Alan C.H. Ling ${ }^{\mathrm{a}}$, Charles J. Colbourn ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 1A1
${ }^{\mathrm{b}}$ Department of Computer Science, University of Vermont, Burlington, VT 05405, USA

Received 1 October 1997; revised 17 December 1998; accepted 28 June 1999

Abstract

The existence of modified group divisible designs with block size four is settled with a handful of possible exceptions. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A group divisible design (GDD) is a triple $(X, \mathscr{G}, \mathscr{B})$ which satisfies the following properties:
(1) \mathscr{G} is a partition of a set X (of points) into subsets called groups,
(2) \mathscr{B} is a set of subsets of X (blocks) such that a group and a block contain at most one common point,
(3) every pair of points from distinct groups occurs in a unique block.

The group-type (type) of the GDD is the multiset $\{|G|: G \in \mathscr{G}\}$. We usually use an 'exponential' notation to describe group-type: group-type $g_{1}^{u_{1}} \cdots g_{s}^{u_{s}}$ indicates that there are u_{i} groups of size g_{i} for $1 \leqslant i \leqslant s$. A pairwise balanced design (PBD) can be defined as a GDD whose groups all have size 1 (in this case, the groups need not be specified). See [6] for related definitions.

A K-modified $G D D$ (K-MGDD) of type a^{b} is a set of $a b$ points, equipped with a parallel class of blocks of size a, a parallel class of blocks of size b, and every block in the first parallel class meeting every block of the second; all other blocks having sizes in the set K, so that every unordered pair of points occurs together in exactly one block. As with GDDs, when $K=\{k\}$, we denote the K-MGDD by k-MGDD.

An incomplete group divisible design with block sizes from K is a quadruple $(V, \mathscr{G}, \mathscr{H}, \mathscr{B})$ where V is a finite set of cardinality $v, \mathscr{G}=\left(G_{1}, G_{2}, \ldots, G_{s}\right)$ is a partition of $V, \mathscr{H}=\left\{H_{1}, \ldots, H_{t}\right\}$ is a set of disjoint subsets of V (the G_{i} s are groups and

[^0]$H_{j} \mathrm{~s}$ are holes), and \mathscr{B} is a family of subsets of V (blocks) with the properties:
(1) Any pair of distinct elements of V which occurs together in a group or a hole does not occur in any block.
(2) Each other pair of distinct elements from V occurs in exactly one block.

Let $H_{i j}=G_{i} \cap H_{j}$, and $h_{i j}=\left|H_{i j}\right|$. The IGDD has type

$$
\left(g_{1} ; h_{11}, h_{12}, \ldots, h_{1 t}\right)^{a_{1}}\left(g_{2} ; h_{21}, h_{22}, \ldots, h_{2 t}\right)^{a_{2}} \cdots\left(g_{r} ; h_{r 1}, h_{r 2}, \ldots, h_{r t}\right)^{a_{r}}
$$

when it has a_{i} groups of size g_{i} with sizes $h_{i 1}, h_{i 2}, \ldots, h_{i t}$ of intersections with the t holes.

If we remove one or more subdesigns from a $\operatorname{TD}(k, v)$, we obtain a transversal design with holes. In the case of one hole, it is an incomplete transversal design (ITD). More formally, an ITD, denoted by $\operatorname{TD}(k, m)-\mathrm{TD}(k, n)$, is a quadruple $(X, Y, \mathscr{G}, \mathscr{B})$, where X is a set of $k m$ points, $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a partition of X into k groups of m points each, $Y \subseteq X$ is a set of $k n$ points such that $\left|Y \cap G_{j}\right|=n$ for $1 \leqslant j \leqslant k$, and \mathscr{B} is a set of subsets (blocks) of X, each of which intersects each group in exactly one point, and such that every pair of points $\{x, y\}$ from distinct groups is either in Y or occurs in a unique block but not both. The set Y is a hole.

A k-HTD (holey transversal design with block size k) of type $\left\{u_{i}: 1 \leqslant i \leqslant r\right\}$ is a structure $\left(X,\left\{Y_{i}\right\}_{1 \leqslant i \leqslant r}, \mathscr{G}, \mathscr{B}\right)$ where X is a $k m$-set (of points), $\mathscr{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a partition of X into k groups of m points each, $\left\{Y_{1}, Y_{2}, \ldots, Y_{r}\right\}$ is a partition of X into r holes, each hole $Y_{i}(1 \leqslant i \leqslant r)$ is a set of $k u_{i}$ points such that $\left|Y_{i} \cap G_{j}\right|=u_{i}$ for $1 \leqslant j \leqslant k$, and \mathscr{B} is a collection of subsets of X (blocks), each meeting each group in exactly one point, and such that no block contains two distinct points of any group or any hole, but any other pair of points of X is contained in exactly one block of \mathscr{B}.

The existence of modified group divisible designs has been studied by Assaf [3] and Assaf and Wei [4]. They have applications in constructing various types of combinatorial objects $[2,8]$. The existence of modified group divisible designs with block size three has been completely settled in [3]. In [4], the following result is proved. Let $E=\{\{10,8\},\{10,15\},\{10,18\},\{10,23\},\{19,11\},\{19,12\},\{19,14\},\{19,15\},\{19,18\}$, $\{19,23\}\}$.

Theorem 1.1. If $m, n \neq 6$, then a $4-M G D D$ of type m^{n} exists if and only if $(m-1)(n-1) \equiv 0(\bmod 3)$ with the possible exception of $\{m, n\} \in E$.

The case when one of the m or n takes on the value six, except for some small cases, was left open, mainly due to the nonexistence of a 4-MGDD of type 6^{4}. We address the existence of 4 -MGDDs of type 6^{n}. We develop some new constructions for MGDDs to settle this with few possible exceptions. We then settle the existence of 4-MGDDs with index greater than one completely.

2. Main constructions

Before we proceed, we need some direct constructions.

Lemma 2.1 (Asraf and Wei [4]). There is a $4-M G D D$ of type 6^{7}.

