�1 (C–O–C skeletal mode representing mono-, di-, and

polysaccharides) for quantification of trehalose

(39) 1667 cm�1 for quantification of the protein and lipid content

d)

tes (39) 2940 cm�1 for quantification of total organic matter including

trehalose

(41) 3300 cm�1 for bound water

ly 3430 cm�1 for free water

Biophysical Journal 107(10) 2253–2262



FIGURE 1 Raman scattering spectra collected from (a) dry cell lysate,

(b–e) mixtures of cell lysate/trehalose at ratios of 1:1, 1:2, 1:4, and

1:10 g trehalose/g dry weight. Inset: blow-up of the region 720–

1800 cm�1. Annotations – 1), 851 cm�1 (saccharides, trehalose), 2),

920 cm�1 (C-C stretch of saccharides), 3), 1583 cm�1 (attributed to C¼C

stretch in L-tryptophan, various nucleic acids, guanine, phenylalanine), 4),

1667 cm�1 (protein band, Amide I), 5), ~2940 cm�1 (C-H stretch of organic

matter), 6), 3250–3350 cm�1 (O–H symmetric stretch low energy band), 7),

3350–3500 cm�1 (O–H antisymmetric stretch high energy band).
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normally contain simple sugars, a peak at ~851 cm�1 can be
identified in cell lysate spectrum as well.

In the 2800–3000 cm�1 region, the strong peaks arising
from C-H, C-H2, and C-H3, identifying all the organic ma-
terial including trehalose, are distinct in all ratios of LYS/
TRE. With increasing concentration of trehalose, the C-H
bond shoulder at 2910 cm�1 becomes more pronounced
compared to the peak at 2940 cm�1. In 3100–3600 cm�1
A B

C D
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(O-H stretch) region, the presence of O-H groups in proteins
and possibly the water in their hydration layers give rise to a
weak peak at ~3300 cm�1 with an asymmetric, wide base
spanning the 3100–3600 cm�1 range. In aqueous solutions,
the O-H stretch peak is significantly large and wide with two
distinct shoulders at ~3250 cm�1 and ~3430 cm�1 (43). A
noticeable difference is observed in the shape of the O-H
stretch peak when trehalose is added to the cell lysate
mix. With increasing ratio of LYS/TRE, the broad peak in
the O-H stretch region becomes wider, gets uniformly
distributed and increases in intensity with the center of the
broad peak moving toward ~3400 cm�1.
Spectral overlap of water, trehalose, and proteins

The intensity of water bending vibration at ~1645 cm�1 is
~20 times less than the O-H stretch vibration in 3000–
3600 cm�1 region; however, it overlaps with the Amide I
peak at 1667 cm�1. Analysis of the results in control sam-
ples indicated that, regardless of the LYS/TRE ratio, the
normalized intensity of Amide I peak (I1667/I2940) converges
toward a constant value upon removal of water from the
solution, suggesting that the contribution of water bending
vibration peak to the Amide I band might be negligible at
low water contents (%0.1 g water/g dry weight). The water
content of the nitrogen and oven-dried samples (the data
points along the dashed line) increases with increasing con-
centration of trehalose (Fig. 2 A), confirming the strong
water affinity of trehalose (44). Note that oven-drying (the
data points at 0 gwater/gdry-weight) does not significantly
decrease the I1667/I2940 ratio when compared to convective
FIGURE 2 (A) Ratio of the Raman intensity of

the peak at 1667 cm�1, representing proteins, to

the C-H stretch peak intensity at 2940 cm�1, repre-

senting all the organic matter, at various LYS/TRE

ratios against water content. (B) Calibration curve

for (trehalose/protein) ratio based on intensity ratio

of 851 cm�1 to 1667 cm�1 in oven-dried (0 g

water/g dry weight) samples. (C) Ratio of O-H

stretch intensities at 3430 cm�1 to 3300 cm�1 at

various LYS/TRE ratios against water content

(Inset: The intensity ratio 3430 cm�1 to

3300 cm�1 for nitrogen-dried samples plotted

against TRE/LYS ratios. Dashed line denotes the

background intensity not from water). (D) Ratio

of the O-H stretch intensity at 3430 cm�1 to that

of C-H stretch at 2940 cm�1 at various LYS/TRE

ratios against water content.
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FIGURE 3 (A1 and A2) Brightfield images of C3A and TRET cells,

embedded in a trehalose layer after spin-coating and desiccation under

nitrogen flow. The white dotted line represents the XZ plane of scan. (B)

Area-averaged intracellular spectrum collected from C3A and TRET cells.

