
Applied Mathematics Letters 22 (2009) 871–875

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Oscillation of a family of q-difference equations
Jia Baoguo a,b, Lynn Erbe a, Allan Peterson a,∗
a Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130, USA
b School of Mathematics and Computer Science, Zhongshan University, 510275, Guangzhou, China

a r t i c l e i n f o

Article history:
Received 3 July 2008
Accepted 11 July 2008

Keywords:
Classification
Oscillation
Nonoscillation
q-difference equation

a b s t r a c t

We obtain the complete classification of oscillation and nonoscillation for the q-difference
equation

x∆∆(t)+
b(−1)n

tc
x(qt) = 0, b 6= 0,

where t = qn ∈ T = qN0 , q > 1, c, b ∈ R. In particular we prove that this q-difference
equation is nonoscillatory, if c > 2 and is oscillatory, if c < 2. In the critical case c = 2 we
show that it is oscillatory, if |b| > 1

q(q−1) , and is nonoscillatory, if |b| ≤
1

q(q−1) .
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let T be a time scale (i.e., a closed nonempty subset of R) with supT = ∞. Consider the second order dynamic equation
on time scale

x∆∆(t)+ p(t)xσ (t) = 0, (1.1)

where σ is the jump operator and f σ = f ◦ σ (composition of f with σ ), p is right-dense continuous functions on T and∫
∞

t0
p(t)1t := lim

t→∞

∫ t

t0
p(s)1s exists (finite).

When T = R the dynamic equation (1.1) is the differential equation

x′′ + p(t)x = 0, (1.2)

and when T = Z the dynamic equation (1.1) is the difference equation

∆2x(t)+ p(t)xσ (t) = 0. (1.3)

When T = qN0 , q > 1, the dynamic equations (1.1) are called q-difference equations, which have important applications in
quantum theory [8,6]. Our main results are for a family of q-difference equations. For T = R, in [10,4], Willett and Wong
proved, respectively, the following theorems.
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Theorem A (Willett–Wong, [10,4]). Suppose that∫
∞

t
P̄2(s)QP(s, t)ds ≤

1
4
P̄(t),

for large t, where P̄(t) =
∫
∞

t P
2(s)QP(s, t)ds,QP(s, t) = exp

(
2
∫ s
t P(τ )dτ

)
. Then the differential equation (1.2) is

nonoscillatory.

Theorem B (Willett–Wong, [10,4]). If P̄(t) 6≡ 0 satisfies∫
∞

t
P̄2(s)QP(s, t)ds ≥

1+ ε
4
P̄(t),

for some ε > 0 and large t. Then the differential equation (1.2) is oscillatory.

As applications of Theorems A and B, Willett [10] considered the very sensitive differential equation

x′′ +
µ sin νt
tη

x = 0 (1.4)

for |µ
ν
| 6=

1
√
2
, µ 6= 0, ν 6= 0, η constants and proved that (1.4) is nonoscillatory, if η > 1 and is oscillatory, if η < 1. When

η = 1, (1.4) is oscillatory, if |µ
ν
| > 1

√
2
, and is nonoscillatory, if |µ

ν
| < 1

√
2
.

Wong proved the following very nice result.

Theorem C (Wong, [4]). If there exists a function B̄(t) such that∫
∞

t
[P̄(s)+ B̄(s)]2QP(s, t)ds ≤ B̄(t),

for large t, then the differential equation (1.2) is nonoscillatory.

As applications of Theorem C, Wong proved that Eq. (1.4) is nonoscillatory, for |µ
ν
| =

1
√
2
.

In [1,2], we extended Theorems A–C to the time scale case using the so-called ‘second-level Riccati equation’ (see [3] for
the discrete case) or whatWong refers to as a new Riccati integral equation in the continuous case. Using this approach, one
is able to handle various critical cases. These ideas are novel in treating the case when P(t) :=

∫
∞

t p(s)ds is not of one sign
for large t .
A special case of results in [1,2], is that the difference equation

∆2x(n)+
b(−1)n

nc
x(n+ 1) = 0, b 6= 0, (1.5)

where b, c ∈ R is nonoscillatory, if c > 1 and is oscillatory, if c < 1. Also if c = 1, then Eq. (1.5) is oscillatory, if |b| > 1 and
is nonoscillatory, if |b| ≤ 1.

Lemma 1.1 ([2, Theorem 3.2]). Assume that
∫
∞

t0
p(t)1t is convergent, P(t) =

∫
∞

t p(s)1s, 1 ± µ(t)P(t) > 0, for large t. If∫
∞

T P
2(t)× eP (t,T )

e−P (t,T )
1t is convergent and

P̄(t) :=
∫
∞

t
e 2P
1−µP

(s, t)
P2(s)

1− µ(s)P(s)
1s (1.6)

satisfies

1
4
P̄(t) ≥

∫
∞

t
e 2P
1−µP

(s, t)
P̄(s)P̄(σ (s))
1− µ(s)P(s)

1s. (1.7)

for large t, then (1.1) is nonoscillatory.

