Oscillation of a family of q-difference equations

Jia Baoguo ${ }^{\text {a,b }}$, Lynn Erbe ${ }^{\text {a }}$, Allan Peterson ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA
${ }^{\mathrm{b}}$ School of Mathematics and Computer Science, Zhongshan University, 510275, Guangzhou, China

ARTICLE INFO

Article history:

Received 3 July 2008
Accepted 11 July 2008

Keywords:

Classification
Oscillation
Nonoscillation
q-difference equation

A B S T R A C T

We obtain the complete classification of oscillation and nonoscillation for the q-difference equation

$$
x^{\Delta \Delta}(t)+\frac{b(-1)^{n}}{t^{c}} x(q t)=0, \quad b \neq 0,
$$

where $t=q^{n} \in \mathbb{T}=q^{\mathbb{N}}, q>1, c, b \in \mathbb{R}$. In particular we prove that this q-difference equation is nonoscillatory, if $c>2$ and is oscillatory, if $c<2$. In the critical case $c=2$ we show that it is oscillatory, if $|b|>\frac{1}{q(q-1)}$, and is nonoscillatory, if $|b| \leq \frac{1}{q(q-1)}$.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathbb{T} be a time scale (i.e., a closed nonempty subset of \mathbb{R}) with sup $\mathbb{T}=\infty$. Consider the second order dynamic equation on time scale

$$
\begin{equation*}
x^{\Delta \Delta}(t)+p(t) x^{\sigma}(t)=0 \tag{1.1}
\end{equation*}
$$

where σ is the jump operator and $f^{\sigma}=f \circ \sigma$ (composition of f with σ), p is right-dense continuous functions on \mathbb{T} and

$$
\int_{t_{0}}^{\infty} p(t) \Delta t:=\lim _{t \rightarrow \infty} \int_{t_{0}}^{t} p(s) \Delta s \quad \text { exists (finite). }
$$

When $\mathbb{T}=\mathbb{R}$ the dynamic equation (1.1) is the differential equation

$$
\begin{equation*}
x^{\prime \prime}+p(t) x=0 \tag{1.2}
\end{equation*}
$$

and when $\mathbb{T}=\mathbb{Z}$ the dynamic equation (1.1) is the difference equation

$$
\begin{equation*}
\Delta^{2} x(t)+p(t) x^{\sigma}(t)=0 \tag{1.3}
\end{equation*}
$$

When $\mathbb{T}=q^{\mathbb{N}_{0}}, q>1$, the dynamic equations (1.1) are called q-difference equations, which have important applications in quantum theory $[8,6]$. Our main results are for a family of q-difference equations. For $\mathbb{T}=\mathbb{R}$, in [10,4], Willett and Wong proved, respectively, the following theorems.

[^0]Theorem A (Willett-Wong, [10,4]). Suppose that

$$
\int_{t}^{\infty} \bar{P}^{2}(s) Q_{P}(s, t) \mathrm{d} s \leq \frac{1}{4} \bar{P}(t)
$$

for large t, where $\bar{P}(t)=\int_{t}^{\infty} P^{2}(s) Q_{P}(s, t) \mathrm{d} s, Q_{P}(s, t)=\exp \left(2 \int_{t}^{s} P(\tau) \mathrm{d} \tau\right)$. Then the differential equation (1.2) is nonoscillatory.

Theorem B (Willett-Wong, [10,4]). If $\bar{P}(t) \not \equiv 0$ satisfies

$$
\int_{t}^{\infty} \bar{P}^{2}(s) Q_{P}(s, t) \mathrm{d} s \geq \frac{1+\epsilon}{4} \bar{P}(t)
$$

for some $\epsilon>0$ and large t. Then the differential equation (1.2) is oscillatory.
As applications of Theorems A and B, Willett [10] considered the very sensitive differential equation

$$
\begin{equation*}
x^{\prime \prime}+\frac{\mu \sin v t}{t^{\eta}} x=0 \tag{1.4}
\end{equation*}
$$

for $\left|\frac{\mu}{v}\right| \neq \frac{1}{\sqrt{2}}, \mu \neq 0, v \neq 0, \eta$ constants and proved that (1.4) is nonoscillatory, if $\eta>1$ and is oscillatory, if $\eta<1$. When $\eta=1,(1.4)$ is oscillatory, if $\left|\frac{\mu}{\nu}\right|>\frac{1}{\sqrt{2}}$, and is nonoscillatory, if $\left|\frac{\mu}{\nu}\right|<\frac{1}{\sqrt{2}}$.