(C) Area-averaged spectra collected from the extracellular thin layer of

trehalose.
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drying with nitrogen (p ¼ 0.85). This observation shows
that, in extensively dried samples, the peak at 1667 cm�1

can be used to quantify the intracellular organic matter
content.

The intensity ratio of a pronounced trehalose peak at
851 cm�1 to a protein peak at 1667 cm�1 (I851/I1667) is
used to calibrate the trehalose content in the samples. This
ratio is calculated and plotted versus the LYS/TRE ratio in
Fig. 2 B. The intensity ratio I851/I1667 linearly increases
with the LYS/TRE ratio (R2 ¼ 0.997). The intercept of the
linear fit to the data in Fig. 2 B corresponds to the back-
ground signal from intracellular mass. Various intracellular
components including glycogens give rise to peak inten-
sities at similar wavenumbers to trehalose (39), causing
the background in Fig. 2 B.

Peak deconvolution of the O-H stretch region for
wet samples resulted in the same two major peaks at
~3250 cm�1 and ~3430 cm�1 as suggested in other studies
(41,43), representing low-energy bound water and high
energy free water, respectively. Peak deconvolution in the
spectra of dried samples also suggested presence of multiple
peaks due to proteins with a major peak at ~3300 cm�1 (re-
sults not shown). Therefore, to calibrate the O-H stretch re-
gion for contributions of bound and free water, trehalose and
proteins, O-H stretch intensity at 3300 cm�1 and 3430 cm�1

were selected for the analysis. In Fig. 2 C, the ratio I3430/
I3300 is plotted against water content for different LYS/
TRE ratios. At high water contents (>1 g water/g dry
weight), the ratio I3430/I3300 remains between ~1.1–1.2
regardless of LYS/TRE ratio. When water is removed
from the samples, the ratio I3430/I3300 drops significantly.
In the sample without trehalose, the I3430/I3300 ratio dropped
to 0.53 for 0 g water/gr dry weight (oven-dried cell lysate
sample). With the addition of trehalose, the I3430/I3300 ratio
at 0 g water/ g dry weight increases, which is due to the
contribution of trehalose to the O-H stretch region at
~3430 cm�1. This shows the importance of proper calibra-
tion of the peak intensities in the O-H stretch region for
water content measurement. To dissociate between free
and bound water, we assumed that all the water retained
in the sample after spin-drying was bound water, which
could be removed by oven-drying. In the inset in Fig. 2 C,
I3430/I3300 intensity ratio is plotted against total dry
weight for the nitrogen-dried samples. With no trehalose
present (i.e., dried protein only), I3430/I3300 had a back-
ground value of ~0.7. With increasing amount of
trehalose, I3430/I3300 increased and plateaued at 1. The line
denoted by these data points may be used to dissociate be-
tween free and bound water for a given trehalose/protein
weight ratio.

An interesting observation is made when the ratio I3300/
I2940 is plotted against the water content. In Fig. 2 D, regard-
less of the LYS/TRE ratio, the I3300/I2940 ratio changes only
with water content. This can be due to equal contribution of
trehalose to both of the vibrational bands at 2940 cm�1 and
3300 cm�1. Therefore, the amount of trehalose in samples
does not affect the I3300/I2940 ratio. At water contents below
0.1 g/g dry weight, the difference between the I3300/I2940
ratio for the oven-dried and nitrogen dried groups, though
small, is statistically significant (p ¼ 0.014). This allows
for dissociating the contribution of water from proteins
and trehalose and calibration of water content based on
the I3300/I2940 ratio.
Trehalose and water content: C3A vs. TRET

We next probed into the microenvironment of the desiccated
cells to measure the distribution of water and trehalose.
Fig. 3, A1 and A2, show the brightfield images of C3A
and TRET cells, respectively, in the XY plane (observed
from above), embedded underneath dried trehalose layer.
The presence of trehalose coating distorts the light at
boundaries of the cell, which creates contrast for imaging.
In Fig. 3 B, spatially averaged spectra from intracellular re-
gions of the C3A and TRET cells are presented. The area-
averaged spectrum from each cell was normalized to its
maximum spectral intensity. Area averaging was performed
over the intra- and extracellular milieus (Fig. S1), with the
XZ planes (top to bottom) represented by the black dotted
lines in Figs. 3, A1 and A2.
Biophysical Journal 107(10) 2253–2262



TABLE 2 Summary of results on the overall distribution and

state of water and trehalose in C3A and TRET cells

C3A TRET

Intracellular Extracellular Intracellular Extracellular

Water content

(g/g dry weight)

0.00 0.11 0.05 0.11

State of water – Bound Bound Bound

Trehalose content

(g/g dry weight)