2. Main theorem

Our main concern in this paper is the q-difference equation

x∆∆(t)+
b(−1)n

tc
x(qt) = 0, b 6= 0, (2.1)

where t = qn ∈ T = qN0 , q > 1, b, c ∈ R and our main result is the following complete classification of (2.1). Since the
graininess function for T = qN0 is unbounded, we cannot use Theorem 4.1 in [2], when we consider the oscillation of the
q-difference equation (2.1).
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Theorem 2.1. The q-difference equation (2.1) is nonoscillatory, if c > 2, and is oscillatory, if c < 2. If c = 2, then Eq. (2.1) is
oscillatory, if |b| > 1

q(q−1) , and is nonoscillatory, if |b| ≤
1

q(q−1) .

Proof. First consider the case c > 2. Note that for t = q2k

P(t) =
∫
∞

t
p(τ )1τ =

∞∑
j=2k

p(qj)µ(qj)

=
b(q− 1)q2k

q2kc

[
1−

q
qc
+
q2

q2c
− · · ·

]
= b

qc−1(q− 1)
q2k(c−1)(qc−1 + 1)

.

Similarly, we have

P(q2k+1) = −b
qc−1(q− 1)

q(2k+1)(c−1)(qc−1 + 1)

and hence in general

P(t) = P(tn) = b
(−1)nqc−1(q− 1)
qn(c−1)(qc−1 + 1)

= b
(−1)nqc−1(q− 1)
tc−1(qc−1 + 1)

. (2.2)

Since c > 2, we get that

lim
t→∞

µ(t)P(t) = lim
n→∞

b
(−1)nqc−1(q− 1)2

tc−2(qc−1 + 1)
= 0,

which implies that for large t ,±P are positively regressive.
By the definition of the exponential [5, Definition 2.30] we have for s ≥ t

e±P(s, t) = exp
∫ s

t

1
τ(q− 1)

ln

(
1±

b(q− 1)2(−1)
ln τ
ln q

τ c−2(1+ q(1−c))

)
1τ

= exp

[
m−1∑
i=n

ln
(
1±

b(q− 1)2(−1)i

qi(c−2)(1+ q1−c)

)]
. (2.3)

Note that ln(1± x) ∼ ±x, so when c > 2, the two series

∞∑
i=n

ln
(
1±

b(q− 1)2(−1)i

qi(c−2)(1+ q(1−c))

)
(2.4)

are absolutely convergent.
Using properties of the exponential [5, Theorem 2.36], we have

e 2P
1−µP

(s, t) =
eP(s, t)
e−P(s, t)

.

By (2.3), (2.4) and limt→∞ µ(t)P(t) = 0, given 0 < ε < 1, there exists a large N , so that when s = qm ≥ t = qn ≥ qN ,

1− ε ≤ e 2P
1−µP

(s, t)
1

1− µ(s)P(s)
≤ 1+ ε. (2.5)

So from (2.2), we get that

P̄(t) =
∫
∞

t
e 2P
1−µP

(s, t)
P2(s)

1− µ(s)P(s)
1s ≤ (1+ ε)

∫
∞

t
P2(s)1s

≤ (1+ ε)b2
[qc−1(q− 1)]2

(qc−1 + 1)2

∞∑
i=n

qi(q− 1)
1

q2i(c−1)

= (1+ ε)b2
q2(c−1)(q− 1)3

(qc−1 + 1)2
·
q2(c−1)

q2(c−1) − q

[
q

q2(c−1)

]n
, (2.6)
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for large t . It follows that

P̄(σ (t)) ≤ (1+ ε)b2
q2(c−1)(q− 1)3

(qc−1 + 1)2
·
q2(c−1)

q2(c−1) − q

[
q

q2(c−1)

]n+1
.

So ∫
∞

t
e 2P
1−µP

(s, t)
P̄(s)P̄(σ (s))
1− µ(s)P(s)

1s ≤ (1+ ε)3b4
[
q2(c−1)(q− 1)3

(qc−1 + 1)2
·
q2(c−1)

q2(c−1) − q

]2
×

∞∑
i=n

[
qi+1

q2(i+1)(c−1)
·
qi

q2i(c−1)
qi(q− 1)

]

= (1+ ε)3b4
[
q4(c−1)(q− 1)7

(qc−1 + 1)4

]
·

[
q2(c−1)

q2(c−1) − q

]2 q3n+1

q(4n+2)(c−1)

1− q3

q4(c−1)

. (2.7)

Similarly to the proof of (2.6), we also have

1
4
P̄(t) >

(1− ε)b2

4
·
q2(c−1)(q− 1)3

(qc−1 + 1)2
·
q2(c−1)

q2(c−1) − q

[
q

q2(c−1)

]n
, (2.8)

for large t . Note that when c > 2,

lim
n→∞

q3n+1

q(4n+2)(c−1)

qn

q2n(c−1)

= 0.

From (2.7) and (2.8), we have that, for sufficiently large t ,∫
∞

t
e 2P
1−µP

(s, t)
P̄(s)P̄(σ (s))
1− µ(s)P(s)

1s <
1
4
P̄(t).