Wong proved the following very nice result.
Theorem C (Wong, [4]). If there exists a function $\bar{B}(t)$ such that

$$
\int_{t}^{\infty}[\bar{P}(s)+\bar{B}(s)]^{2} Q_{P}(s, t) \mathrm{d} s \leq \bar{B}(t),
$$

for large t, then the differential equation (1.2) is nonoscillatory.
As applications of Theorem C, Wong proved that Eq. (1.4) is nonoscillatory, for $\left|\frac{\mu}{v}\right|=\frac{1}{\sqrt{2}}$.
In [1,2], we extended Theorems A-C to the time scale case using the so-called 'second-level Riccati equation' (see [3] for the discrete case) or what Wong refers to as a new Riccati integral equation in the continuous case. Using this approach, one is able to handle various critical cases. These ideas are novel in treating the case when $P(t):=\int_{t}^{\infty} p(s) \mathrm{d} s$ is not of one sign for large t.

A special case of results in [1,2], is that the difference equation

$$
\begin{equation*}
\Delta^{2} x(n)+\frac{b(-1)^{n}}{n^{c}} x(n+1)=0, \quad b \neq 0 \tag{1.5}
\end{equation*}
$$

where $b, c \in \mathbb{R}$ is nonoscillatory, if $c>1$ and is oscillatory, if $c<1$. Also if $c=1$, then Eq. (1.5) is oscillatory, if $|b|>1$ and is nonoscillatory, if $|b| \leq 1$.

Lemma 1.1 ([2, Theorem 3.2]). Assume that $\int_{t_{0}}^{\infty} p(t) \Delta t$ is convergent, $P(t)=\int_{t}^{\infty} p(s) \Delta s, 1 \pm \mu(t) P(t)>0$, for large t. If $\int_{T}^{\infty} P^{2}(t) \times \frac{e_{P}(t, T)}{e_{-P}(t, T)} \Delta t$ is convergent and

$$
\begin{equation*}
\bar{P}(t):=\int_{t}^{\infty} e_{\frac{2 P}{1-\mu P}}(s, t) \frac{P^{2}(s)}{1-\mu(s) P(s)} \Delta s \tag{1.6}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\frac{1}{4} \bar{P}(t) \geq \int_{t}^{\infty} e_{\frac{2 P}{1-\mu P}}(s, t) \frac{\bar{P}(s) \bar{P}(\sigma(s))}{1-\mu(s) P(s)} \Delta s \tag{1.7}
\end{equation*}
$$

for large t, then (1.1) is nonoscillatory.

2. Main theorem

Our main concern in this paper is the q-difference equation

$$
\begin{equation*}
x^{\Delta \Delta}(t)+\frac{b(-1)^{n}}{t^{c}} x(q t)=0, \quad b \neq 0 \tag{2.1}
\end{equation*}
$$

where $t=q^{n} \in \mathbb{T}=q^{\mathbb{N}}, q>1, b, c \in \mathbb{R}$ and our main result is the following complete classification of (2.1). Since the graininess function for $\mathbb{T}=q^{\mathbb{N}_{0}}$ is unbounded, we cannot use Theorem 4.1 in [2], when we consider the oscillation of the q-difference equation (2.1).

Theorem 2.1. The q-difference equation (2.1) is nonoscillatory, if $c>2$, and is oscillatory, if $c<2$. If $c=2$, then Eq. (2.1) is oscillatory, if $|b|>\frac{1}{q(q-1)}$, and is nonoscillatory, if $|b| \leq \frac{1}{q(q-1)}$.