Proof. Let $V=\mathbb{Z}_{21} \times\{0,1\}$. A parallel class is $G_{1}=\{(3 i, j): i=0,1, \ldots, 6\}$ for $j=0,1$ and their translates. The second parallel class is $\{(7 i, j): i=0,1,2 ; j=0,1\}$ and its translates. The base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,0),(5,0),(2,1)\},\{(0,0),(6,1),(17,1),(19,1)\}, \\
& \{(0,0),(2,0),(10,1),(15,1)\},\{(0,0),(8,0),(11,1),(12,1)\}, \\
& \{(0,0),(10,0),(5,1),(9,1)\} .
\end{aligned}
$$

Develop these under \mathbb{Z}_{21} to obtain the blocks of the 4-MGDD.
Lemma 2.2 (Asraf and Wei [4]). There is a $4-M G D D$ of type 6^{10}.
Proof. Let $V=\mathbb{Z}_{5} \times \mathbb{Z}_{10} \cup H_{10}$, where $H_{10}=\left\{h_{0}, h_{1}, \ldots, h_{9}\right\}$. The first parallel class is $\left\{(0, a): a \in \mathbb{Z}_{10}\right\}$ and its translates together with H_{10}. The second parallel class is $\left\{(a, 0): a \in \mathbb{Z}_{5}\right\} \cup\left\{h_{0}\right\}$ and its translates. The base blocks are:

$$
\begin{aligned}
& \{(3,0),(4,1),(6,2),(7,3)\},\{(4,0),(5,1),(7,3),(8,2)\},\{(5,0),(6,1),(8,2),(9,3)\}, \\
& \{(0,0),(6,1),(7,3),(9,2)\},\{(0,0),(1,1),(7,2),(8,3)\},\{(1,0),(2,1),(8,4),(9,2)\}, \\
& \{(0,0),(2,1),(3,2),(9,4)\},\{(1,0),(4,2),(6,4),(9,3)\},\{(0,0),(3,1),(5,3),(8,2)\}, \\
& \{(2,0),(4,2),(7,1),(9,4)\},\{(1,0),(3,3),(6,2),(8,1)\},\{(0,0),(2,2),(5,1),(7,4)\}, \\
& \{(0,0),(1,3),(3,4),(4,1)\},\{(2,0),(3,3),(5,2),(6,1)\},\{(1,0),(2,3),(4,4),(5,1)\}, \\
& \left\{(0,4),(3,6),(1,8), h_{7}\right\},\left\{(0,5),(4,7),(1,9), h_{8}\right\},\left\{(0,0),(4,6),(1,8), h_{9}\right\}, \\
& \left\{(0,1),(3,7),(4,9), h_{0}\right\},\left\{(0,0),(3,2),(4,8), h_{1}\right\},\left\{(0,1),(2,3),(1,9), h_{2}\right\}, \\
& \left\{(0,3),(4,8),(1,9), h_{5}\right\},\left\{(0,2),(4,7),(2,8), h_{4}\right\},\left\{(0,0),(4,4),(3,9), h_{6}\right\}, \\
& \left\{(0,3),(3,4),(2,8), h_{0}\right\},\left\{(0,4),(4,5),(3,9), h_{1}\right\},\left\{(0,5),(3,9),(2,5), h_{3}\right\}, \\
& \left\{(0,0),(3,6),(1,9), h_{4}\right\},\left\{(0,1),(4,2),(3,8), h_{6}\right\},\left\{(0,2),(4,3),(2,9), h_{7}\right\}, \\
& \left\{(0,4),(3,7),(1,8), h_{2}\right\},\left\{(0,3),(1,5),(2,7), h_{6}\right\},\left\{(0,1),(3,6),(2,7), h_{3}\right\}, \\
& \left\{(0,2),(2,3),(3,7), h_{9}\right\},\left\{(0,0),(2,1),(1,7), h_{5}\right\},\left\{(0,3),(1,6),(4,7), h_{1}\right\}, \\
& \left\{(0,0),(4,2),(3,4), h_{3}\right\},\left\{(0,1),(4,3),(2,5), h_{4}\right\},\left\{(0,0),(4,5),(2,6), h_{2}\right\}, \\
& \left\{(0,2),(3,4),(2,6), h_{5}\right\},\left\{(0,0),(4,1),(2,5), h_{7}\right\},\left\{(0,1),(2,2),(1,6), h_{8}\right\}, \\
& \left\{(0,0),(3,3),(2,4), h_{8}\right\},\left\{(0,1),(1,4),(4,5), h_{9}\right\},\left\{(0,2),(1,5),(3,6), h_{0}\right\} .
\end{aligned}
$$

These base blocks under the group $\alpha:(x, y) \mapsto(x+1, y)$ and $\alpha: h_{i} \mapsto h_{i+1}$ generate the design.

Lemma 2.3. There is a 4-MGDD of type 6^{13}.

Proof. Let $V=\mathbb{Z}_{78}$. A parallel class is $\{6 i: i=0,1, \ldots, 12\}$ and its translates. The second parallel class is $\{13 i: i=0,1, \ldots, 5\}$ and its translates. The base blocks are $\{0,1,3,10\},\{0,4,27,38\},\{0,5,25,33\},\{0,14,29,61\},\{0,16,35,57\}$. Develop these blocks over \mathbb{Z}_{78}.

Lemma 2.4 (Asraf and Wei [4]). There is a $4-M G D D$ of type 6^{19}.
Proof. Let $V=\mathbb{Z}_{57} \times\{0,1\}$. The first parallel class is $\{(3 i, j): i=0,1, \ldots, 18\}$ for $j=0,1$ and their translates. The second parallel class is $\{(19 i, j): i=0,1,2 ; j=0,1\}$ and its translates. Base blocks are

$$
\begin{aligned}
& \{(0,0),(8,0),(28,0),(2,1)\},\{(0,0),(10,0),(26,0),(6,1)\}, \\
& \{(0,0),(1,1),(9,1),(35,1)\},\{(0,0),(10,1),(15,1),(32,1)\}, \\
& \{(0,0),(11,0),(25,0),(4,1)\},\{(0,0),(3,1),(5,1),(16,1)\}, \\
& \{(0,0),(1,0),(13,1),(56,1)\},\{(0,0),(2,0),(22,1),(42,1)\}, \\
& \{(0,0),(4,0),(28,1),(29,1)\},\{(0,0),(5,0),(44,1),(54,1)\}, \\
& \{(0,0),(7,0),(18,1),(34,1)\},\{(0,0),(13,0),(21,1),(46,1)\}, \\
& \{(0,0),(17,0),(43,1),(47,1)\},\{(0,0),(22,0),(17,1),(45,1)\}, \\
& \{(0,0),(23,0),(7,1),(14,1)\} .
\end{aligned}
$$

Develop the blocks under \mathbb{Z}_{57}.
Lemma 2.5. There is a 4-MGDD of type 6^{25}.

