
Discrete Mathematics 219 (2000) 207–221
www.elsevier.com/locate/disc

Modi�ed group divisible designs with block size four
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Abstract

The existence of modi�ed group divisible designs with block size four is settled with a handful
of possible exceptions. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A group divisible design (GDD) is a triple (X;G;B) which satis�es the following
properties:
(1) G is a partition of a set X (of points) into subsets called groups,
(2) B is a set of subsets of X (blocks) such that a group and a block contain at most

one common point,
(3) every pair of points from distinct groups occurs in a unique block.
The group-type (type) of the GDD is the multiset {|G|: G ∈G}. We usually use an
‘exponential’ notation to describe group-type: group-type gu11 · · · guss indicates that there
are ui groups of size gi for 16i6s. A pairwise balanced design (PBD) can be de-
�ned as a GDD whose groups all have size 1 (in this case, the groups need not be
speci�ed). See [6] for related de�nitions.
A K-modi�ed GDD (K-MGDD) of type ab is a set of ab points, equipped with a

parallel class of blocks of size a, a parallel class of blocks of size b, and every block
in the �rst parallel class meeting every block of the second; all other blocks having
sizes in the set K , so that every unordered pair of points occurs together in exactly
one block. As with GDDs, when K = {k}, we denote the K-MGDD by k-MGDD.
An incomplete group divisible design with block sizes from K is a quadruple

(V;G;H;B) where V is a �nite set of cardinality v; G = (G1; G2; : : : ; Gs) is a par-
tition of V , H= {H1; : : : ; Ht} is a set of disjoint subsets of V (the Gis are groups and
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Hjs are holes), and B is a family of subsets of V (blocks) with the properties:
(1) Any pair of distinct elements of V which occurs together in a group or a hole

does not occur in any block.
(2) Each other pair of distinct elements from V occurs in exactly one block.
Let Hij = Gi ∩ Hj, and hij = |Hij|. The IGDD has type

(g1; h11; h12; : : : ; h1t)a1 (g2; h21; h22; : : : ; h2t)a2 · · · (gr; hr1; hr2; : : : ; hrt)ar
when it has ai groups of size gi with sizes hi1; hi2; : : : ; hit of intersections with the t
holes.
If we remove one or more subdesigns from a TD(k; v), we obtain a transversal design

with holes. In the case of one hole, it is an incomplete transversal design (ITD). More
formally, an ITD, denoted by TD(k; m)−TD(k; n), is a quadruple (X; Y;G;B), where
X is a set of km points, G = {G1; G2; : : : ; Gk} is a partition of X into k groups of m
points each, Y ⊆X is a set of kn points such that |Y ∩ Gj| = n for 16j6k, and B

is a set of subsets (blocks) of X , each of which intersects each group in exactly one
point, and such that every pair of points {x; y} from distinct groups is either in Y or
occurs in a unique block but not both. The set Y is a hole.
A k-HTD (holey transversal design with block size k) of type {ui: 16i6r} is a

structure (X; {Yi}16i6r ;G;B) where X is a km-set (of points), G= {G1; G2; : : : ; Gk} is
a partition of X into k groups of m points each, {Y1; Y2; : : : ; Yr} is a partition of X
into r holes, each hole Yi(16i6r) is a set of kui points such that |Yi ∩ Gj| = ui for
16j6k, and B is a collection of subsets of X (blocks), each meeting each group in
exactly one point, and such that no block contains two distinct points of any group or
any hole, but any other pair of points of X is contained in exactly one block of B.
The existence of modi�ed group divisible designs has been studied by Assaf [3]

and Assaf and Wei [4]. They have applications in constructing various types of com-
binatorial objects [2,8]. The existence of modi�ed group divisible designs with block
size three has been completely settled in [3]. In [4], the following result is proved. Let
E = {{10; 8}; {10; 15}; {10; 18}; {10; 23}; {19; 11}; {19; 12}; {19; 14}; {19; 15}; {19; 18};
{19; 23}}.

Theorem 1.1. If m; n 6= 6; then a 4-MGDD of type mn exists if and only if
(m− 1)(n− 1) ≡ 0 (mod 3) with the possible exception of {m; n}∈E.

The case when one of the m or n takes on the value six, except for some small
cases, was left open, mainly due to the nonexistence of a 4-MGDD of type 64. We
address the existence of 4-MGDDs of type 6n. We develop some new constructions
for MGDDs to settle this with few possible exceptions. We then settle the existence
of 4-MGDDs with index greater than one completely.

2. Main constructions

Before we proceed, we need some direct constructions.
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Lemma 2.1 (Asraf and Wei [4]). There is a 4-MGDD of type 67.

Proof. Let V =Z21×{0; 1}. A parallel class is G1 ={(3i; j): i=0; 1; : : : ; 6} for j=0; 1
and their translates. The second parallel class is {(7i; j): i = 0; 1; 2; j = 0; 1} and its
translates. The base blocks are:

{(0; 0); (1; 0); (5; 0); (2; 1)}; {(0; 0); (6; 1); (17; 1); (19; 1)};
{(0; 0); (2; 0); (10; 1); (15; 1)}; {(0; 0); (8; 0); (11; 1); (12; 1)};
{(0; 0); (10; 0); (5; 1); (9; 1)}:

Develop these under Z21 to obtain the blocks of the 4-MGDD.