Proof. First consider the case $c>2$. Note that for $t=q^{2 k}$

$$
\begin{aligned}
P(t) & =\int_{t}^{\infty} p(\tau) \Delta \tau=\sum_{j=2 k}^{\infty} p\left(q^{j}\right) \mu\left(q^{j}\right) \\
& =\frac{b(q-1) q^{2 k}}{q^{2 k c}}\left[1-\frac{q}{q^{c}}+\frac{q^{2}}{q^{2 c}}-\cdots\right] \\
& =b \frac{q^{c-1}(q-1)}{q^{2 k(c-1)}\left(q^{c-1}+1\right)}
\end{aligned}
$$

Similarly, we have

$$
P\left(q^{2 k+1}\right)=-b \frac{q^{c-1}(q-1)}{q^{(2 k+1)(c-1)}\left(q^{c-1}+1\right)}
$$

and hence in general

$$
\begin{equation*}
P(t)=P\left(t^{n}\right)=b \frac{(-1)^{n} q^{c-1}(q-1)}{q^{n(c-1)}\left(q^{c-1}+1\right)}=b \frac{(-1)^{n} q^{c-1}(q-1)}{t^{c-1}\left(q^{c-1}+1\right)} \tag{2.2}
\end{equation*}
$$

Since $c>2$, we get that

$$
\lim _{t \rightarrow \infty} \mu(t) P(t)=\lim _{n \rightarrow \infty} b \frac{(-1)^{n} q^{c-1}(q-1)^{2}}{t^{c-2}\left(q^{c-1}+1\right)}=0
$$

which implies that for large $t, \pm P$ are positively regressive.
By the definition of the exponential [5, Definition 2.30] we have for $s \geq t$

$$
\begin{align*}
e_{ \pm P}(s, t) & =\exp \int_{t}^{s} \frac{1}{\tau(q-1)} \ln \left(1 \pm \frac{b(q-1)^{2}(-1)^{\frac{\ln \tau}{\sqrt{n} q}}}{\tau^{c-2}\left(1+q^{(1-c)}\right)}\right) \Delta \tau \\
& =\exp \left[\sum_{i=n}^{m-1} \ln \left(1 \pm \frac{b(q-1)^{2}(-1)^{i}}{q^{(c-2)}\left(1+q^{1-c}\right)}\right)\right] \tag{2.3}
\end{align*}
$$

Note that $\ln (1 \pm x) \sim \pm x$, so when $c>2$, the two series

$$
\begin{equation*}
\sum_{i=n}^{\infty} \ln \left(1 \pm \frac{b(q-1)^{2}(-1)^{i}}{q^{i(c-2)}\left(1+q^{(1-c)}\right)}\right) \tag{2.4}
\end{equation*}
$$

are absolutely convergent.
Using properties of the exponential [5, Theorem 2.36], we have

$$
e_{\frac{2 P}{1-\mu P}}(s, t)=\frac{e_{P}(s, t)}{e_{-P}(s, t)} .
$$

By (2.3), (2.4) and $\lim _{t \rightarrow \infty} \mu(t) P(t)=0$, given $0<\epsilon<1$, there exists a large N, so that when $s=q^{m} \geq t=q^{n} \geq q^{N}$,

$$
\begin{equation*}
1-\epsilon \leq e_{\frac{2 P}{1-\mu P}}(s, t) \frac{1}{1-\mu(s) P(s)} \leq 1+\epsilon \tag{2.5}
\end{equation*}
$$