Proof. We construct the 4-MGDD on the points $\left(\left(\{a, b, c, d\} \times \mathbb{Z}_{6}\right) \cup\{\infty\}\right) \times \mathbb{Z}_{6}$. The first parallel class, containing blocks of size 25 , consists of $\left(\left(\{a, b, c, d\} \times\{i\} \times \mathbb{Z}_{6}\right) \cup\right.$ $(\{\infty\} \times\{i\})$ for $i \in \mathbb{Z}_{6}$. The second parallel class, containing blocks of size six, consists of $\{x\} \times \mathbb{Z}_{6} \times\{i\}$ for $x \in\{a, b, c, d\}$ and $i \in \mathbb{Z}_{6}$, and the block $\{\infty\} \times \mathbb{Z}_{6}$.

There is a 4 -IGDD of type $(36 ; 6,6,6,6,6,6)^{4}$, which is a holey transversal design $\mathrm{TD}(4,36)-6 \mathrm{TD}(4,6)[1]$. Place this 4-IGDD on the points $\{a, b, c, d\} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6}$, with holes on $\{a, b, c, d\} \times\{i\} \times \mathbb{Z}_{6}$ for $i \in \mathbb{Z}_{6}$ and groups on $\{x\} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6}$ for $x \in\{a, b, c, d\}$. For $x \in\{a, b, c, d\}$, place a 4 -MGDD of type 6^{7} on $\left(\{x\} \times \mathbb{Z}_{6} \times \mathbb{Z}_{6}\right) \cup\left(\{\infty\} \times \mathbb{Z}_{6}\right)$, aligning the parallel class of blocks of size seven on $\left(\{x\} \times\{j\} \times \mathbb{Z}_{6}\right) \cup(\{\infty\} \times\{j\})$ for $j \in \mathbb{Z}_{6}$, and the parallel class of blocks of size six on $\{x\} \times \mathbb{Z}_{6} \times\{j\}$ for $j \in \mathbb{Z}_{6}$ together with the block $\{\infty\} \times \mathbb{Z}_{6}$. Omit the blocks of size seven in this placement (each appears within one of the final blocks of size 25).

Lemma 2.6. There is a 4-MGDD of type 6^{31}.

Proof. Let $V=\mathbb{Z}_{93} \times\{0,1\}$. The first parallel class consists of the translates of $\{(0,0),(31,0),(62,0),(0,1),(31,1),(62,1)\}$. The second parallel class is $\{(3 i, j)$: $i=0,1, \ldots, 30\}$ for $j=0,1$ and their translates. Base blocks are

$$
\begin{aligned}
& \{(0,0),(1,0),(8,0),(87,1)\},\{(0,1),(1,1),(8,1),(3,0)\}, \\
& \{(0,0),(5,0),(14,1),(27,1)\},\{(0,0),(10,0),(17,1),(67,1)\}, \\
& \{(0,0),(14,0),(43,1),(53,1)\} .
\end{aligned}
$$

Multiply the first coordinate of each block by 16^{i} for $i=1,2,3,4$ to obtain 20 further blocks. Develop them over \mathbb{Z}_{93}.

Lemma 2.7. There is a $4-M G D D$ of type 6^{37}.

Proof. Let $V=\mathbb{Z}_{222}$. The first parallel class is $\{37 i: i=0,1, \ldots, 5\}$ and its translates, and the second parallel class is $\{6 i: i=0,1, \ldots, 36\}$ and its translates. The base blocks are $\{0,1,8,21\},\{0,25,56,117\},\{0,43,128,28\},\{0,49,182,196\},\{0,67,129,70\}$. Multiply each of them by 211 and 121 to obtain 10 more blocks. Develop these 15 blocks over \mathbb{Z}_{222}.

Here is the first recursive construction.

Lemma 2.8. Suppose there exists a 4-MGDD of type 6^{r} and there exists a 4-IGDD of type $(6 r ; r, r, \ldots, r)^{h}$, then there is a 4-MGDD of type $6^{r h}$.

Proof. Align the h copies of 4-MGDD of type 6^{r} on the h groups of the IGDD so that the block of size r coincides with the hole. Use each hole to form a new block of size $r h$.

Let $I_{n}=\{1,2, \ldots, n\}$ be an index set on n elements.

Lemma 2.9. Suppose there exists a $\operatorname{TD}(7, m)$ and a $4-M G D D$ of type $(3 a+1)^{6}$ where $0 \leqslant a \leqslant m-1$. Then there exists a $4-M G D D$ of type $(6 m+3 a+1)^{6}$.

Proof. Let G_{1}, \ldots, G_{7} be the groups of a $\operatorname{TD}(7, m)$, and let \mathscr{B} be its blocks. Let $V=\bigcup_{i=1}^{6} G_{i}$. Truncate G_{7} to $a+1$ points, $s_{0}, s_{1}, \ldots s_{a}$. We construct a 4-MGDD of type $(6 m+3 a+1)^{6}$ on the point set $\left(V \times I_{6}\right) \cup\left(\left\{s_{0}\right\} \times I_{6}\right) \cup\left(\left\{s_{i}: i=1,2, \ldots, a\right\} \times\right.$ $\left.I_{3} \times I_{6}\right)$. The first parallel class, consisting of blocks of size $6 m+3 a+1$, of the 4-MGDD contains $\left(G_{j} \times I_{6}\right) \cup\left(\left\{s_{0}\right\} \times\{j\}\right) \cup\left(\left\{s_{i}: i=1,2, \ldots, a\right\} \times I_{3} \times\{j\}\right.$), for $j \in I_{6}$. The second parallel class, consisting of blocks of size six, contains $\{x\} \times I_{6}$ for $x \in\left\{s_{0}\right\} \cup\left(\left\{s_{i}: i=1,2, \ldots, a\right\} \times I_{3}\right)$, and $\left(B \backslash\left\{s_{0}\right\}\right) \times\{i\}$ for $i \in I_{6}$ and all $B \in \mathscr{B}$ with $s_{0} \in B$.

For every block B of size seven in the original $\operatorname{TD}(7, m)$ containing the point s_{0}, we put a 4 -MGDD of type 6^{7} on $B \times I_{6}$ so that the blocks of size six align on
$\left(B \backslash\left\{s_{0}\right\}\right) \times\{i\}$ for $i \in I_{6}$, and the block $\left\{s_{0}\right\} \times I_{6}$, and the blocks of size seven align on $\left(\left\{x_{j}\right\} \times I_{6}\right) \cup\left(\left\{s_{0}\right\} \times\{j\}\right)$ where $x_{j} \in B \cap G_{j}$ for $j \in I_{6}$. Omit the blocks of size seven in each placement, as each contains points of a block of size $6 m+3 a+1$.