Lemma 2.2 (Asraf and Wei [4]). There is a 4-MGDD of type 610.

Proof. Let V = Z5 × Z10 ∪ H10, where H10 = {h0; h1; : : : ; h9}. The �rst parallel class
is {(0; a): a∈Z10} and its translates together with H10. The second parallel class is
{(a; 0): a∈Z5} ∪ {h0} and its translates. The base blocks are:

{(3; 0); (4; 1); (6; 2); (7; 3)}; {(4; 0); (5; 1); (7; 3); (8; 2)}; {(5; 0); (6; 1); (8; 2); (9; 3)};
{(0; 0); (6; 1); (7; 3); (9; 2)}; {(0; 0); (1; 1); (7; 2); (8; 3)}; {(1; 0); (2; 1); (8; 4); (9; 2)};
{(0; 0); (2; 1); (3; 2); (9; 4)}; {(1; 0); (4; 2); (6; 4); (9; 3)}; {(0; 0); (3; 1); (5; 3); (8; 2)};
{(2; 0); (4; 2); (7; 1); (9; 4)}; {(1; 0); (3; 3); (6; 2); (8; 1)}; {(0; 0); (2; 2); (5; 1); (7; 4)};
{(0; 0); (1; 3); (3; 4); (4; 1)}; {(2; 0); (3; 3); (5; 2); (6; 1)}; {(1; 0); (2; 3); (4; 4); (5; 1)};
{(0; 4); (3; 6); (1; 8); h7}; {(0; 5); (4; 7); (1; 9); h8}; {(0; 0); (4; 6); (1; 8); h9};
{(0; 1); (3; 7); (4; 9); h0}; {(0; 0); (3; 2); (4; 8); h1}; {(0; 1); (2; 3); (1; 9); h2};
{(0; 3); (4; 8); (1; 9); h5}; {(0; 2); (4; 7); (2; 8); h4}; {(0; 0); (4; 4); (3; 9); h6};
{(0; 3); (3; 4); (2; 8); h0}; {(0; 4); (4; 5); (3; 9); h1}; {(0; 5); (3; 9); (2; 5); h3};
{(0; 0); (3; 6); (1; 9); h4}; {(0; 1); (4; 2); (3; 8); h6}; {(0; 2); (4; 3); (2; 9); h7};
{(0; 4); (3; 7); (1; 8); h2}; {(0; 3); (1; 5); (2; 7); h6}; {(0; 1); (3; 6); (2; 7); h3};
{(0; 2); (2; 3); (3; 7); h9}; {(0; 0); (2; 1); (1; 7); h5}; {(0; 3); (1; 6); (4; 7); h1};
{(0; 0); (4; 2); (3; 4); h3}; {(0; 1); (4; 3); (2; 5); h4}; {(0; 0); (4; 5); (2; 6); h2};
{(0; 2); (3; 4); (2; 6); h5}; {(0; 0); (4; 1); (2; 5); h7}; {(0; 1); (2; 2); (1; 6); h8};
{(0; 0); (3; 3); (2; 4); h8}; {(0; 1); (1; 4); (4; 5); h9}; {(0; 2); (1; 5); (3; 6); h0}:

These base blocks under the group �: (x; y) 7→ (x+1; y) and �: hi 7→ hi+1 generate the
design.

Lemma 2.3. There is a 4-MGDD of type 613.
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Proof. Let V = Z78. A parallel class is {6i: i = 0; 1; : : : ; 12} and its translates. The
second parallel class is {13i: i = 0; 1; : : : ; 5} and its translates. The base blocks are
{0; 1; 3; 10}; {0; 4; 27; 38}; {0; 5; 25; 33}; {0; 14; 29; 61}; {0; 16; 35; 57}. Develop these
blocks over Z78.

Lemma 2.4 (Asraf and Wei [4]). There is a 4-MGDD of type 619.

Proof. Let V = Z57 × {0; 1}. The �rst parallel class is {(3i; j): i = 0; 1; : : : ; 18} for
j = 0; 1 and their translates. The second parallel class is {(19i; j): i = 0; 1; 2; j = 0; 1}
and its translates. Base blocks are

{(0; 0); (8; 0); (28; 0); (2; 1)}; {(0; 0); (10; 0); (26; 0); (6; 1)};

{(0; 0); (1; 1); (9; 1); (35; 1)}; {(0; 0); (10; 1); (15; 1); (32; 1)};

{(0; 0); (11; 0); (25; 0); (4; 1)}; {(0; 0); (3; 1); (5; 1); (16; 1)};

{(0; 0); (1; 0); (13; 1); (56; 1)}; {(0; 0); (2; 0); (22; 1); (42; 1)};

{(0; 0); (4; 0); (28; 1); (29; 1)}; {(0; 0); (5; 0); (44; 1); (54; 1)};

{(0; 0); (7; 0); (18; 1); (34; 1)}; {(0; 0); (13; 0); (21; 1); (46; 1)};

{(0; 0); (17; 0); (43; 1); (47; 1)}; {(0; 0); (22; 0); (17; 1); (45; 1)};

{(0; 0); (23; 0); (7; 1); (14; 1)}:
Develop the blocks under Z57.