So from (2.2), we get that

$$
\begin{align*}
\bar{P}(t) & =\int_{t}^{\infty} e_{\frac{2 P}{1-\mu P}}(s, t) \frac{P^{2}(s)}{1-\mu(s) P(s)} \Delta s \leq(1+\epsilon) \int_{t}^{\infty} P^{2}(s) \Delta s \\
& \leq(1+\epsilon) b^{2} \frac{\left[q^{c-1}(q-1)\right]^{2}}{\left(q^{c-1}+1\right)^{2}} \sum_{i=n}^{\infty} q^{i}(q-1) \frac{1}{q^{2 i(c-1)}} \\
& =(1+\epsilon) b^{2} \frac{q^{2(c-1)}(q-1)^{3}}{\left(q^{c-1}+1\right)^{2}} \cdot \frac{q^{2(c-1)}}{q^{2(c-1)}-q}\left[\frac{q}{q^{2(c-1)}}\right]^{n} \tag{2.6}
\end{align*}
$$

for large t. It follows that

$$
\bar{P}(\sigma(t)) \leq(1+\epsilon) b^{2} \frac{q^{2(c-1)}(q-1)^{3}}{\left(q^{c-1}+1\right)^{2}} \cdot \frac{q^{2(c-1)}}{q^{2(c-1)}-q}\left[\frac{q}{q^{2(c-1)}}\right]^{n+1} .
$$

So

$$
\begin{align*}
\int_{t}^{\infty} e_{\frac{2 P}{1-\mu P}}(s, t) \frac{\bar{P}(s) \bar{P}(\sigma(s))}{1-\mu(s) P(s)} \Delta s \leq & (1+\epsilon)^{3} b^{4}\left[\frac{q^{2(c-1)}(q-1)^{3}}{\left(q^{c-1}+1\right)^{2}} \cdot \frac{q^{2(c-1)}}{q^{2(c-1)}-q}\right]^{2} \\
& \times \sum_{i=n}^{\infty}\left[\frac{q^{i+1}}{q^{2(i+1)(c-1)}} \cdot \frac{q^{i}}{q^{2 i(c-1)}} q^{i}(q-1)\right] \\
= & (1+\epsilon)^{3} b^{4}\left[\frac{q^{4(c-1)}(q-1)^{7}}{\left(q^{c-1}+1\right)^{4}}\right] \cdot\left[\frac{q^{2(c-1)}}{q^{2(c-1)}-q}\right]^{2} \frac{\frac{q^{3 n+1}}{q^{(4 n+2)(c-1)}}}{1-\frac{q^{3}}{q^{4(c-1)}}} \tag{2.7}
\end{align*}
$$

Similarly to the proof of (2.6), we also have

$$
\begin{equation*}
\frac{1}{4} \bar{P}(t)>\frac{(1-\epsilon) b^{2}}{4} \cdot \frac{q^{2(c-1)}(q-1)^{3}}{\left(q^{c-1}+1\right)^{2}} \cdot \frac{q^{2(c-1)}}{q^{2(c-1)}-q}\left[\frac{q}{q^{2(c-1)}}\right]^{n}, \tag{2.8}
\end{equation*}
$$

for large t. Note that when $c>2$,

$$
\lim _{n \rightarrow \infty} \frac{\frac{q^{3 n+1}}{q^{(4 n+2)(c-1)}}}{\frac{q^{n}}{q^{2 n(c-1)}}}=0
$$

From (2.7) and (2.8), we have that, for sufficiently large t,

$$
\int_{t}^{\infty} e_{\frac{2 P}{1-\mu P}}(s, t) \frac{\bar{P}(s) \bar{P}(\sigma(s))}{1-\mu(s) P(s)} \Delta s<\frac{1}{4} \bar{P}(t) .
$$

By Lemma 1.1, Eq. (2.1) is nonoscillatory.
Next we consider the case $c=2$, that is we consider

$$
\begin{equation*}
x^{\Delta \Delta}(t)+\frac{b(-1)^{n}}{t^{2}} x(q t)=0 \tag{2.9}
\end{equation*}
$$

where $t=q^{n} \in \mathbb{T}=q^{\mathbb{N}_{0}}, q>1$. Expanding out Eq. (2.9) we obtain

$$
\begin{equation*}
x\left(q^{n+2}\right)-\left[q+1-b q(q-1)^{2}(-1)^{n}\right] x\left(q^{n+1}\right)+q x\left(q^{n}\right)=0 \tag{2.10}
\end{equation*}
$$

When $b=\frac{q+1}{q(q-1)^{2}}$, we get from (2.10) when $n=2 k$ is even $x\left(q^{2 k+2}\right)=-q x\left(q^{2 k}\right)$, which implies that (2.10) is oscillatory. Similarly, when $b=-\frac{q+1}{q(q-1)^{2}},(2.10)$ is also oscillatory.