For every other block $B \in \mathscr{B}$ of size seven in the truncated $\operatorname{TD}(7, m)$, put a 4-IGDD of type $(9,3)^{6}$ on $\left(\left(B \backslash\left\{s_{i}\right\}\right) \times I_{6}\right) \cup\left(\left\{s_{i}\right\} \times I_{3} \times I_{6}\right)$ so that the hole aligns on $\left\{s_{i}\right\} \times I_{3} \times I_{6}$ and the groups align on $\left(\left\{a_{i}\right\} \times I_{6}\right) \cup\left(\left\{s_{i}\right\} \times I_{3} \times\{i\}\right)$ where $a_{i}=B \cap G_{i}$, with G_{i} being the i th group in the original design. For every block B of size six, put a 4-GDD of type 6^{6} on the set $B \times I_{6}$, aligning the groups on $\{x\} \times I_{6}$ for $x \in B$. Finally, put a 4-MGDD of type $(3 a+1)^{6}$ on the set $\left(\left\{s_{0}\right\} \times I_{6}\right) \cup\left(\left\{s_{i}: i=1,2, \ldots, a\right\} \times I_{3} \times I_{6}\right)$, to get a 4-MGDD of type $(6 m+3 a+1)^{6}$.

With the two recursions, we are now in a position to close the spectrum of 4-MGDDs of type 6^{r}.

Lemma 2.10. If $g \equiv 1(\bmod 6), g \geqslant 43$, there exists a $4-M G D D$ of type 6^{g}.

Proof. When m is odd and $m \geqslant 7$, there exists a $\operatorname{TD}(7, m)$ with the possible exceptions of $m=15,39$ [1]. Apply Lemma 2.9 with $a=0,2,4,6$ to obtain a 4-MGDD of type $(6 m+1)^{6},(6 m+7)^{6},(6 m+13)^{6}$ and $(6 m+19)^{6}$.

Combining Lemmas 2.1, 2.3-2.7 and 2.10, we obtain:

Lemma 2.11. If $g \equiv 1(\bmod 6)$, there exists a $4-M G D D$ of type 6^{9}.
Lemma 2.12. There are $4-M G D D$ s of type 6^{28} and 6^{40}.

Proof. There exist 4-HTDs of type 7^{6} and 10^{6} [1]; these are 4-IGDDs of types $(42 ; 7,7,7,7,7,7)^{4}$ and $(60 ; 10,10,10,10,10,10)^{4}$, respectively. Apply Lemma 2.8 .

Lemma 2.13. There exists a 4-MGDD of type 6^{34}.
Proof. Start with a 3-GDD of type 6^{6}, whose blocks can be partitioned into frame parallel classes [10]. Give weight 4 using a resolvable 3-MGDD of type 3^{4}, and extend the resulting parallel classes to get a 4-IGDD of type $\left(6^{4} 9^{1}\right)^{6}$. Use 4-MGDDs of types 6^{7} and 6^{10} to fill groups.

Lemma 2.14. If $m \geqslant 63$, there exists a $4-M G D D$ of type $(6 m+10)^{6}$.
Proof. A TD $(7, m)$ exists for all $m \geqslant 63$ [1]. Apply Lemma 2.9 with $a=3$ to obtain a 4-MGDD of type $(6 m+10)^{6}$, using the 4-MGDD of type 6^{10} from Lemma 2.2.

Lemma 2.15. Let $g \equiv 4(\bmod 6)$. If $g \notin\{70,94,100,118,130,142,166,190,214,238$, $244,286,334,370,382\}$ and $g \geqslant 52$, then there exists a $4-M G D D$ of type g^{6}.

Proof. Lemma 2.14 handles all cases when $g>382$. Now apply Lemma 2.9 with $a=3$ and values of $m \leqslant 62$ for which a $\mathrm{TD}(7, m)$ exists [1].

Lemma 2.16. If $g \geqslant 52$ and $g \neq 70,118$, then there is a $4-M G D D$ of type g^{6}.
Proof. First apply Lemma 2.15. Then use Lemma 2.9 with $a=9$ and values of $m=11,12,17,19,23,27,31,35,36,43,51,57$, and 59 . The $4-M G D D$ of type 6^{28} exists by Lemma 2.12.

Lemma 2.17. There is a 4-MGDD of type 6^{46}.
Proof. Give weight nine to all points in a block of a $\operatorname{TD}(6,7)$, and give weight six to all other points. Append a new column of six points. Take a parallel class of blocks of size six including the block in which all points have weight nine. For every block in the parallel class, put a 4-MGDD of type $(k+1)^{6}(k=6,9)$ on the corresponding points together with the new adjoined points. For every other block, put a 4-GDD of type 6^{6} or $6^{5} 9^{1}$ [9]. This gives a 4-MGDD of type 6^{46}.

Lemma 2.18. There exists a $4-M G D D$ of type 6^{70}.
Proof. Take a 4-MGDD of type 7^{6} (Lemma 2.1) and give every point weight 10. For every block of size six, put a 4-MGDD of type 10^{6} (Lemma 2.2) on the 60 points. For every block of size four, put a 4-GDD of type 10^{4}. This gives a 4-MGDD of type 6^{70}.

Lemma 2.19. There exists a 4-MGDD of type 6^{118}.

Proof. Take a 4-MGDD of type 13^{6} (Lemma 2.3). Give every point weight nine and append a new column of six points. For every block of size 6 , employ a 4-MGDD of type 10^{6} (Lemma 2.2). For every other block of size four, employ with a 4-GDD of type 9^{4} [9]. This gives a 4-MGDD of type 6^{118}.

Combining Lemmas 2.12, 2.15-2.19, we have the following result.
Lemma 2.20. If $g \equiv 4(\bmod 6), g \neq 4,16,22$, there exists a $4-M G D D$ of type 6^{g}.
Finally, we combine Lemmas 2.11 and 2.20 to yield:
Theorem 2.21. There is a $4-M G D D$ of type 6^{n} for all $n \in\{16,22\}, n \equiv 1(\bmod 3)$ and $n \geqslant 7$.

In addition, we update the theorem of Assaf and Wei [4].
Lemma 2.22. There is a $4-M G D D$ of type 10^{8}.