By Lemma 1.1, Eq. (2.1) is nonoscillatory.
Next we consider the case c = 2, that is we consider

x∆∆(t)+
b(−1)n

t2
x(qt) = 0 (2.9)

where t = qn ∈ T = qN0 , q > 1. Expanding out Eq. (2.9) we obtain

x(qn+2)− [q+ 1− bq(q− 1)2(−1)n]x(qn+1)+ qx(qn) = 0. (2.10)

When b = q+1
q(q−1)2

, we get from (2.10) when n = 2k is even x(q2k+2) = −qx(q2k), which implies that (2.10) is oscillatory.

Similarly, when b = − q+1
q(q−1)2

, (2.10) is also oscillatory.
Let dn = q+ 1− bq(q− 1)2(−1)n in Eq. (2.10). If we suppose that b >

q+1
q(q−1)2

, we have d2k < 0. From (2.10), we get for
n = 2k

x(q2k+2)+ qx(q2k) = d2kx(q2k+1) (2.11)

which implies that (2.9) is oscillatory. Similarly, when b < − q+1
q(q−1)2

, (2.10) is also oscillatory.
Therefore in the following, we can assume that |b| < q+1

q(q−1)2
, so we have dn > 0. Assume x(t) = x(qn) is a solution of

(2.10) satisfying x(t) = x(qn) 6= 0 for all large n. Then from (2.10), we get that

q
dn+1dn

·
dn+1x(qn+2)
qx(qn+1)

+
qx(qn)
dnx(qn+1)

= 1.

Let y(n) := dnx(qn+1)
qx(qn) and A :=

q
dn+1dn

=
q

(q+1)2−b2q2(q−1)4
> 0 is a positive constant. We get

Ay(n+ 1)+
1
y(n)
= 1. (2.12)

Letting y(n) = z(n+1)
z(n) , we get the second order difference equation (see [9, p. 82])

Az(n+ 2)− z(n+ 1)+ z(n) = 0. (2.13)

The characteristic equation of (2.13) is λ2 − 1
Aλ+

1
A = 0.
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When 1−4A
A2

< 0, that is |b| > 1
q(q−1) , the characteristic equation of (2.13) has complex roots λ = re

iθ , θ 6= kπ , k

an integer. So (2.13) has an oscillatory solution z(n) = rn sin nθ . This means y(n) = z(n+1)
z(n) =

r sin(n+1)θ
sin nθ is an oscillatory

solution of (2.12). Noticing that dn > 0 and y(n) =
dnx(qn+1)
qx(qn) , we get that (2.10) has an oscillatory solution. Hence, we get

that (2.10) is oscillatory.
When 1−4A

A2
≥ 0, that is |b| ≤ 1

q(q−1) , the characteristic equation of (2.13) has a real root λ =
1+
√
1−4A
2A > 0. So (2.13) has

a nonoscillatory solution z(n) = λn > 0. This means y(n) = z(n+1)
z(n) = λ > 0 is a nonoscillatory solution of (2.12). Noticing

that dn > 0 and y(n) =
dnx(qn)
qx(qn+1)

, we get that (2.10) has a nonoscillatory solution. Hence, we get that (2.10) is nonoscillatory.

Remark. As in the case c > 2, using Lemma 1.1, we can also prove that (2.10) is nonoscillatory, when |b| ≤ 1
q(q−1) , but we

cannot use Theorem 4.1 in [2] to prove the oscillation of (2.10) when |b| > 1
q(q−1) , since the graininess function of q

N0 is
unbounded.

Finally we consider the q-difference equation for the case c < 2.

x∆∆(t)+
b(−1)n

tc
x(qt) = 0 (2.14)

where t = qn ∈ T = qN0 , q > 1, b 6= 0, c < 2.
To show that (2.14) is oscillatory, for all c < 2, we need the following useful comparison theorem [7].

Theorem 2.2. Assume a ∈ C1rd, a(t) ≥ 1, µ(t)a∆(t) ≥ 0 and a∆∆(t) ≤ 0. Then (1.1) is oscillatory implies x∆∆(t) +
a(t)p(t)x(σ (t)) = 0 is oscillatory on [t0,∞).

Letting b0 :=
q+1
q(q−1)2

> 1
q(q−1) , we have by Theorem 2.1, that

x∆∆(t)± b0
(−1)n

t2
x(qt) = 0

is oscillatory. Let a(t) = Atα , A > 0, 0 < α < 1. We have a(t) ≥ 1, for large t and a∆(t) ≥ 0. It is easy to get that

a∆∆(t) =
Atα(qα − 1)(qα − q)

t2q(q− 1)2
≤ 0.

Repeated applications of Theorem 2.2, give us that

x∆∆(t)± Btβb0
(−1)n

t2
x(qt) = 0

is oscillatory, for all β > 0, B > 0. So the equation

x∆∆(t)± Bb0
(−1)n

t2−β
x(qt) = 0

is oscillatory, for all β > 0, B > 0. This means that the equation

x∆∆(t)+ b
(−1)n

tc
x(qt) = 0

is oscillatory, for b 6= 0, c < 2. �
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