Lemma 2.5. There is a 4-MGDD of type 625.

Proof. We construct the 4-MGDD on the points (({a; b; c; d}×Z6)∪ {∞})×Z6. The
�rst parallel class, containing blocks of size 25, consists of (({a; b; c; d} × {i} ×Z6)∪
({∞}×{i}) for i∈Z6. The second parallel class, containing blocks of size six, consists
of {x} × Z6 × {i} for x∈{a; b; c; d} and i∈Z6, and the block {∞} × Z6.
There is a 4-IGDD of type (36; 6; 6; 6; 6; 6; 6)4, which is a holey transversal design

TD(4; 36)− 6TD(4; 6) [1]. Place this 4-IGDD on the points {a; b; c; d}×Z6×Z6, with
holes on {a; b; c; d}×{i}×Z6 for i∈Z6 and groups on {x}×Z6×Z6 for x∈{a; b; c; d}.
For x∈{a; b; c; d}, place a 4-MGDD of type 67 on ({x} × Z6 × Z6) ∪ ({∞} × Z6),
aligning the parallel class of blocks of size seven on ({x}× { j}×Z6)∪ ({∞}×{ j})
for j∈Z6, and the parallel class of blocks of size six on {x} × Z6 × { j} for j∈Z6
together with the block {∞} × Z6. Omit the blocks of size seven in this placement
(each appears within one of the �nal blocks of size 25).

Lemma 2.6. There is a 4-MGDD of type 631.



A.C.H. Ling, C.J. Colbourn /Discrete Mathematics 219 (2000) 207–221 211

Proof. Let V = Z93 × {0; 1}. The �rst parallel class consists of the translates of
{(0; 0); (31; 0); (62; 0); (0; 1); (31; 1); (62; 1)}. The second parallel class is {(3i; j):
i = 0; 1; : : : ; 30} for j = 0; 1 and their translates. Base blocks are

{(0; 0); (1; 0); (8; 0); (87; 1)}; {(0; 1); (1; 1); (8; 1); (3; 0)};
{(0; 0); (5; 0); (14; 1); (27; 1)}; {(0; 0); (10; 0); (17; 1); (67; 1)};
{(0; 0); (14; 0); (43; 1); (53; 1)}:

Multiply the �rst coordinate of each block by 16i for i = 1; 2; 3; 4 to obtain 20 further
blocks. Develop them over Z93.

Lemma 2.7. There is a 4-MGDD of type 637.

Proof. Let V = Z222. The �rst parallel class is {37i: i = 0; 1; : : : ; 5} and its translates,
and the second parallel class is {6i: i=0; 1; : : : ; 36} and its translates. The base blocks
are {0; 1; 8; 21}; {0; 25; 56; 117}; {0; 43; 128; 28}; {0; 49; 182; 196}; {0; 67; 129; 70}. Multi-
ply each of them by 211 and 121 to obtain 10 more blocks. Develop these 15 blocks
over Z222.

Here is the �rst recursive construction.

Lemma 2.8. Suppose there exists a 4-MGDD of type 6r and there exists a 4-IGDD
of type (6r; r; r; : : : ; r)h; then there is a 4-MGDD of type 6rh.

Proof. Align the h copies of 4-MGDD of type 6r on the h groups of the IGDD so
that the block of size r coincides with the hole. Use each hole to form a new block
of size rh.

Let In = {1; 2; : : : ; n} be an index set on n elements.

Lemma 2.9. Suppose there exists a TD(7; m) and a 4-MGDD of type (3a+1)6 where
06a6m− 1. Then there exists a 4-MGDD of type (6m+ 3a+ 1)6.

Proof. Let G1; : : : ; G7 be the groups of a TD(7; m), and let B be its blocks. Let
V =

⋃6
i=1 Gi. Truncate G7 to a + 1 points, s0; s1; : : : :sa. We construct a 4-MGDD of

type (6m + 3a + 1)6 on the point set (V × I6) ∪ ({s0} × I6) ∪ ({si: i = 1; 2; : : : ; a} ×
I3 × I6). The �rst parallel class, consisting of blocks of size 6m + 3a + 1, of the
4-MGDD contains (Gj × I6) ∪ ({s0} × { j}) ∪ ({si : i = 1; 2; : : : ; a} × I3 × { j}), for
j∈ I6. The second parallel class, consisting of blocks of size six, contains {x}× I6 for
x∈{s0} ∪ ({si: i = 1; 2; : : : ; a} × I3), and (B \ {s0})× {i} for i∈ I6 and all B∈B with
s0 ∈B.
For every block B of size seven in the original TD(7; m) containing the point s0,

we put a 4-MGDD of type 67 on B × I6 so that the blocks of size six align on
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(B \ {s0})× {i} for i∈ I6, and the block {s0} × I6, and the blocks of size seven align
on ({xj} × I6) ∪ ({s0} × { j}) where xj ∈B ∩ Gj for j∈ I6. Omit the blocks of size
seven in each placement, as each contains points of a block of size 6m+ 3a+ 1.
For every other block B∈B of size seven in the truncated TD(7; m), put a 4-IGDD