Proof. Let $V=\mathbb{Z}_{10} \times\left(\mathbb{Z}_{7} \cup\{\infty\}\right)$. The first parallel class is $\left\{\{i\} \times\left(\mathbb{Z}_{7} \cup\{\infty\}: i \in \mathbb{Z}_{10}\right\}\right.$. The second parallel class is $\left\{\mathbb{Z}_{10} \times\{j\}: j \in \mathbb{Z}_{7} \cup\{\infty\}\right\}$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(3,3),(9,2\},\{(0,0),(4,4),(5,1),(8,6\}, \\
& \{(0,0),(5,5),(7,3),(1,6\},\{(0, \infty),(1,1),(7,3),(8,6\}, \\
& \{(0, \infty),(2,2),(5,1),(3,4\},\{(0, \infty),(4,4),(9,1),(6,0\} .
\end{aligned}
$$

Lemma 2.23. There is a 4-MGDD of type 10^{23}.
Proof. Let $V=\mathbb{Z}_{5} \times\{0,1\} \times \mathbb{Z}_{23}$. The two parallel classes are $\left\{(0,0, i),(0,1, i): i \in \mathbb{Z}_{23}\right\}$ and $\left\{(i, 0,0),(i, 1,0): i \in \mathbb{Z}_{5}\right\}$ and its translates. The base blocks are

$$
\begin{aligned}
& \{(0,0,0),(1,0,1),(4,0,2),(0,1,3)\},\{(0,0,0),(0,1,5),(2,1,1),(3,1,2)\}, \\
& \{(1,0,0),(4,0,5),(2,1,10),(3,1,15)\} .
\end{aligned}
$$

Multiply each block by $\left(-,-, 2^{i}\right)$ for $i=1,2, \ldots, 10$ to obtain the remaining base blocks.

Lemma 2.24. There is a $4-M G D D$ of type 19^{11}.
Proof. Let $V=\mathbb{Z}_{19} \times \mathbb{Z}_{11}$. The two parallel classes are $\left\{(0, i): i \in \mathbb{Z}_{19}\right\}$ and $\{(i, 0)$: $\left.i \in \mathbb{Z}_{11}\right\}$ together with their translates over $\mathbb{Z}_{19} \times \mathbb{Z}_{11}$. The base blocks are

$$
\begin{aligned}
& \{(0,0),(1,1),(3,2),(12,3)\},\{(0,0),(1,2),(5,1),(13,8)\}, \\
& \{(0,0),(4,1),(6,7),(9,8)\} .
\end{aligned}
$$

Multiply each block by $(1,4)^{i}$ (i.e., multiply the first component by 1^{i} and the second by 4^{i}) for $i=1,2,3,4$ to obtain 12 more blocks. Develop these blocks over $\mathbb{Z}_{19} \times \mathbb{Z}_{11}$.

Lemma 2.25. There is a 4-MGDD of type 19^{12}.
Proof. Take a 5-MGDD of type 6^{13} [10] and remove a group of size six to obtain a $\{4,5\}$-MGDD of type 6^{12}. Give weight three to each point and append a new column of 12 points. Employ 4-GDDs of type 3^{4} and 3^{5} and a 4-MGDD of type 4^{12}.

Lemma 2.26. There is a 4-MGDD of type 19^{14}.
Proof. Let $V=\mathbb{Z}_{19} \times\left(\mathbb{Z}_{13} \cup\{\infty\}\right)$. The first parallel class is $\left\{\{i\} \times\left(\mathbb{Z}_{13} \cup\{\infty\}\right): i \in \mathbb{Z}_{19}\right\}$. The second parallel class is $\left\{\mathbb{Z}_{19} \times\{j\}: j \in \mathbb{Z}_{13} \cup\{\infty\}\right\}$. Take the blocks

$$
\begin{aligned}
& \{(0,0),(1,1),(3,3),(7,7)\},\{(0,0),(5,5),(14,1),(11,4)\}, \\
& \{(0,0),(8,8),(18,5),(16,9)\},\{(0,0),(11,11),(15,8),(7,10)\}, \\
& \{(0,0),(15,2),(9,7),(3,5)\},\{(0, \infty),(1,1),(15,8),(12,10)\}, \\
& \{(0, \infty),(2,2),(16,8),(4,1)\}
\end{aligned}
$$

and multiply each by $(11,1)^{i}$ for $i=0,1,2$ to obtain 21 base blocks. Develop these under the action of the group.

Lemma 2.27. There is a 4-MGDD of type 19^{15}.
Proof. Let $V=\mathbb{Z}_{19} \times \mathbb{Z}_{15}$. The two parallel classes are $\left\{(i, 0): i \in \mathbb{Z}_{19}\right\}$ and $\{(0, i)$: $\left.i \in \mathbb{Z}_{15}\right\}$ together with their translates over $\mathbb{Z}_{19} \times \mathbb{Z}_{15}$. Take the blocks

$$
\begin{aligned}
& \{(0,0),(1,1),(3,3),(7,7)\},\{(0,0),(5,5),(14,14),(6,10)\}, \\
& \{(0,0),(10,10),(3,7),(1,9)\},\{(0,0),(13,13),(12,1),(16,9)\}, \\
& \{(0,0),(9,13),(8,9),(11,2)\},\{(0,0),(15,4),(3,12),(18,5)\}, \\
& \{(0,0),(17,6),(15,1),(4,3)\} .
\end{aligned}
$$

and multiply each by $(11,1)^{i}$ for $i=0,1,2$ to obtain 21 base blocks. Develop these under the action of the group.

Lemma 2.28. There is a 4-MGDD of type 19^{18}.

Proof. Let $V=\mathbb{Z}_{19} \times\left(\mathbb{Z}_{17} \cup\{\infty\}\right)$. The first parallel class is $\left\{\{i\} \times\left(\mathbb{Z}_{17} \cup\{\infty\}\right): i \in \mathbb{Z}_{19}\right\}$. The second parallel class is $\left\{\mathbb{Z}_{19} \times\{j\}: j \in \mathbb{Z}_{17} \cup\{\infty\}\right\}$. Take the blocks

$$
\begin{aligned}
& \{(0,0),(1,1),(3,3),(7,7)\},\{(0,0),(5,5),(14,14),(6,8)\}, \\
& \{(0,0),(8,8),(18,1),(11,13)\},\{(0,0),(15,15),(17,2),(13,4)\}, \\
& \{(0,0),(16,16),(2,6),(4,14)\},\{(0,0),(9,11),(12,7),(15,16)\}, \\
& \{(0,0),(14,16),(18,9),(7,12)\},\{(0, \infty),(1,1),(4,8),(8,7)\}, \\
& \{(0, \infty),(2,2),(13,4),(17,16)\}
\end{aligned}
$$

and multiply each by $(7,1)^{i}$ for $i=0,1,2$ to obtain 27 base blocks. Develop these under the action of the group.

Lemma 2.29. There is a $4-M G D D$ of type 19^{23}.

