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1. Introduction

Let T be a time scale (i.e., a closed nonempty subset of R) with sup T = oo. Consider the second order dynamic equation
on time scale
X240 +pO)x° (t) = 0, (1.1)

where o is the jump operator and f° = f o o (composition of f with o), p is right-dense continuous functions on T and

[’} t
/ p(tH)At := lim / p(s)As exists (finite).
to t—00 to
When T = R the dynamic equation (1.1) is the differential equation

X' +pt)x =0, (1.2)

and when T = Z the dynamic equation (1.1) is the difference equation

AZx(t) + p(H)x° (t) = 0. (1.3)

When T = ¢, g > 1, the dynamic equations (1.1) are called g-difference equations, which have important applications in
quantum theory [8,6]. Our main results are for a family of g-difference equations. For T = R, in [10,4], Willett and Wong
proved, respectively, the following theorems.
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Theorem A (Willett—-Wong, [10,4]). Suppose that

o0 _ 1 _
| Powe s < po.

t

for large t, where P(t) = ftoo P%(s)Qp (s, t)ds, Qp(s,t) = exp (2 ftsP(‘E)dT). Then the differential equation (1.2) is
nonoscillatory.

Theorem B (Willett-Wong, [10,4]). If P(t) = 0 satisfies
o _ 14+€-
/ PO, 0ds = TP,
t
for some € > 0 and large t. Then the differential equation (1.2) is oscillatory.
As applications of Theorems A and B, Willett [ 10] considered the very sensitive differential equation
<+ W sin vt
tn
for |%| #* % u # 0,v # 0, n constants and proved that (1.4) is nonoscillatory, if > 1 and is oscillatory, if n < 1. When
1 1

n = 1,(1.4)is oscillatory, if | 2| > 7 and is nonoscillatory, if | 2| < 7

Wong proved the following very nice result.

x=0 (1.4)

Theorem C (Wong, [4]). If there exists a function B(t) such that

/ 1h(s) + BO)PQs(s, 0)ds < B0,
t

for large t, then the differential equation (1.2) is nonoscillatory.

As applications of Theorem C, Wong proved that Eq. (1.4) is nonoscillatory, for |%| = %

In [1,2], we extended Theorems A-C to the time scale case using the so-called ‘second-level Riccati equation’ (see [3] for
the discrete case) or what Wong refers to as a new Riccati integral equation in the continuous case. Using this approach, one
is able to handle various critical cases. These ideas are novel in treating the case when P(t) := ft°° p(s)ds is not of one sign
for large t.

A special case of results in [1,2], is that the difference equation

2 b(=1)"
A x(n)—l—icx(n—l—l) =0, b#0, (1.5)
n
where b, ¢ € R is nonoscillatory, if c > 1 and is oscillatory, if c < 1. Also if c = 1, then Eq. (1.5) is oscillatory, if |b| > 1 and
is nonoscillatory, if |b| < 1.

Lemma 1.1 ([2, Theorem 3.2]). Assume that ftso p(t) At is convergent, P(t) = ftoo p(s)As, 1 + u(t)P(t) > O, for large t. If

[ P2(t) x LD At is convergent and

e—p(t,T)
S P%(s)
satisfies
15 > P(5)P(a(s))

for large t, then (1.1) is nonoscillatory.
2. Main theorem

Our main concern in this paper is the g-difference equation
b(=1)"
tC
wheret = q" € T = q¢"°,q > 1, b, c € R and our main result is the following complete classification of (2.1). Since the

graininess function for T = g™ is unbounded, we cannot use Theorem 4.1 in [2], when we consider the oscillation of the
g-difference equation (2.1).

x24(t) + x(qt) =0, b#0, (2.1)



J. Baoguo et al. / Applied Mathematics Letters 22 (2009) 871-875 873

Theorem 2.1. The g-difference equation (2.1) is nonoscillatory, if ¢ > 2, and is oscillatory, if ¢ < 2.If ¢ = 2, then Eq. (2.1) is

oscillatory, if |b| > and is nonoscillatory, if |b| <

_1 _1
q(g—1’ q(q@—1"

Proof. First consider the case ¢ > 2. Note that for t = g

P = [ pmar =3 p@n)

j=2k

_ b(q— Dg* q ., ¢

=~ |1T etz
q “ q
“'(q-1

qzk(c—l)(qc—1 + 1) :
Similarly, we have

¢ 'q-1
q(2k+1)(c—1)(qc—l + 1)

P(q2k+l) ——

and hence in general

D" 'q-1  (=D"¢(q-1
qn(c—l)(qc—l +1 - tc—l(qc—1+1)

P(t) =P(t")=b (2.2)

Since ¢ > 2, we get that
. L (=D)"q (g = 1)?
Jim kOP() = lim b= =

which implies that for large t, =P are positively regressive.
By the definition of the exponential [5, Definition 2.30] we have fors > ¢

Int
S b(q — 1)?(—1)na
exp/ S PSR D
e T(@—=1 T2(144179)
m—1 2 i
b(g— 1" (-1
exp E In <1iw> . (2.3)
— qz(c—Z)(] + ql—c)
Note that In(1 £ x) ~ +x, so when ¢ > 2, the two series

O b(g— 1*(=1)
Z In (l + 721 + q(lfc))> (2.4)

i=n

exp(s, t)

are absolutely convergent.
Using properties of the exponential [5, Theorem 2.36], we have

ep(s, t)

e » (s, t)=
L

By (2.3), (2.4) and lim;_, o, 14 (£)P(t) = 0, given 0 < € < 1, there exists a large N, so that whens = q™ > t = q" > ¢",

l1—e<e » (5¢) + €. (2.5)
T—uP 1

; <1
— u(s$)P(s) ~
So from (2.2), we get that
P2(s)
1— u(s)P(s)

