

Discrete Mathematics 219 (2000) 207-221

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

n and similar papers at core.ac.uk

Alan C.H. Ling^a, Charles J. Colbourn^{b,*}

^aDepartment of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 1A1 ^bDepartment of Computer Science, University of Vermont, Burlington, VT 05405, USA

Received 1 October 1997; revised 17 December 1998; accepted 28 June 1999

Abstract

The existence of modified group divisible designs with block size four is settled with a handful of possible exceptions. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A group divisible design (GDD) is a triple $(X, \mathcal{G}, \mathcal{B})$ which satisfies the following properties:

- (1) \mathscr{G} is a partition of a set X (of *points*) into subsets called *groups*,
- (2) \mathcal{B} is a set of subsets of X (*blocks*) such that a group and a block contain at most one common point,
- (3) every pair of points from distinct groups occurs in a unique block.

The group-type (type) of the GDD is the multiset $\{|G|: G \in \mathscr{G}\}$. We usually use an 'exponential' notation to describe group-type: group-type $g_1^{u_1} \cdots g_s^{u_s}$ indicates that there are u_i groups of size g_i for $1 \le i \le s$. A pairwise balanced design (PBD) can be defined as a GDD whose groups all have size 1 (in this case, the groups need not be specified). See [6] for related definitions.

A *K*-modified GDD (*K*-MGDD) of type a^b is a set of ab points, equipped with a parallel class of blocks of size a, a parallel class of blocks of size b, and every block in the first parallel class meeting every block of the second; all other blocks having sizes in the set K, so that every unordered pair of points occurs together in exactly one block. As with GDDs, when $K = \{k\}$, we denote the *K*-MGDD by *k*-MGDD.

An *incomplete group divisible design* with block sizes from K is a quadruple $(V, \mathcal{G}, \mathcal{H}, \mathcal{B})$ where V is a finite set of cardinality $v, \mathcal{G} = (G_1, G_2, ..., G_s)$ is a partition of $V, \mathcal{H} = \{H_1, ..., H_t\}$ is a set of disjoint subsets of V (the G_i s are groups and

^{*} Corresponding author.

E-mail address: colbourn@uvm-gen.emba.uvm.edu (C.J. Colbourn).

 H_i s are holes), and \mathcal{B} is a family of subsets of V (blocks) with the properties:

(1) Any pair of distinct elements of V which occurs together in a group or a hole does not occur in any block.

(2) Each other pair of distinct elements from V occurs in exactly one block. Let $H_{ij} = G_i \cap H_j$, and $h_{ij} = |H_{ij}|$. The IGDD has type

$$(g_1; h_{11}, h_{12}, \ldots, h_{1t})^{a_1} (g_2; h_{21}, h_{22}, \ldots, h_{2t})^{a_2} \cdots (g_r; h_{r1}, h_{r2}, \ldots, h_{rt})^{a_r}$$

when it has a_i groups of size g_i with sizes $h_{i1}, h_{i2}, \ldots, h_{it}$ of intersections with the t holes.

If we remove one or more subdesigns from a TD(k, v), we obtain a transversal design with holes. In the case of one hole, it is an *incomplete transversal design* (ITD). More formally, an ITD, denoted by TD(k,m)-TD(k,n), is a quadruple $(X, Y, \mathcal{G}, \mathcal{B})$, where X is a set of km points, $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$ is a partition of X into k groups of m points each, $Y \subseteq X$ is a set of kn points such that $|Y \cap G_j| = n$ for $1 \le j \le k$, and \mathcal{B} is a set of subsets (blocks) of X, each of which intersects each group in exactly one point, and such that every pair of points $\{x, y\}$ from distinct groups is either in Y or occurs in a unique block but not both. The set Y is a hole.