Proof. Let $V=\mathbb{Z}_{19} \times \mathbb{Z}_{23}$. The two parallel classes are $\left\{(0, i): i \in \mathbb{Z}_{23}\right\}$ and $\{(i, 0)$: $\left.i \in \mathbb{Z}_{19}\right\}$ together with their translates over $\mathbb{Z}_{19} \times \mathbb{Z}_{23}$. The base blocks are

$$
\begin{aligned}
& \{(0,0),(1,1),(3,2),(12,3)\},\{(0,0),(1,5),(5,1),(13,2)\}, \\
& \{(0,0),(4,1),(6,6),(9,11)\} .
\end{aligned}
$$

Multiply each block by $(1,2)^{i}$ for $i=1,2, \ldots, 10$ to obtain 30 more blocks. Develop these blocks over $\mathbb{Z}_{19} \times \mathbb{Z}_{23}$.

With these lemmas, we can restate the theorem.
Let $F=\{\{6,16\},\{6,22\},\{10,15\},\{10,18\}\}$.

Theorem 2.30. If $\{m, n\} \neq\{6,4\}$, then there exists $a 4-M G D D$ of type m^{n} if and only if $(m-1)(n-1) \equiv 0(\bmod 3)$ with the possible exceptions of $\{m, n\} \in F$.

3. Index greater than one

The definitions at the outset can all be generalized to require each pair not in a group together (or not in a hole together, or not in a block of one of the distinguished parallel classes together) to appear in exactly λ blocks. In this case, we obtain various classes of designs with index λ. When $\lambda=1$, we recover the definitions of the preceding sections.

In this section, we examine the existence of 4-MGDDs with index greater than one. Simple counting establishes that for a 4-MGDD of type m^{n} and index λ to exist, one requires that $\lambda(m-1)(n-1) \equiv 0(\bmod 3)$ and $m, n \geqslant 4$. Hence when $\lambda \equiv 0(\bmod 3)$, the basic necessary condition reduces to $m, n \geqslant 4$. When $\lambda \not \equiv 0(\bmod 3)$, the basic necessary condition is the same as for index one. Now the union of two 4-MGDDs of type m^{n}, one of index λ_{1} and the other of index λ_{2}, is a 4-MGDD of type m^{n} and index $\lambda_{1}+\lambda_{2}$. Hence it suffices to examine cases with $\lambda \in\{2,3\}$ when the $4-\mathrm{MGDD}$ of index one and type m^{n} is nonexistent or unknown although the basic necessary condition is met, and cases with $\lambda=3$ when $m, n \equiv 0,2(\bmod 3)$ and $m, n \geqslant 4$.

First, we treat the cases with $\lambda=3$.

Lemma 3.1. If whenever $n, m \in S=\{4,5,6,7,8,9,10,11,12,14,15,18,19,23\}$ there is a 4-MGDD of type n^{m} and index 3, then whenever $n, m \geqslant 4$, there is a $4-M G D D$ of type n^{m} and index 3.

Proof. There exist PBDs with block sizes from S of order n and m [5]. Let (V, \mathscr{B}) be such a PBD of order m, and (W, \mathscr{D}) be such a PBD of order n. We form the required 4-MGDD on the point set $V \times W$. For $B \in \mathscr{B}$ and $D \in \mathscr{D}$, place a 4-MGDD of index 3 on $B \times D$, omitting the parallel classes on $\{b\} \times D$ for $b \in B$, and on $B \times\{d\}$ for $d \in D$.

Lemma 3.2. Let $K \subseteq\{4,7,10,13,19\}$. If a $K-P B D$ of order m and index 3 exists, and $n \in S$, then a $4-M G D D$ of type n^{m} and index 3 exists except possibly when $4 \in K$ and $n=6$, or when $10 \in K$ and $n \in\{15,18\}$.

Proof. Let (V, \mathscr{B}) be the K-PBD of order m and index 3 . Let W be an n-set. We form the required 4-MGDD on the point set $V \times W$. For $B \in \mathscr{B}$, place a 4-MGDD of index 1 on $B \times W$, omitting the parallel classes on $\{b\} \times W$ for $b \in B$, and on $B \times\{w\}$ for $w \in W$.

In view of Lemma 3.1, useful ingredients for Lemma 3.2 have $m \in S$.

Lemma 3.3. There is $a\{4\}-P B D$ of index 3 and order m whenever $m \equiv 0,1(\bmod 4)$. There is $a\{7\}-P B D$ of index 3 and order 15. There is a \{4,10\}-PBD of index 3 and order 11. There are $\{4,7\}$-PBDs of index 3 and orders 14,18 , and 23.

Proof. For the first two statements, see [7]. For order 11, employ base blocks $\{0,1,5,7\}$ and $\{\infty, 0,1,3\}$ over $\mathbb{Z}_{10} \cup\{\infty\}$, together with \mathbb{Z}_{10} as a block of size 10 . For order 14 , on $\mathbb{Z}_{7} \times\{0,1\}$, take base blocks

$$
\begin{aligned}
& \{(0,0),(1,0),(0,1),(3,1)\},\{(0,0),(2,0),(0,1),(6,1)\}, \\
& \{(0,0),(4,0),(0,1),(5,1)\},\{(0,0),(1,1),(2,1),(4,1)\}, \\
& \{(0,1),(1,0),(2,0),(4,0)\},\{(0,1),(3,0),(5,0),(6,0)\},
\end{aligned}
$$

together with the single block $\mathbb{Z}_{7} \times\{1\}$ of size 7 .
For order 18 , on $\mathbb{Z}_{9} \times\{0,1\}$, form the base blocks

$$
\begin{aligned}
& \{(0,0),(1,0),(2,0),(4,0),(0,1),(1,1),(3,1)\},\{(0,0),(1,0),(4,0),(4,1)\}, \\
& \{(0,0),(2,0),(5,0),(7,1)\},\{(0,0),(1,1),(4,1),(5,1)\},\{(0,0),(2,1),(4,1),(6,1)\}, \\
& \{(0,0),(3,1),(6,1),(7,1)\} .
\end{aligned}
$$

For order 23 , on $\mathbb{Z}_{16} \cup\left\{\infty_{i}: 0 \leqslant i \leqslant 6\right\}$, form the base blocks

$$
\begin{aligned}
& \left\{\infty_{0}, 0,1,3\right\},\left\{\infty_{1}, 0,1,5\right\},\left\{\infty_{2}, 0,1,8\right\},\left\{\infty_{3}, 0,2,7\right\},\left\{\infty_{4}, 0,2,5\right\}, \\
& \left\{\infty_{5}, 0,3,9\right\},\left\{\infty_{6}, 0,4,10\right\}
\end{aligned}
$$

with the short orbit $\{0,4,8,12\}$, and a block of size 7 on the infinite points included three times.