[ (@ —DP o~ 1
< <1+e>b2WZq<q—1>qzm

P(t) = /me%(s, t) As < (1 +e)/wP2(s)As

i=n

2(671)(q _ 1)3 q2(cfl) |: q }”

_ 24
=(1+4+¢€)b . T

@ 1+1? ¢V —gq 2o
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for large t. It follows that

P < (14 opTe ta=D> ¢ [ q }"“
- q

@1+ 1)2 ’ q2le=D — g2
So

N POP@E) sa[V@—13 @ 7P
/r % O T LOPG) Sf““”[ @+ D2 @ g

o) ql+1 qi .
1
X Z |:q2(i+1)(61) " i) q(q- 1)]
1=n

3n+1

4= (g _ 1y7 2(c—1) 2 _d
= (1+¢)°b* [q _u . D } : [ s } e (2.7)
@'+ q 41— gt
Similarly to the proof of (2.6), we also have
1- 1— b2 2(c—1) -1 3 2(c—1) n
Thy > (=90 g G- q q (2.8)
4 4 (@ 1T+1)2 @b _g| gD
for large t. Note that when ¢ > 2,
q3n+l
lim 7W =0.
n—oo __4
an(c—l)
From (2.7) and (2.8), we have that, for sufficiently large t,
0 P(s)P(o (s 1-
/ e w (s.0)LOPEO) o L5,
. =P 1 — u(s)P(s) 4
By Lemma 1.1, Eq. (2.1) is nonoscillatory.
Next we consider the case ¢ = 2, that is we consider
Py (_ )"
) + x(qgt) =0 (2.9)
wheret = q" € T = ¢"°, g > 1. Expanding out Eq. (2.9) we obtain
X(@"?) — [q+1—bq(q — D*(=1)"Ix(@"") + qx(q") = 0. (2.10)
When b = 7)2, we get from (2.10) when n = 2k is even x(q**t?) = —qx(q*), which implies that (2.10) is oscillatory.
Similarly, when b = — (q“>2 ,(2.10) is also oscillatory.
Letd, = g+ 1 — bq(q — 1)>(—=1)" in Eq. (2.10). If we suppose that b > 1)2 , we have dy, < 0. From (2.10), we get for
n =2k
X(@?) + gx(@®) = dax(@*) (2.11)
which implies that (2.9) is oscillatory. Similarly, when b < — (q e (2.10) is also oscillatory.
g1

Therefore in the following, we can assume that |b| < T2 Sowe have d,, > 0. Assume x(t) = x(q") is a solution of
(2.10) satisfying x(t) = x(q") # O for all large n. Then from (2.10), we get that

g dopax@?) | ax(@)
dpy1dy qX(q”“) dpx(q"t1)

dnx(q"* q . ..
Lety(n) = qx(q”) ) and A = dmd” = Gl 0 is a positive constant. We get
1
Ay(n+1) + ﬁ =1 (2.12)
Letting y(n) = Z%r)”, we get the second order difference equation (see [9, p. 82])

Az(n+2) —z(n+ 1) +z(n) = 0. (2.13)
The characteristic equation of (2.13) is A% — %)\ + % =0.
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When 24 < 0, that is [b] > q((;—_l) the characteristic equation of (2.13) has complex roots A = re'?, 6 # krm, k
an integer. So (2.13) has an oscillatory solution z(n) = r" sinn6. This means y(n) = Z(Z”(—;]) = % is an oscillatory

dnX, (qn+1 )

solution of (2.12). Noticing that d, > 0 and y(n) = Q)

that (2.10) is oscillatory.

, we get that (2.10) has an oscillatory solution. Hence, we get

When 34 > 0, that is |b| < ﬁ the characteristic equation of (2.13) has a real root A = 1= > 0,50 (2.13) has
a nonoscillatory solution z(n) = A" > 0. This means y(n) = Z(Z"(j)” = A > 0is a nonoscillatory solution of (2.12). Noticing

thatd, > Oandy(n) = q‘i’z’;flﬂ)) , we get that (2.10) has a nonoscillatory solution. Hence, we get that (2.10) is nonoscillatory.

Remark. As in the case ¢ > 2, using Lemma 1.1, we can also prove that (2.10) is nonoscillatory, when |b| < but we

_1
qq-1"

cannot use Theorem 4.1 in [2] to prove the oscillation of (2.10) when |b| > q(’;—_l) since the graininess function of g™ is
unbounded.
Finally we consider the g-difference equation for the case ¢ < 2.
b(—1)"
x4t + %x(qt) =0 (2.14)

wheret =q" e T=¢",qg>1,b#0,c <2.
To show that (2.14) is oscillatory, for all ¢ < 2, we need the following useful comparison theorem [7].

Theorem 2.2. Assume a € Cl, a(t) > 1, u(t)a*(t) > 0 and a®4(t) < 0. Then (1.1) is oscillatory implies x*4(t) +
a(t)p(t)x(o (t)) = 0is oscillatory on [tg, 00).

Letting by := q(gt})z m we have by Theorem 2.1, that
_1 n
xA4() + bo( tz) x(qt) =0

is oscillatory. Let a(t) = At%,A > 0,0 < o < 1. We have a(t) > 1, for large t and a®(t) > 0. It is easy to get that
A(Q* - D@ —a _

et = t>q(q — 1) -
Repeated applications of Theorem 2.2, give us that
X34 (1) & BtP b, (_t;)nx(qt) =0
is oscillatory, for all 8 > 0, B > 0. So the equation
(="

AA —
X“2(t) &= Bbg tzi_ﬂx(qt) =0

is oscillatory, for all > 0, B > 0. This means that the equation

(="

tC

x4t +b x(qt) =0

is oscillatory, forb #0,c < 2. O
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