of type (9; 3)6 on ((B\{si})×I6)∪({si}×I3×I6) so that the hole aligns on {si}×I3×I6
and the groups align on ({ai}× I6)∪ ({si}× I3×{i}) where ai=B∩Gi, with Gi being
the ith group in the original design. For every block B of size six, put a 4-GDD of
type 66 on the set B × I6, aligning the groups on {x} × I6 for x∈B. Finally, put a
4-MGDD of type (3a+ 1)6 on the set ({s0} × I6) ∪ ({si: i = 1; 2; : : : ; a} × I3 × I6), to
get a 4-MGDD of type (6m+ 3a+ 1)6.

With the two recursions, we are now in a position to close the spectrum of 4-MGDDs
of type 6r .

Lemma 2.10. If g ≡ 1 (mod 6); g¿43; there exists a 4-MGDD of type 6g.

Proof. When m is odd and m¿7, there exists a TD(7; m) with the possible exceptions
of m = 15; 39 [1]. Apply Lemma 2.9 with a = 0; 2; 4; 6 to obtain a 4-MGDD of type
(6m+ 1)6; (6m+ 7)6; (6m+ 13)6 and (6m+ 19)6.

Combining Lemmas 2.1, 2.3–2.7 and 2.10, we obtain:

Lemma 2.11. If g ≡ 1 (mod 6); there exists a 4-MGDD of type 6g.

Lemma 2.12. There are 4-MGDDs of type 628 and 640.

Proof. There exist 4-HTDs of type 76 and 106 [1]; these are 4-IGDDs of types
(42; 7; 7; 7; 7; 7; 7)4 and (60; 10; 10; 10; 10; 10; 10)4, respectively. Apply Lemma 2.8.

Lemma 2.13. There exists a 4-MGDD of type 634.

Proof. Start with a 3-GDD of type 66, whose blocks can be partitioned into frame
parallel classes [10]. Give weight 4 using a resolvable 3-MGDD of type 34, and extend
the resulting parallel classes to get a 4-IGDD of type (6491)6. Use 4-MGDDs of types
67 and 610 to �ll groups.

Lemma 2.14. If m¿63; there exists a 4-MGDD of type (6m+ 10)6.

Proof. A TD(7; m) exists for all m¿63 [1]. Apply Lemma 2.9 with a=3 to obtain a
4-MGDD of type (6m+ 10)6, using the 4-MGDD of type 610 from Lemma 2.2.

Lemma 2.15. Let g ≡ 4 (mod 6). If g 6∈ {70; 94; 100; 118; 130; 142; 166; 190; 214; 238;
244; 286; 334; 370; 382} and g¿52; then there exists a 4-MGDD of type g6.
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Proof. Lemma 2.14 handles all cases when g¿ 382. Now apply Lemma 2.9 with a=3
and values of m662 for which a TD(7,m) exists [1].

Lemma 2.16. If g¿52 and g 6= 70; 118; then there is a 4-MGDD of type g6.

Proof. First apply Lemma 2.15. Then use Lemma 2.9 with a = 9 and values of
m = 11; 12; 17; 19; 23; 27; 31; 35; 36; 43; 51; 57; and 59. The 4-MGDD of type 628 exists
by Lemma 2.12.

Lemma 2.17. There is a 4-MGDD of type 646.

Proof. Give weight nine to all points in a block of a TD(6,7), and give weight six to
all other points. Append a new column of six points. Take a parallel class of blocks
of size six including the block in which all points have weight nine. For every block
in the parallel class, put a 4-MGDD of type (k + 1)6 (k = 6; 9) on the corresponding
points together with the new adjoined points. For every other block, put a 4-GDD of
type 66 or 6591 [9]. This gives a 4-MGDD of type 646.

Lemma 2.18. There exists a 4-MGDD of type 670.

Proof. Take a 4-MGDD of type 76 (Lemma 2.1) and give every point weight 10.
For every block of size six, put a 4-MGDD of type 106 (Lemma 2.2) on the 60
points. For every block of size four, put a 4-GDD of type 104. This gives a 4-MGDD
of type 670.

Lemma 2.19. There exists a 4-MGDD of type 6118.

Proof. Take a 4-MGDD of type 136 (Lemma 2.3). Give every point weight nine and
append a new column of six points. For every block of size 6, employ a 4-MGDD of
type 106 (Lemma 2.2). For every other block of size four, employ with a 4-GDD of
type 94 [9]. This gives a 4-MGDD of type 6118.

Combining Lemmas 2.12, 2.15–2.19, we have the following result.

Lemma 2.20. If g ≡ 4 (mod 6); g 6= 4; 16; 22; there exists a 4-MGDD of type 6g.

Finally, we combine Lemmas 2.11 and 2.20 to yield:

Theorem 2.21. There is a 4-MGDD of type 6n for all n ∈ {16; 22}; n ≡ 1 (mod 3)
and n¿7.

In addition, we update the theorem of Assaf and Wei [4].