We must treat cases when $n=6$ and $m \in\{4,5,6,8,9,11,12,14,18,23\}$ to complete the solution for index 3 .

In the constructions of the next lemma, whenever the point set has the form $X \times Y$, parallel classes are obtained as $\{\{(x, y): x \in X\}: y \in Y\}$ and $\{\{(x, y): y \in Y\}: x \in X\}$.

Lemma 3.4. Whenever $m \in\{4,5,6,8,9,11,12,14,18,23\}$, a $4-M G D D$ of index three and type 6^{m} exists.

Proof. For $m=4$, the point set is $\left(\mathbb{Z}_{5} \cup\{\infty\}\right) \times\{0,1,2,3\}$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(i, 1),(2 i, 2),(3 i, 3)\},\{(\infty, 0),(i, 1),(2 i, 2),(3 i, 3)\}, \\
& \{(0,0),(\infty, 1),(2 i, 2),(3 i, 3)\},\{(0,0),(i, 1),(\infty, 2),(3 i, 3)\}, \\
& \{(0,0),(i, 1),(2 i, 2),(\infty, 3)\}
\end{aligned}
$$

for $i=1,2,3$, and three copies of the base block $\{(0,0),(4,1),(3,2),(2,3)\}$.
For $m=5$, the point set is \mathbb{Z}_{30}, parallel classes are equivalence classes modulo 5 and modulo 6 , and base blocks are

$$
\{0,1,2,3\},\{0,2,9,16\},\{0,3,7,16\},\{0,3,11,22\},\{0,4,8,17\} .
$$

For $m=6$, the point set is $\left(\mathbb{Z}_{5} \cup\{\infty\}\right) \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(2,3),(3,2)\},\{(3,0),(4,1),(1,3),(0, \infty)\}, \\
& \{(2,0),(3,1),(4,3),(0, \infty)\},\{(0,3),(1,1),(2,4),(\infty, 0)\}, \\
& \{(0,4),(2,3),(4,2),(\infty, 0)\},\{(4,2),(1,3),(0, \infty),(\infty, 0)\}, \\
& \{(2,1),(3,4),(0, \infty),(\infty, 0)\},\{(1,2),(2,1),(0, \infty),(\infty, 0)\}, \\
& \{(0,0),(1,4),(3,1),(\infty, \infty)\} .
\end{aligned}
$$

For $m=8$, the point set is $\left(\mathbb{Z}_{7} \cup\{\infty\}\right) \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(3,3),(5,2)\},\{(0,0),(4,4),(6,3),(1,2)\}, \\
& \{(\infty, \infty),(0,0),(6,1),(5,2)\},\{(0, \infty),(\infty, 0),(1,1),(2,2)\}, \\
& \{(0, \infty),(\infty, 0),(3,2),(5,4)\},\{(0, \infty),(\infty, 0),(4,3),(1,4)\}, \\
& \{(0, \infty),(4,0),(5,3),(6,1)\},\{(0, \infty),(1,0),(4,3),(6,4)\}, \\
& \{(0, \infty),(2,2),(3,4),(6,0)\},\{(0, \infty),(2,4),(3,2),(5,0)\}, \\
& \{(\infty, 0),(0,1),(6,2),(3,3)\},\{(\infty, 0),(0,3),(1,4),(3,1)\} .
\end{aligned}
$$

For $m=9$, the point set is $\mathbb{Z}_{9} \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(2,2),(3,3)\},\{(0,0),(2,2),(6,1),(5,4)\}, \\
& \{(0, \infty),(1,1),(4,4),(3,2)\},\{(0, \infty),(1,1),(5,0),(6,3)\}, \\
& \{(0, \infty),(1,1),(7,2),(3,0)\},\{(0, \infty),(2,2),(4,3),(7,4)\} .
\end{aligned}
$$

Multiply each by $(8,1)^{i}$ for $i=0,1$ to obtain 12 base blocks, and develop over the group.

For $m=11$, the point set is $\mathbb{Z}_{11} \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(2,2),(3,3)\},\{(0, \infty),(1,1),(5,0),(9,4)\}, \\
& \{(0, \infty),(2,2),(8,0),(6,4)\}
\end{aligned}
$$

Multiply each by $(4,1)^{i}$ for $i=0,1,2,3,4$ to obtain 15 base blocks, and develop over the group.

For $m=12$, there is a 5 -MGDD of type 6^{13} [11] and hence a $\{4,5\}$-MGDD of type 6^{12}. Triplicate each block of size 4 , and replace each 5 -block by a $\{4\}$-PBD of order 5 and index 3.

For $m=14$, the point set is $\left(\mathbb{Z}_{13} \cup\{\infty\}\right) \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(6,1),(1,4),(10,3)\},\{(0,0),(7,2),(6,4),(10,1)\}, \\
& \{(0,0),(11,1),(5,3),(6,2)\},\{(0,0),(3,3),(6,4),(1,2)\}, \\
& \{(0,0),(9,2),(2,3),(5,1)\},\{(\infty, \infty),(0,0),(2,2),(11,1)\}, \\
& \{(0, \infty),(\infty, 0),(3,1),(11,4)\},\{(0, \infty),(\infty, 0),(5,3),(9,2)\}, \\
& \{(0, \infty),(\infty, 0),(4,1),(8,3)\},\{(\infty, 0),(0,2),(1,3),(2,4)\}, \\
& \{(\infty, 0),(0,4),(12,1),(2,2)\},\{(0, \infty),(1,0),(12,1),(7,2)\}, \\
& \{(0, \infty),(1,0),(2,4),(7,2)\},\{(0, \infty),(1,0),(4,1),(9,4)\}, \\
& \{(0, \infty),(3,0),(2,2),(11,4)\},\{(0, \infty),(2,0),(6,2),(12,1)\}, \\
& \{(0, \infty),(8,0),(5,3),(6,4)\},\{(0, \infty),(10,0),(4,2),(12,3)\}, \\
& \{(0, \infty),(6,0),(10,4),(7,2)\},\{(0, \infty),(11,0),(8,2),(10,3)\}, \\
& \{(0, \infty),(3,0),(5,2),(9,1)\} .
\end{aligned}
$$