0.00 0.97a 0.41b 0.97a

Water/trehalose

molar ratio

– 2:1 2:1 2:1

a3% w/w other salts in the drying medium.
bTRET intracellular trehalose content: 0.7 g/g protein z 0.41 g/g dry

weight.
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The averaged intracellular spectra from the C3A and
TRET cells showed significant differences in the 400–
1800 cm�1 region. Generally, the intensity of the TRET
spectrum was higher than that of the C3A after background
subtraction (Fig. 3 B). This increased intensity could be
attributed to the presence of intracellular trehalose in the
TRET cell. Quantitative analysis of trehalose content in
cells was performed based on the normalized intensities of
I851/I1667. The results suggest an average value of 0 and
0.7 g trehalose/g protein for C3A and TRET cells, respec-
tively, based on calibration data in Fig. 2 B.

In the 3100–3600 cm�1 region, the hydroxyl vibration in-
tensity is very weak in both cells, with a wide peak at
3300 cm�1. Quantitative analysis of water content was
done based on the I3430/I3300 and I3300/I2940 ratios in
Fig. 3 B according to calibration presented in Fig. 2, C
and D, respectively. For the C3A and TRET cells, I3300/
I2940 ratios were similar and corresponded to ~0 and
~0.05 g water/g dry mass. The I3430/I3300 ratios were 0.7
and 0.85, respectively, suggesting no free water in either
cell (Fig. 2 C, inset). The measurements were performed
on the collective average from many cells in each group
(Fig. S2). The estimations for water and trehalose contents
in the TRET cells suggest that water/trehalose mass ratio
is ~0.12. This value is ~2 water molecules per trehalose
molecule. The spectra collected from the extracellular re-
gions of both cell types, plotted in Fig. 3 C, display the
entire characteristic peaks of trehalose including those at
528, 851, 920 cm�1. The peaks in the 1500–1700 cm�1 re-
gion, representing the proteins, are absent in the extracel-
lular spectra as the extracellular region contains only
trehalose and small concentrations of other solutes as
mentioned in the Methods section. Trehalose peaks
observed in the fingerprint region resemble the Raman spec-
tral characteristics of amorphous trehalose (38). The shape
and intensity of the hydroxyl stretch vibration (3100–
3600 cm�1) in the extracellular region are identical in shape
in both samples, exhibiting a symmetric distribution, and are
significantly different from those of the intracellular region.
The I3300/I2940 ratios are 0.18 in the extracellular milieu of
the C3A and TRET cells, corresponding to ~0.11 g water/g
dry weight, which is equivalent of ~2 water molecules per
trehalose molecule. The I3430/I3300 ratio is equal to 1, which
suggests the residual water is bound (Fig. 2 C, inset). It must
be mentioned that the other small solutes in the desiccation
medium sum up to <4% w/w of total dried thin layer, and
were considered in this calculation. A summary of our find-
ings are presented in Table 2.
Intracellular distribution of water and trehalose:
C3A vs. TRET

To investigate the potential drying-induced heterogeneities
within and in the vicinity of the desiccated cells, we recon-
structed images of cells based on protein, trehalose, and
Biophysical Journal 107(10) 2253–2262
O-H stretch distributions as presented in Fig. 4, with C3A
and TRET cells presented in column A B, respectively. In
column C, the distributions of protein, trehalose, and O-H
stretch are plotted across the width of the cell. In Fig. 4,
A1 and B1, the protein contrast images identify the cell pres-
ence and boundaries. The overall shape of the C3A cell ap-
pears flattened with rough edges as opposed to the TRET
cell which looks round with smooth edges. The distribution
of protein in the C3A cell shows large variations across the
cell width with peaks showing local concentration of pro-
teins. On the other hand, the distribution of protein in the
TRET cell smoothly transitions from one end to the other
with minimal variation (Fig. 4 C1). This phenomenon was
observed in many cells in each group (Fig. S3) and suggests
that the intracellular trehalose contributed to a more uniform
distribution of intracellular proteins in cells when water was
removed.