A *k*-HTD (*holey transversal design* with block size *k*) of type $\{u_i: 1 \le i \le r\}$ is a structure $(X, \{Y_i\}_{1 \le i \le r}, \mathcal{G}, \mathcal{B})$ where *X* is a *km*-set (of points), $\mathcal{G} = \{G_1, G_2, \ldots, G_k\}$ is a partition of *X* into *k groups* of *m* points each, $\{Y_1, Y_2, \ldots, Y_r\}$ is a partition of *X* into *r holes*, each hole $Y_i(1 \le i \le r)$ is a set of ku_i points such that $|Y_i \cap G_j| = u_i$ for $1 \le j \le k$, and \mathcal{B} is a collection of subsets of *X* (*blocks*), each meeting each group in exactly one point, and such that no block contains two distinct points of any group or any hole, but any other pair of points of *X* is contained in exactly one block of \mathcal{B} .

The existence of modified group divisible designs has been studied by Assaf [3] and Assaf and Wei [4]. They have applications in constructing various types of combinatorial objects [2,8]. The existence of modified group divisible designs with block size three has been completely settled in [3]. In [4], the following result is proved. Let $E = \{\{10, 8\}, \{10, 15\}, \{10, 18\}, \{10, 23\}, \{19, 11\}, \{19, 12\}, \{19, 14\}, \{19, 15\}, \{19, 18\}, \{19, 23\}\}.$

Theorem 1.1. If $m, n \neq 6$, then a 4-MGDD of type m^n exists if and only if $(m-1)(n-1) \equiv 0 \pmod{3}$ with the possible exception of $\{m, n\} \in E$.

The case when one of the *m* or *n* takes on the value six, except for some small cases, was left open, mainly due to the nonexistence of a 4-MGDD of type 6^4 . We address the existence of 4-MGDDs of type 6^n . We develop some new constructions for MGDDs to settle this with few possible exceptions. We then settle the existence of 4-MGDDs with index greater than one completely.

2. Main constructions

Before we proceed, we need some direct constructions.

Lemma 2.1 (Asraf and Wei [4]). There is a 4-MGDD of type 6^7 .

Proof. Let $V = \mathbb{Z}_{21} \times \{0, 1\}$. A parallel class is $G_1 = \{(3i, j): i = 0, 1, \dots, 6\}$ for j = 0, 1 and their translates. The second parallel class is $\{(7i, j): i = 0, 1, 2; j = 0, 1\}$ and its translates. The base blocks are:

 $\{(0,0),(1,0),(5,0),(2,1)\}, \{(0,0),(6,1),(17,1),(19,1)\}, \{(0,0),(2,0),(10,1),(15,1)\}, \{(0,0),(8,0),(11,1),(12,1)\}, \{(0,0),(8,0),(11,1),(12,1)\}, \{(0,0),(10,1),(12,1),(12,1)\}, \{(0,0),(11,1),(12,1),(1$

 $\{(0,0),(10,0),(5,1),(9,1)\}.$

Develop these under \mathbb{Z}_{21} to obtain the blocks of the 4-MGDD. \Box

Lemma 2.2 (Asraf and Wei [4]). There is a 4-MGDD of type 6^{10} .

Proof. Let $V = \mathbb{Z}_5 \times \mathbb{Z}_{10} \cup H_{10}$, where $H_{10} = \{h_0, h_1, \dots, h_9\}$. The first parallel class is $\{(0, a): a \in \mathbb{Z}_{10}\}$ and its translates together with H_{10} . The second parallel class is $\{(a, 0): a \in \mathbb{Z}_5\} \cup \{h_0\}$ and its translates. The base blocks are:

 $\{(3,0), (4,1), (6,2), (7,3)\}, \{(4,0), (5,1), (7,3), (8,2)\}, \{(5,0), (6,1), (8,2), (9,3)\}, \\ \{(0,0), (6,1), (7,3), (9,2)\}, \{(0,0), (1,1), (7,2), (8,3)\}, \{(1,0), (2,1), (8,4), (9,2)\}, \\ \{(0,0), (2,1), (3,2), (9,4)\}, \{(1,0), (4,2), (6,4), (9,3)\}, \{(0,0), (3,1), (5,3), (8,2)\}, \\ \{(2,0), (4,2), (7,1), (9,4)\}, \{(1,0), (3,3), (6,2), (8,1)\}, \{(0,0), (2,2), (5,1), (7,4)\}, \\ \{(0,0), (1,3), (3,4), (4,1)\}, \{(2,0), (3,3), (5,2), (6,1)\}, \{(1,0), (2,3), (4,4), (5,1)\}, \\ \{(0,0), (1,3), (3,4), (4,1)\}, \{(2,0), (3,3), (5,2), (6,1)\}, \{(1,0), (2,3), (4,4), (5,1)\}, \\ \{(0,4), (3,6), (1,8), h_7\}, \{(0,5), (4,7), (1,9), h_8\}, \{(0,0), (4,6), (1,8), h_9\}, \\ \{(0,4), (3,6), (1,8), h_7\}, \{(0,5), (4,7), (1,9), h_8\}, \{(0,0), (4,6), (1,8), h_9\}, \\ \{(0,3), (4,8), (1,9), h_5\}, \{(0,2), (4,7), (2,8), h_4\}, \{(0,0), (4,4), (3,9), h_6\}, \\ \{(0,3), (3,4), (2,8), h_0\}, \{(0,4), (4,5), (3,9), h_1\}, \{(0,5), (3,9), (2,5), h_3\}, \\ \{(0,0), (3,6), (1,9), h_4\}, \{(0,1), (4,2), (3,8), h_6\}, \{(0,2), (4,3), (2,9), h_7\}, \\ \{(0,4), (3,7), (1,8), h_2\}, \{(0,3), (1,5), (2,7), h_6\}, \{(0,1), (3,6), (2,7), h_3\}, \\ \{(0,2), (2,3), (3,7), h_9\}, \{(0,0), (2,1), (1,7), h_5\}, \{(0,3), (1,6), (4,7), h_1\}, \\ \{(0,0), (4,2), (3,4), h_3\}, \{(0,1), (4,3), (2,5), h_4\}, \{(0,0), (4,5), (2,6), h_2\}, \\ \{(0,2), (3,4), (2,6), h_5\}, \{(0,0), (4,1), (2,5), h_7\}, \{(0,1), (2,2), (1,6), h_8\}, \\ \{(0,0), (3,3), (2,4), h_8\}, \{(0,1), (1,4), (4,5), h_9\}, \{(0,2), (1,5), (3,6), h_0\}.$

These base blocks under the group α : $(x, y) \mapsto (x+1, y)$ and α : $h_i \mapsto h_{i+1}$ generate the design. \Box

Lemma 2.3. There is a 4-MGDD of type 6^{13} .

Proof. Let $V = \mathbb{Z}_{78}$. A parallel class is $\{6i: i = 0, 1, ..., 12\}$ and its translates. The second parallel class is $\{13i: i = 0, 1, ..., 5\}$ and its translates. The base blocks are $\{0, 1, 3, 10\}, \{0, 4, 27, 38\}, \{0, 5, 25, 33\}, \{0, 14, 29, 61\}, \{0, 16, 35, 57\}$. Develop these blocks over \mathbb{Z}_{78} . \Box

Lemma 2.4 (Asraf and Wei [4]). There is a 4-MGDD of type 6^{19} .

Proof. Let $V = \mathbb{Z}_{57} \times \{0, 1\}$. The first parallel class is $\{(3i, j): i = 0, 1, ..., 18\}$ for j = 0, 1 and their translates. The second parallel class is $\{(19i, j): i = 0, 1, 2; j = 0, 1\}$ and its translates. Base blocks are

 $\{(0,0), (8,0), (28,0), (2,1)\}, \{(0,0), (10,0), (26,0), (6,1)\}, \\ \{(0,0), (1,1), (9,1), (35,1)\}, \{(0,0), (10,1), (15,1), (32,1)\}, \\ \{(0,0), (11,0), (25,0), (4,1)\}, \{(0,0), (3,1), (5,1), (16,1)\}, \\ \{(0,0), (1,0), (13,1), (56,1)\}, \{(0,0), (2,0), (22,1), (42,1)\}, \\ \{(0,0), (4,0), (28,1), (29,1)\}, \{(0,0), (5,0), (44,1), (54,1)\}, \\ \{(0,0), (7,0), (18,1), (34,1)\}, \{(0,0), (13,0), (21,1), (46,1)\}, \\ \{(0,0), (17,0), (43,1), (47,1)\}, \{(0,0), (22,0), (17,1), (45,1)\}, \\ \{(0,0), (23,0), (7,1), (14,1)\}.$

Develop the blocks under \mathbb{Z}_{57} . \Box

Lemma 2.5. There is a 4-MGDD of type 6^{25} .