Let $d_{n}=q+1-b q(q-1)^{2}(-1)^{n}$ in Eq. (2.10). If we suppose that $b>\frac{q+1}{q(q-1)^{2}}$, we have $d_{2 k}<0$. From (2.10), we get for $n=2 k$

$$
\begin{equation*}
x\left(q^{2 k+2}\right)+q x\left(q^{2 k}\right)=d_{2 k} x\left(q^{2 k+1}\right) \tag{2.11}
\end{equation*}
$$

which implies that (2.9) is oscillatory. Similarly, when $b<-\frac{q+1}{q(q-1)^{2}},(2.10)$ is also oscillatory.
Therefore in the following, we can assume that $|b|<\frac{q+1}{q(q-1)^{2}}$, so we have $d_{n}>0$. Assume $x(t)=x\left(q^{n}\right)$ is a solution of (2.10) satisfying $x(t)=x\left(q^{n}\right) \neq 0$ for all large n. Then from (2.10), we get that

$$
\frac{q}{d_{n+1} d_{n}} \cdot \frac{d_{n+1} x\left(q^{n+2}\right)}{q x\left(q^{n+1}\right)}+\frac{q x\left(q^{n}\right)}{d_{n} x\left(q^{n+1}\right)}=1
$$

Let $y(n):=\frac{d_{n} x\left(q^{n+1}\right)}{q \times\left(q^{n}\right)}$ and $A:=\frac{q}{d_{n+1} d_{n}}=\frac{q}{(q+1)^{2}-b^{2} q^{2}(q-1)^{4}}>0$ is a positive constant. We get

$$
\begin{equation*}
A y(n+1)+\frac{1}{y(n)}=1 \tag{2.12}
\end{equation*}
$$

Letting $y(n)=\frac{z(n+1)}{z(n)}$, we get the second order difference equation (see [9, p. 82])

$$
\begin{equation*}
A z(n+2)-z(n+1)+z(n)=0 . \tag{2.13}
\end{equation*}
$$

The characteristic equation of (2.13) is $\lambda^{2}-\frac{1}{A} \lambda+\frac{1}{A}=0$.

When $\frac{1-4 A}{A^{2}}<0$, that is $|b|>\frac{1}{q(q-1)}$, the characteristic equation of (2.13) has complex roots $\lambda=r \mathrm{e}^{\mathrm{i} \theta}, \theta \neq k \pi, k$ an integer. So (2.13) has an oscillatory solution $z(n)=r^{n} \sin n \theta$. This means $y(n)=\frac{z(n+1)}{z(n)}=\frac{r \sin (n+1) \theta}{\sin n \theta}$ is an oscillatory solution of (2.12). Noticing that $d_{n}>0$ and $y(n)=\frac{d_{n} x\left(q^{n+1}\right)}{q x\left(q^{n}\right)}$, we get that (2.10) has an oscillatory solution. Hence, we get that (2.10) is oscillatory.

When $\frac{1-4 A}{A^{2}} \geq 0$, that is $|b| \leq \frac{1}{q(q-1)}$, the characteristic equation of (2.13) has a real root $\lambda=\frac{1+\sqrt{1-4 A}}{2 A}>0$. So (2.13) has a nonoscillatory solution $z(n)=\lambda^{n}>0$. This means $y(n)=\frac{z(n+1)}{z(n)}=\lambda>0$ is a nonoscillatory solution of (2.12). Noticing that $d_{n}>0$ and $y(n)=\frac{d_{n} x\left(q^{n}\right)}{q x\left(q^{n+1}\right)}$, we get that (2.10) has a nonoscillatory solution. Hence, we get that (2.10) is nonoscillatory.