Lemma 2.22. There is a 4-MGDD of type 108.
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Proof. Let V =Z10× (Z7∪{∞}). The �rst parallel class is {{i}× (Z7∪{∞}: i∈Z10}.
The second parallel class is {Z10 × { j}: j∈Z7 ∪ {∞}}. Base blocks are:

{(0; 0); (1; 1); (3; 3); (9; 2}; {(0; 0); (4; 4); (5; 1); (8; 6};
{(0; 0); (5; 5); (7; 3); (1; 6}; {(0;∞); (1; 1); (7; 3); (8; 6};
{(0;∞); (2; 2); (5; 1); (3; 4}; {(0;∞); (4; 4); (9; 1); (6; 0}:

Lemma 2.23. There is a 4-MGDD of type 1023.

Proof. Let V =Z5×{0; 1}×Z23. The two parallel classes are {(0; 0; i); (0; 1; i): i∈Z23}
and {(i; 0; 0); (i; 1; 0): i∈Z5} and its translates. The base blocks are

{(0; 0; 0); (1; 0; 1); (4; 0; 2); (0; 1; 3)}; {(0; 0; 0); (0; 1; 5); (2; 1; 1); (3; 1; 2)};
{(1; 0; 0); (4; 0; 5); (2; 1; 10); (3; 1; 15)}:

Multiply each block by (−;−; 2i) for i = 1; 2; : : : ; 10 to obtain the remaining base
blocks.

Lemma 2.24. There is a 4-MGDD of type 1911.

Proof. Let V = Z19 × Z11. The two parallel classes are {(0; i): i∈Z19} and {(i; 0):
i∈Z11} together with their translates over Z19 × Z11. The base blocks are

{(0; 0); (1; 1); (3; 2); (12; 3)}; {(0; 0); (1; 2); (5; 1); (13; 8)};
{(0; 0); (4; 1); (6; 7); (9; 8)}:

Multiply each block by (1; 4)i (i.e., multiply the �rst component by 1i and the
second by 4i) for i = 1; 2; 3; 4 to obtain 12 more blocks. Develop these blocks over
Z19 × Z11.

Lemma 2.25. There is a 4-MGDD of type 1912.

Proof. Take a 5-MGDD of type 613 [10] and remove a group of size six to obtain a
{4; 5}-MGDD of type 612. Give weight three to each point and append a new column
of 12 points. Employ 4-GDDs of type 34 and 35 and a 4-MGDD of type 412.

Lemma 2.26. There is a 4-MGDD of type 1914.

Proof. Let V=Z19×(Z13∪{∞}). The �rst parallel class is {{i}×(Z13∪{∞}): i∈Z19}.
The second parallel class is {Z19 × { j}: j∈Z13 ∪ {∞}}. Take the blocks

{(0; 0); (1; 1); (3; 3); (7; 7)}; {(0; 0); (5; 5); (14; 1); (11; 4)};
{(0; 0); (8; 8); (18; 5); (16; 9)}; {(0; 0); (11; 11); (15; 8); (7; 10)};
{(0; 0); (15; 2); (9; 7); (3; 5)}; {(0;∞); (1; 1); (15; 8); (12; 10)};
{(0;∞); (2; 2); (16; 8); (4; 1)}



A.C.H. Ling, C.J. Colbourn /Discrete Mathematics 219 (2000) 207–221 215

and multiply each by (11; 1)i for i = 0; 1; 2 to obtain 21 base blocks. Develop these
under the action of the group.

Lemma 2.27. There is a 4-MGDD of type 1915.

Proof. Let V = Z19 × Z15. The two parallel classes are {(i; 0): i∈Z19} and {(0; i):
i∈Z15} together with their translates over Z19 × Z15. Take the blocks

{(0; 0); (1; 1); (3; 3); (7; 7)}; {(0; 0); (5; 5); (14; 14); (6; 10)};
{(0; 0); (10; 10); (3; 7); (1; 9)}; {(0; 0); (13; 13); (12; 1); (16; 9)};
{(0; 0); (9; 13); (8; 9); (11; 2)}; {(0; 0); (15; 4); (3; 12); (18; 5)};
{(0; 0); (17; 6); (15; 1); (4; 3)}:

and multiply each by (11; 1)i for i = 0; 1; 2 to obtain 21 base blocks. Develop these
under the action of the group.

Lemma 2.28. There is a 4-MGDD of type 1918.

Proof. Let V=Z19×(Z17∪{∞}). The �rst parallel class is {{i}×(Z17∪{∞}): i∈Z19}.
The second parallel class is {Z19 × { j}: j∈Z17 ∪ {∞}}. Take the blocks

{(0; 0); (1; 1); (3; 3); (7; 7)}; {(0; 0); (5; 5); (14; 14); (6; 8)};
{(0; 0); (8; 8); (18; 1); (11; 13)}; {(0; 0); (15; 15); (17; 2); (13; 4)};
{(0; 0); (16; 16); (2; 6); (4; 14)}; {(0; 0); (9; 11); (12; 7); (15; 16)};
{(0; 0); (14; 16); (18; 9); (7; 12)}; {(0;∞); (1; 1); (4; 8); (8; 7)};
{(0;∞); (2; 2); (13; 4); (17; 16)}

and multiply each by (7; 1)i for i = 0; 1; 2 to obtain 27 base blocks. Develop these
under the action of the group.