In the trehalose-contrast image in Fig. 4 A2, a high extra-
cellular concentration of trehalose results in a sharp contrast
between the intra- and extracellular milieu for the C3A cell.
This contrast is less sharp in Fig. 4 B2 for the TRET cell
where we expect intracellular presence of trehalose. This
difference can be seen clearly in Fig. 4 C2, where trehalose
intensity falls sharply in both cells at cell boundaries and
reaches ~0 in the C3A cell, but it remains at about one-third
of the extracellular intensity in the TRET cell. Trehalose
distribution within the cell was quantified by calculating
I851/I1667 ratio across the cell width using the calibration
data in Fig. 2 B. It must be noted that I851/I1667 cannot be
calculated outside the cell. Therefore, only the region con-
taining the cell is plotted in Fig. 4D. For the C3A cell, treha-
lose content decreased sharply to ~0 g trehalose/g dry mass
and remains approximately uniform across the cell width
(Fig. 4 D). In the TRET cell, trehalose content gradually de-
creases from values as high as ~1–1.5 g trehalose/g protein
at cell boundaries to ~0.2 g trehalose/g protein in the middle
of the cell. This also suggests that trehalose may not be
evenly distributed across the cell width. Incidentally, the re-
gion with highest protein content contains the lowest treha-
lose content.



A1 B1

A2 B2

A3 B3

C1

C2

C3

D

E

FIGURE 4 Reconstructed confocal Raman images of C3A (A1–A3) and TRET (B1–B3) cells, based on protein (row 1), trehalose (row 2), and O-H stretch

(row 3) contrasts. Images show cross sections of cells in the XZ plane, with air at the top and CaF2 substrate at the bottom. The thin gray lines constitute the

approximate boundaries of the cells (C1–C3) Respective distributions of proteins, trehalose, and O-H stretch across the cell width along the thick dashed

white line. (D and E) Estimated amount of trehalose/protein and water/dry weight ratios from I851/I1667 and I3300/I2940 ratios, respectively.
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To identify water presence, the distribution of O-H stretch
across the cell thickness in C3A and TRET cells were
compared as presented in Fig. 4, C1 and C2, respectively.
The images were reconstructed based on the area under the
peak of O-H stretch in the 3100–3600 cm�1 region. Water,
trehalose, and proteins all contribute to the O-H stretch re-
gion of the Raman spectrum. To estimate water content,
I3300/I2940 intensity ratio were calculated across the cell
width.With no trehalose present, the O-H stretch distribution
in the C3A cell varied at values around 0 gwater/g dryweight
(Fig. 4E). For the TRET cell, O-H stretch distribution closely
followed that of trehalose, decreasing from 0.12 to 0.05
on average (Fig. 4 E). Hence, a small amount of water re-
tained in the TRET cells, possibly due to the presence of a
significant amount of intracellular trehalose.

Based on the results presented in Figs. 3 and 4, water and
trehalose distribution in the extracellular bulk of the cell ap-
peared uniform and sharply decreased at the cell boundaries.
In both intra- and extracellular milieu, we observed no free
water retention. Trehalose, at the levels loaded into TRET
cells in this study (~0.7 g/g protein) resulted in a small in-
crease in water retention. The residual water in both intra-
and extracellular milieu was bound and correlated with
trehalose content at ~2:1 molar ratio.
DISCUSSION

For successful storage of desiccated cells at room tempera-
ture, formation of intracellular glass is one of the essential
requirements, which can typically be achieved at a low
intracellular water content (<0.1 g/g dry weight) in a
glass-forming liquid (45). Thus, in lyopreservation studies,
careful measurement of the intracellular water content after
desiccation is critical. Generally, the bulk water content of
the sample is measured and it is assumed to be uniformly
distributed throughout the desiccated sample. However,
the difference in the composition of intra- and extracellular
milieus may lead to different drying kinetics, resulting in
variations in respective final water contents after desicca-
tion. This difference may be augmented in the presence of
lyoprotective agents such as trehalose. Therefore, methods
for careful measurement of both intracellular water and
trehalose are critical for the development of efficient desic-
cation protocols. We employed confocal Raman microspec-
troscopy to resolve the differences in water and trehalose
contents between intra- and extracellular milieus. We corre-
lated the measured water content with Raman peak intensity
ratios for protein, trehalose, and water to produce calibration
curves. We then examined spin-dried cells and their imme-
diate microenvironment by Raman microspectroscopy, and
used the calibration curves to estimate the water and treha-
lose content in the desiccated specimen. We employed the
TRET cells with the enhanced ability to be loaded by treha-
lose. The C3A cells that lacked such ability were used as the
control group. Because both cell types were desiccated
under the same medium with similar spin-drying conditions,
the extracellular milieu in both groups were identical in
composition. The intracellular milieu of C3A and TRET
cells however were found to be different in terms of water
and trehalose contents after spin-drying.
Biophysical Journal 107(10) 2253–2262
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An interesting observation was that the C3A cells did not
retain any intracellular water after spin-drying in a trehalose
containing extracellular solution. In contrast, the presence
of intracellular trehalose in spin-dried TRET cells resulted
in an increase in intracellular water content at a water/treha-
lose ratio of 2:1. Our measurements showed that this resid-
ual water was bound. The same 2:1 molar ratio for trehalose
and water was found in the extracellular milieu. However,
we did not observe the distinct sharp Raman peaks associ-
ated with the formation of crystalline trehalose dihydrate
in the intra- or extracellular milieus.