Remark. As in the case $c>2$, using Lemma 1.1, we can also prove that (2.10) is nonoscillatory, when $|b| \leq \frac{1}{q(q-1)}$, but we cannot use Theorem 4.1 in [2] to prove the oscillation of (2.10) when $|b|>\frac{1}{q(q-1)}$, since the graininess function of $q^{\mathbb{N}_{0}}$ is unbounded.

Finally we consider the q-difference equation for the case $c<2$.

$$
\begin{equation*}
x^{\Delta \Delta}(t)+\frac{b(-1)^{n}}{t^{c}} x(q t)=0 \tag{2.14}
\end{equation*}
$$

where $t=q^{n} \in \mathbb{T}=q^{\mathbb{N}_{0}}, q>1, b \neq 0, c<2$.
To show that (2.14) is oscillatory, for all $c<2$, we need the following useful comparison theorem [7].
Theorem 2.2. Assume $a \in C_{r d}^{1}, a(t) \geq 1, \mu(t) a^{\Delta}(t) \geq 0$ and $a^{\Delta \Delta}(t) \leq 0$. Then (1.1) is oscillatory implies $x^{\Delta \Delta}(t)+$ $a(t) p(t) x(\sigma(t))=0$ is oscillatory on $\left[t_{0}, \infty\right)$.
Letting $b_{0}:=\frac{q+1}{q(q-1)^{2}}>\frac{1}{q(q-1)}$, we have by Theorem 2.1, that

$$
x^{\Delta \Delta}(t) \pm b_{0} \frac{(-1)^{n}}{t^{2}} x(q t)=0
$$

is oscillatory. Let $a(t)=A t^{\alpha}, A>0,0<\alpha<1$. We have $a(t) \geq 1$, for large t and $a^{\Delta}(t) \geq 0$. It is easy to get that

$$
a^{\Delta \Delta}(t)=\frac{A t^{\alpha}\left(q^{\alpha}-1\right)\left(q^{\alpha}-q\right)}{t^{2} q(q-1)^{2}} \leq 0
$$

Repeated applications of Theorem 2.2, give us that

$$
x^{\Delta \Delta}(t) \pm B t^{\beta} b_{0} \frac{(-1)^{n}}{t^{2}} x(q t)=0
$$

is oscillatory, for all $\beta>0, B>0$. So the equation

$$
x^{\Delta \Delta}(t) \pm B b_{0} \frac{(-1)^{n}}{t^{2-\beta}} x(q t)=0
$$

is oscillatory, for all $\beta>0, B>0$. This means that the equation

$$
x^{\Delta \Delta}(t)+b \frac{(-1)^{n}}{t^{c}} x(q t)=0
$$

is oscillatory, for $b \neq 0, c<2$.

References

[1] Jia Baoguo, Lynn Erbe, Allan Peterson, A Wong-type oscillation theorem for second order linear dynamic equations on time scales, J. Difference Equ. Appl. (in press).
[2] Lynn Erbe, Jia Baoguo, Allan Peterson, Oscillation and nonoscillation of solutions of second order linear dynamic equations with integrable coefficients on time scales (submitted for publication).
[3] Shaozhu Chen, Lynn Erbe, Riccati techniques and discrete oscillations, J. Math. Anal. Appl. 142 (1989) 468-487.
[4] J.S.W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969) 197-215.
[5] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
[6] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
[7] Lynn Erbe, Allan Peterson, Pavel Řehák, Comparison theorems for linear dynamic equations on time scales, J. Math. Anal. Appl. 275 (2002) $418-438$.
[8] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2001.
[9] W. Kelley, A. Peterson, Difference Equations: An Introduction with Applications, Academic Press, 2001.
[10] D. Willett, On the oscillatory behavior of the solutions of second order linear differential equations, Ann. Polon. Math. 21 (1969) 175-194.

[^0]: * Corresponding author.

 E-mail addresses: mcsjbg@mail.sysu.edu.cn (J. Baoguo), lerbe2@math.unl.edu (L. Erbe), apeterso1@math.unl.edu, apeterso@math.unl.edu (A. Peterson).