Lemma 2.29. There is a 4-MGDD of type 1923.

Proof. Let V = Z19 × Z23. The two parallel classes are {(0; i): i∈Z23} and {(i; 0):
i∈Z19} together with their translates over Z19 × Z23. The base blocks are

{(0; 0); (1; 1); (3; 2); (12; 3)}; {(0; 0); (1; 5); (5; 1); (13; 2)};
{(0; 0); (4; 1); (6; 6); (9; 11)}:

Multiply each block by (1; 2)i for i = 1; 2; : : : ; 10 to obtain 30 more blocks. Develop
these blocks over Z19 × Z23.

With these lemmas, we can restate the theorem.
Let F = {{6; 16}; {6; 22}; {10; 15}; {10; 18}}.
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Theorem 2.30. If {m; n} 6= {6; 4}; then there exists a 4-MGDD of type mn if and only
if (m− 1)(n− 1) ≡ 0 (mod 3) with the possible exceptions of {m; n}∈F .

3. Index greater than one

The de�nitions at the outset can all be generalized to require each pair not in a
group together (or not in a hole together, or not in a block of one of the distinguished
parallel classes together) to appear in exactly � blocks. In this case, we obtain various
classes of designs with index �. When �=1, we recover the de�nitions of the preceding
sections.
In this section, we examine the existence of 4-MGDDs with index greater than one.

Simple counting establishes that for a 4-MGDD of type mn and index � to exist, one
requires that �(m−1)(n−1) ≡ 0 (mod 3) and m; n¿4. Hence when � ≡ 0 (mod 3), the
basic necessary condition reduces to m; n¿4. When � 6≡ 0 (mod 3), the basic necessary
condition is the same as for index one. Now the union of two 4-MGDDs of type mn,
one of index �1 and the other of index �2, is a 4-MGDD of type mn and index �1+�2.
Hence it su�ces to examine cases with �∈{2; 3} when the 4-MGDD of index one
and type mn is nonexistent or unknown although the basic necessary condition is met,
and cases with �= 3 when m; n ≡ 0; 2 (mod 3) and m; n¿4.
First, we treat the cases with �= 3.

Lemma 3.1. If whenever n; m∈ S = {4; 5; 6; 7; 8; 9; 10; 11; 12; 14; 15; 18; 19; 23} there is
a 4-MGDD of type nm and index 3; then whenever n; m¿4; there is a 4-MGDD of
type nm and index 3.

Proof. There exist PBDs with block sizes from S of order n and m [5]. Let (V;B) be
such a PBD of order m, and (W;D) be such a PBD of order n. We form the required
4-MGDD on the point set V ×W . For B∈B and D∈D, place a 4-MGDD of index
3 on B × D, omitting the parallel classes on {b} × D for b∈B, and on B × {d} for
d∈D.

Lemma 3.2. Let K ⊆{4; 7; 10; 13; 19}. If a K-PBD of order m and index 3 exists;
and n∈ S; then a 4-MGDD of type nm and index 3 exists except possibly when 4∈K
and n= 6; or when 10∈K and n∈{15; 18}.

Proof. Let (V;B) be the K-PBD of order m and index 3. Let W be an n-set. We form
the required 4-MGDD on the point set V ×W . For B∈B, place a 4-MGDD of index
1 on B×W , omitting the parallel classes on {b} ×W for b∈B, and on B× {w} for
w∈W .

In view of Lemma 3.1, useful ingredients for Lemma 3.2 have m∈ S.
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Lemma 3.3. There is a {4}-PBD of index 3 and order m whenever m ≡ 0; 1(mod 4).
There is a {7}-PBD of index 3 and order 15. There is a {4; 10}-PBD of index 3
and order 11. There are {4; 7}-PBDs of index 3 and orders 14; 18; and 23.

Proof. For the �rst two statements, see [7]. For order 11, employ base blocks {0; 1; 5; 7}
and {∞; 0; 1; 3} over Z10 ∪ {∞}, together with Z10 as a block of size 10. For order
14, on Z7 × {0; 1}, take base blocks

{(0; 0); (1; 0); (0; 1); (3; 1)}; {(0; 0); (2; 0); (0; 1); (6; 1)};
{(0; 0); (4; 0); (0; 1); (5; 1)}; {(0; 0); (1; 1); (2; 1); (4; 1)};
{(0; 1); (1; 0); (2; 0); (4; 0)}; {(0; 1); (3; 0); (5; 0); (6; 0)};

together with the single block Z7 × {1} of size 7.
For order 18, on Z9 × {0; 1}, form the base blocks

{(0; 0); (1; 0); (2; 0); (4; 0); (0; 1); (1; 1); (3; 1)}; {(0; 0); (1; 0); (4; 0); (4; 1)};
{(0; 0); (2; 0); (5; 0); (7; 1)}; {(0; 0); (1; 1); (4; 1); (5; 1)}; {(0; 0); (2; 1); (4; 1); (6; 1)};
{(0; 0); (3; 1); (6; 1); (7; 1)}:

For order 23, on Z16 ∪ {∞i: 06i66}, form the base blocks

{∞0; 0; 1; 3}; {∞1; 0; 1; 5}; {∞2; 0; 1; 8}; {∞3; 0; 2; 7}; {∞4; 0; 2; 5};
{∞5; 0; 3; 9}; {∞6; 0; 4; 10}

with the short orbit {0; 4; 8; 12}, and a block of size 7 on the in�nite points included
three times.