For $m=18$, the point set is $\left(\mathbb{Z}_{17} \cup\{\infty\}\right) \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(2,2),(3,3)\},\{(0,0),(4,4),(13,3),(10,2)\}, \\
& \{(0,0),(6,1),(12,4),(4,3)\},\{(0,0),(7,2),(1,3),(14,1)\}, \\
& \{(0,0),(8,3),(2,4),(7,1)\},\{(0,0),(9,4),(4,1),(3,2)\}, \\
& \{(0,0),(6,3),(2,1),(8,2)\},\{(\infty, \infty),(0,0),(7,4),(5,1)\}, \\
& \{(0, \infty),(\infty, 0),(5,4),(10,1)\},\{(0, \infty),(\infty, 0),(1,2),(8,1)\}, \\
& \{(0, \infty),(\infty, 0),(7,2),(2,3)\},\{(\infty, 0),(0,1),(12,3),(14,4)\}, \\
& \{(\infty, 0),(0,4),(1,2),(15,3)\},\{(0, \infty),(1,0),(3,2),(13,1)\}, \\
& \{(0, \infty),(6,0),(9,3),(8,4)\},\{(0, \infty),(2,0),(5,3),(9,1)\}, \\
& \{(0, \infty),(10,0),(14,4),(11,2)\},\{(0, \infty),(12,0),(8,1),(15,4)\}, \\
& \{(0, \infty),(1,0),(7,1),(11,2)\},\{(0, \infty),(16,0),(2,1),(6,2)\}, \\
& \{(0, \infty),(4,0),(11,2),(16,3)\},\{(0, \infty),(4,0),(12,3),(16,1)\}, \\
& \{(0, \infty),(14,0),(5,3),(13,2)\},\{(0, \infty),(13,0),(7,1),(15,3)\}, \\
& \{(0, \infty),(15,0),(9,1),(12,3)\},\{(0, \infty),(3,0),(12,1),(4,2)\}, \\
& \{(0, \infty),(6,0),(14,2),(3,4)\} .
\end{aligned}
$$

For $m=23$, the point set is $\mathbb{Z}_{23} \times\left(\mathbb{Z}_{5} \cup\{\infty\}\right)$. Base blocks are:

$$
\begin{aligned}
& \{(0,0),(1,1),(2,2),(3,3)\},\{(0, \infty),(1,1),(3,3),(10,0)\}, \\
& \{(0, \infty),(1,1),(5,0),(14,4)\}
\end{aligned}
$$

Multiply each by $(2,1)^{i}$ for $i=0,1, \ldots, 10$ to obtain 33 base blocks, and develop over the group.

Theorem 3.5. A 4-MGDD of index 3 and type n^{m} exists whenever $n, m \geqslant 4$.

Proof. If $m, n \in S$, apply Lemma 3.1. If $m \in S \backslash\{6\}$, apply Lemma 3.2 using the PBDs from Lemma 3.3. This handles all cases except when $n=6$, or $m \in\{10,11\}$ and $n \in\{15,18\}$. When $n \in\{15,18\}$ and $m \in\{6,10,11\}$, but $(n, m) \neq(18,6)$, the cases are treated by using $m \in\{15,18\}$ in Lemma 3.2. When $m=6$ and $n \in\{7,10,19\}$, triplicate a 4-MGDD of index one. The remaining cases arise when $m=6$, and these are treated in Lemma 3.4.

Now we turn to index 2 . The only cases to treat are those missing when $\lambda=1$. For types 10^{15} and 10^{18}, employ a $\{4\}-\mathrm{PBD}$ of order 10 and index 2 together with a 4-MGDD of type 4^{15} or 4^{18}.

For 6^{4}, the point set is $\left(\mathbb{Z}_{5} \cup\{\infty\}\right) \times\{0,1,2,3\}$. Base blocks are:

$$
\begin{aligned}
& \{(\infty, 0),(i, 1),(2 i, 2),(3 i, 3)\},\{(0,0),(\infty, 1),(2 i, 2),(3 i, 3)\} \\
& \{(0,0),(i, 1),(\infty, 2),(3 i, 3)\},\{(0,0),(i, 1),(2 i, 2),(\infty, 3)\}
\end{aligned}
$$

for $i=1,2$, and two copies of the base blocks $\{(0,0),(4,1),(3,2),(2,3)\}$ and $\{(0,0)$, $(3,1),(1,2),(4,3)\}$. Since $\{4,7\}$-PBDs of order $16,22,25$, and 34 all exist, this settles the remaining cases for index 2.

Putting the pieces together, we obtain:

Theorem 3.6. A 4-MGDD of type n^{m} and index λ exists whenever $\lambda(m-1)(n-1) \equiv$ $0(\bmod 3)$ and $m, n \geqslant 4$, except when $\lambda=1$ and $\{m, n\}=\{6,4\}$, and possibly when $\lambda=1$ and $\{m, n\} \in\{\{6,16\},\{6,22\},\{10,15\},\{10,18\}\}$.

Acknowledgements

Thanks to Ron Mullin and two anonymous referees for useful suggestions, and to Ahmed Assaf for the preprint of [4]. The research of the first author was sponsored by NSERC postgraduate scholarship, while he was a doctoral student at the University of Waterloo. The research of the second author was undertaken at the Department of Computer Science, University of Auckland, whose hospitality is gratefully acknowledged.

References

[1] R.J.R. Abel, A.E. Brouwer, C.J. Colbourn, J.H. Dinitz, Mutually orthogonal latin squares (MOLS), in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton FL, 1996, pp. 111-142.
[2] A. Assaf, An application of modified group divisible designs, J. Combin. Theory A 68 (1994) 152-168.
[3] A. Assaf, Modified group divisible designs, Ars Combin. 29 (1990) 13-20.
[4] A. Assaf, R. Wei, Modified group divisible designs with block size 4 and $\lambda=1$, preprint.
[5] F.E. Bennett, H.D.O.F. Gronau, A.C.H. Ling, R.C. Mullin, PBD-closure, in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Ruton, FL, 1996, pp. 203-213.
[6] T. Beth, D. Jungnickel, H. Lenz, Design Theory, Cambridge University Press, Cambridge, England, 1986.
[7] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975) 255-369.
[8] A.C.H. Ling, Pairwise balanced designs and related codes, Ph.D. Thesis, University of Waterloo, 1996.
[9] R.C. Mullin, H-D.O.F. Gronau, PBDs: Recursive Constructions, in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 193-203.
[10] R. Rees, D.R. Stinson, Frames with block size four, Canadian J. Math. 44 (1992) 1030-1049.
[11] J.X. Yin, A.C.H. Ling, C.J. Colbourn, R.J.R. Abel, The existence of uniform 5-GDDs, J. Combin. Desi. 5 (1997) 275-299.

[^0]: * Corresponding author.

 E-mail address: colbourn@uvm-gen.emba.uvm.edu (C.J. Colbourn).