We also found that the intracellular distributions of water
and trehalose in the TRET cells were heterogeneous,
slightly increasing from the middle of the cell toward the
cell membrane (Fig. 4, D and E). Normalization to cell pro-
tein content and partial overlap with the extracellular treha-
lose near the cell membrane may have contributed to the
observed increase in the intracellular distributions of both
water and trehalose. This observation is novel, to our knowl-
edge, and requires further investigation because a heteroge-
neous intracellular distribution of water and trehalose can
offset the protection against desiccation damage and
decrease the longevity of storage. Examination of the cells
at higher spatial and spectral resolutions may allow obtain-
ing more detailed information on the subcellular distribution
of water and trehalose. In contrast, we found that, in the
extracellular milieu, the distributions of water and trehalose
were homogeneous throughout the spin-dried specimen. We
found similar results for the spin-dried extracellular thin
film of trehalose without the embedded cells in our previous
study using Fourier transform infrared spectroscopy (30).

Studies in plant anhydrobiosis suggest that proteins may
form glass at room temperature at 0.1–0.12 g water/g dry
weight (45). Such glass formation may be accomplished
without the presence of trehalose and even in desiccation-
sensitive species. The measured final intracellular water
content in both C3A and TRET cells were <0.1 g/g dry
weight (Table 2). Therefore, there is a good chance that
the intracellular milieu of C3A cells formed glass at room
temperature with such low water contents. In the TRET
cells, the intracellular proteins supplemented by intracel-
lular trehalose may form a glass with higher than room-tem-
perature Tg based on the Gordon-Taylor equation (46). In
the extracellular milieu, we found that the spectrum of
extracellular trehalose film closely matched that of the
amorphous trehalose in the fingerprint region (38,47). The
wide Raman peaks indicate a broad distribution of chemical
bond energies as a result of random distribution of mole-
cules. Interestingly, this was also identical to the Raman sig-
natures of trehalose in aqueous solution where no trehalose
structure exists. Because the extracellular milieu contained
only trehalose and residual amount of salts, at 0.11 g
water/g dry weight, the Tg of the extracellular milieu was
~22�C (48). Therefore, we suggest that the extracellular
trehalose was in a glassy state after spin-drying. Based on
Biophysical Journal 107(10) 2253–2262
these results, it is likely that both intra- and extracellular
milieu of spin-dried cells form glass at room temperature.
The determination of the Tg of the intracellular milieu
after spin-drying will allow optimization of the storage
temperature.

In desiccation-sensitive species such as mammalian cells,
desiccation-induced damage including protein denaturation
may occur before the glassy state is reached. The benefit of
trehalose in biopreservation might be not only because it is a
potent glass forming agent, but also a very efficient bio-
stabilizer for preservation of protein structure (49). In the
spectra of the intracellular milieu of C3A cells, we observed
a shift in the position of Amide II peak and considerable
broadening of Amide I peak (Fig. S4). Many spectroscopic
studies have attributed these spectral changes to the alter-
ation of protein secondary structure (50–53). In comparison,
in the TRET cells, the positioning of Amid II peak was iden-
tical to the trehalose-cell lysate mixtures and hydrated pro-
teins, suggesting minimal alteration to the protein secondary
structure in the dry state.
CONCLUSION

Residual water content, along with glass-forming agents
such as trehalose, are the key parameters contributing to
the formation and stability of the intracellular glass at room
temperature. Hence, accurate measurement of intracellular
water and trehalose allows predicting the efficacy of lyopre-
servation. In this study, we developed a calibration technique
for the measurement of intracellular water and trehalose in
desiccated cells using Raman spectroscopy. We were able
to show that both intra- and extracellular milieus of spin-
dried trehalose-loaded cells were dry with only a small
amount of residual water content at a water/trehalose ratio
of 2:1 in both milieus. Also using Raman spectroscopy we
were able to find evidence of glass formation in the extracel-
lular milieu. For the intracellular milieu, based on the
measured water content, glass formation was plausible. We
also observed inhomogeneity in the intracellular distribu-
tions of water and trehalose in spin-dried cells, which war-
rants further investigation. Furthermore, using Raman
spectroscopy, we were able to show that the intracellular
presence of trehalose reduced desiccation-induced confor-
mational changes in proteins. We propose that the method
introduced in this study can be easily adapted in lyopreserva-
tion studies to determine the role of water and trehalose con-
tent and distribution on the stability of desiccated sample.
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