We must treat cases when n = 6 and m∈{4; 5; 6; 8; 9; 11; 12; 14; 18; 23} to complete
the solution for index 3.
In the constructions of the next lemma, whenever the point set has the form X × Y ,

parallel classes are obtained as {{(x; y): x∈X }: y∈Y} and {{(x; y): y∈Y}: x∈X }.

Lemma 3.4. Whenever m∈{4; 5; 6; 8; 9; 11; 12; 14; 18; 23}; a 4-MGDD of index three
and type 6m exists.

Proof. For m= 4, the point set is (Z5 ∪ {∞})× {0; 1; 2; 3}. Base blocks are:
{(0; 0); (i; 1); (2i; 2); (3i; 3)}; {(∞; 0); (i; 1); (2i; 2); (3i; 3)};
{(0; 0); (∞; 1); (2i; 2); (3i; 3)}; {(0; 0); (i; 1); (∞; 2); (3i; 3)};
{(0; 0); (i; 1); (2i; 2); (∞; 3)}

for i = 1; 2; 3, and three copies of the base block {(0; 0); (4; 1); (3; 2); (2; 3)}.
For m = 5, the point set is Z30, parallel classes are equivalence classes modulo 5

and modulo 6, and base blocks are

{0; 1; 2; 3}; {0; 2; 9; 16}; {0; 3; 7; 16}; {0; 3; 11; 22}; {0; 4; 8; 17}:
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For m= 6, the point set is (Z5 ∪ {∞})× (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (1; 1); (2; 3); (3; 2)}; {(3; 0); (4; 1); (1; 3); (0;∞)};
{(2; 0); (3; 1); (4; 3); (0;∞)}; {(0; 3); (1; 1); (2; 4); (∞; 0)};
{(0; 4); (2; 3); (4; 2); (∞; 0)}; {(4; 2); (1; 3); (0;∞); (∞; 0)};
{(2; 1); (3; 4); (0;∞); (∞; 0)}; {(1; 2); (2; 1); (0;∞); (∞; 0)};
{(0; 0); (1; 4); (3; 1); (∞;∞)}:

For m= 8, the point set is (Z7 ∪ {∞})× (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (1; 1); (3; 3); (5; 2)}; {(0; 0); (4; 4); (6; 3); (1; 2)};
{(∞;∞); (0; 0); (6; 1); (5; 2)}; {(0;∞); (∞; 0); (1; 1); (2; 2)};
{(0;∞); (∞; 0); (3; 2); (5; 4)}; {(0;∞); (∞; 0); (4; 3); (1; 4)};
{(0;∞); (4; 0); (5; 3); (6; 1)}; {(0;∞); (1; 0); (4; 3); (6; 4)};
{(0;∞); (2; 2); (3; 4); (6; 0)}; {(0;∞); (2; 4); (3; 2); (5; 0)};
{(∞; 0); (0; 1); (6; 2); (3; 3)}; {(∞; 0); (0; 3); (1; 4); (3; 1)}:

For m= 9, the point set is Z9 × (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (1; 1); (2; 2); (3; 3)}; {(0; 0); (2; 2); (6; 1); (5; 4)};
{(0;∞); (1; 1); (4; 4); (3; 2)}; {(0;∞); (1; 1); (5; 0); (6; 3)};
{(0;∞); (1; 1); (7; 2); (3; 0)}; {(0;∞); (2; 2); (4; 3); (7; 4)}:

Multiply each by (8; 1)i for i = 0; 1 to obtain 12 base blocks, and develop over the
group.
For m= 11, the point set is Z11 × (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (1; 1); (2; 2); (3; 3)}; {(0;∞); (1; 1); (5; 0); (9; 4)};
{(0;∞); (2; 2); (8; 0); (6; 4)}:

Multiply each by (4; 1)i for i = 0; 1; 2; 3; 4 to obtain 15 base blocks, and develop over
the group.
For m=12, there is a 5-MGDD of type 613 [11] and hence a {4; 5}-MGDD of type

612. Triplicate each block of size 4, and replace each 5-block by a {4}-PBD of order
5 and index 3.
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For m= 14, the point set is (Z13 ∪ {∞})× (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (6; 1); (1; 4); (10; 3)}; {(0; 0); (7; 2); (6; 4); (10; 1)};
{(0; 0); (11; 1); (5; 3); (6; 2)}; {(0; 0); (3; 3); (6; 4); (1; 2)};
{(0; 0); (9; 2); (2; 3); (5; 1)}; {(∞;∞); (0; 0); (2; 2); (11; 1)};
{(0;∞); (∞; 0); (3; 1); (11; 4)}; {(0;∞); (∞; 0); (5; 3); (9; 2)};
{(0;∞); (∞; 0); (4; 1); (8; 3)}; {(∞; 0); (0; 2); (1; 3); (2; 4)};
{(∞; 0); (0; 4); (12; 1); (2; 2)}; {(0;∞); (1; 0); (12; 1); (7; 2)};
{(0;∞); (1; 0); (2; 4); (7; 2)}; {(0;∞); (1; 0); (4; 1); (9; 4)};
{(0;∞); (3; 0); (2; 2); (11; 4)}; {(0;∞); (2; 0); (6; 2); (12; 1)};
{(0;∞); (8; 0); (5; 3); (6; 4)}; {(0;∞); (10; 0); (4; 2); (12; 3)};
{(0;∞); (6; 0); (10; 4); (7; 2)}; {(0;∞); (11; 0); (8; 2); (10; 3)};
{(0;∞); (3; 0); (5; 2); (9; 1)}:

For m= 18, the point set is (Z17 ∪ {∞})× (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (1; 1); (2; 2); (3; 3)}; {(0; 0); (4; 4); (13; 3); (10; 2)};
{(0; 0); (6; 1); (12; 4); (4; 3)}; {(0; 0); (7; 2); (1; 3); (14; 1)};
{(0; 0); (8; 3); (2; 4); (7; 1)}; {(0; 0); (9; 4); (4; 1); (3; 2)};
{(0; 0); (6; 3); (2; 1); (8; 2)}; {(∞;∞); (0; 0); (7; 4); (5; 1)};
{(0;∞); (∞; 0); (5; 4); (10; 1)}; {(0;∞); (∞; 0); (1; 2); (8; 1)};
{(0;∞); (∞; 0); (7; 2); (2; 3)}; {(∞; 0); (0; 1); (12; 3); (14; 4)};
{(∞; 0); (0; 4); (1; 2); (15; 3)}; {(0;∞); (1; 0); (3; 2); (13; 1)};
{(0;∞); (6; 0); (9; 3); (8; 4)}; {(0;∞); (2; 0); (5; 3); (9; 1)};
{(0;∞); (10; 0); (14; 4); (11; 2)}; {(0;∞); (12; 0); (8; 1); (15; 4)};
{(0;∞); (1; 0); (7; 1); (11; 2)}; {(0;∞); (16; 0); (2; 1); (6; 2)};
{(0;∞); (4; 0); (11; 2); (16; 3)}; {(0;∞); (4; 0); (12; 3); (16; 1)};
{(0;∞); (14; 0); (5; 3); (13; 2)}; {(0;∞); (13; 0); (7; 1); (15; 3)};
{(0;∞); (15; 0); (9; 1); (12; 3)}; {(0;∞); (3; 0); (12; 1); (4; 2)};
{(0;∞); (6; 0); (14; 2); (3; 4)}:
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For m= 23, the point set is Z23 × (Z5 ∪ {∞}). Base blocks are:

{(0; 0); (1; 1); (2; 2); (3; 3)}; {(0;∞); (1; 1); (3; 3); (10; 0)};
{(0;∞); (1; 1); (5; 0); (14; 4)}:

Multiply each by (2; 1)i for i=0; 1; : : : ; 10 to obtain 33 base blocks, and develop over
the group.

Theorem 3.5. A 4-MGDD of index 3 and type nm exists whenever n; m¿4.

Proof. If m; n∈ S, apply Lemma 3.1. If m∈ S \{6}, apply Lemma 3.2 using the PBDs
from Lemma 3.3. This handles all cases except when n = 6, or m∈{10; 11} and
n∈{15; 18}. When n∈{15; 18} and m∈{6; 10; 11}, but (n; m) 6= (18; 6), the cases are
treated by using m∈{15; 18} in Lemma 3.2. When m=6 and n∈{7; 10; 19}, triplicate
a 4-MGDD of index one. The remaining cases arise when m=6, and these are treated
in Lemma 3.4.

Now we turn to index 2. The only cases to treat are those missing when � = 1.
For types 1015 and 1018, employ a {4}-PBD of order 10 and index 2 together with a
4-MGDD of type 415 or 418.
For 64, the point set is (Z5 ∪ {∞})× {0; 1; 2; 3}. Base blocks are:

{(∞; 0); (i; 1); (2i; 2); (3i; 3)}; {(0; 0); (∞; 1); (2i; 2); (3i; 3)};
{(0; 0); (i; 1); (∞; 2); (3i; 3)}; {(0; 0); (i; 1); (2i; 2); (∞; 3)}:

for i = 1; 2, and two copies of the base blocks {(0; 0); (4; 1); (3; 2); (2; 3)} and {(0; 0);
(3; 1); (1; 2); (4; 3)}. Since {4; 7}-PBDs of order 16, 22, 25, and 34 all exist, this settles
the remaining cases for index 2.
Putting the pieces together, we obtain:

Theorem 3.6. A 4-MGDD of type nm and index � exists whenever �(m−1)(n−1) ≡
0 (mod 3) and m; n¿4; except when �=1 and {m; n}={6; 4}; and possibly when �=1
and {m; n}∈ {{6; 16}; {6; 22}; {10; 15}; {10; 18}}.
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