Proof. We construct the 4-MGDD on the points $((\{a, b, c, d\} \times \mathbb{Z}_6) \cup \{\infty\}) \times \mathbb{Z}_6$. The first parallel class, containing blocks of size 25, consists of $((\{a, b, c, d\} \times \{i\} \times \mathbb{Z}_6) \cup (\{\infty\} \times \{i\})$ for $i \in \mathbb{Z}_6$. The second parallel class, containing blocks of size six, consists of $\{x\} \times \mathbb{Z}_6 \times \{i\}$ for $x \in \{a, b, c, d\}$ and $i \in \mathbb{Z}_6$, and the block $\{\infty\} \times \mathbb{Z}_6$.

There is a 4-IGDD of type $(36; 6, 6, 6, 6, 6)^4$, which is a holey transversal design TD(4, 36) - 6TD(4, 6) [1]. Place this 4-IGDD on the points $\{a, b, c, d\} \times \mathbb{Z}_6 \times \mathbb{Z}_6$, with holes on $\{a, b, c, d\} \times \{i\} \times \mathbb{Z}_6$ for $i \in \mathbb{Z}_6$ and groups on $\{x\} \times \mathbb{Z}_6 \times \mathbb{Z}_6$ for $x \in \{a, b, c, d\}$. For $x \in \{a, b, c, d\}$, place a 4-MGDD of type 6^7 on $(\{x\} \times \mathbb{Z}_6 \times \mathbb{Z}_6) \cup (\{\infty\} \times \mathbb{Z}_6)$, aligning the parallel class of blocks of size seven on $(\{x\} \times \{j\} \times \mathbb{Z}_6) \cup (\{\infty\} \times \{j\})$ for $j \in \mathbb{Z}_6$, and the parallel class of blocks of size six on $\{x\} \times \mathbb{Z}_6 \times \{j\}$ for $j \in \mathbb{Z}_6$ together with the block $\{\infty\} \times \mathbb{Z}_6$. Omit the blocks of size seven in this placement (each appears within one of the final blocks of size 25). \Box

Lemma 2.6. There is a 4-MGDD of type 6^{31} .

Proof. Let $V = \mathbb{Z}_{93} \times \{0, 1\}$. The first parallel class consists of the translates of $\{(0,0), (31,0), (62,0), (0,1), (31,1), (62,1)\}$. The second parallel class is $\{(3i,j): i = 0, 1, ..., 30\}$ for j = 0, 1 and their translates. Base blocks are

 $\{(0,0),(1,0),(8,0),(87,1)\}, \{(0,1),(1,1),(8,1),(3,0)\}, \\ \{(0,0),(5,0),(14,1),(27,1)\}, \{(0,0),(10,0),(17,1),(67,1)\}, \\ \{(0,0),(14,0),(43,1),(53,1)\}.$

Multiply the first coordinate of each block by 16^i for i = 1, 2, 3, 4 to obtain 20 further blocks. Develop them over \mathbb{Z}_{93} . \Box

Lemma 2.7. There is a 4-MGDD of type 6^{37} .

Proof. Let $V = \mathbb{Z}_{222}$. The first parallel class is $\{37i: i = 0, 1, \dots, 5\}$ and its translates, and the second parallel class is $\{6i: i = 0, 1, \dots, 36\}$ and its translates. The base blocks are $\{0, 1, 8, 21\}, \{0, 25, 56, 117\}, \{0, 43, 128, 28\}, \{0, 49, 182, 196\}, \{0, 67, 129, 70\}$. Multiply each of them by 211 and 121 to obtain 10 more blocks. Develop these 15 blocks over \mathbb{Z}_{222} . \Box

Here is the first recursive construction.

Lemma 2.8. Suppose there exists a 4-MGDD of type 6^r and there exists a 4-IGDD of type $(6r; r, r, ..., r)^h$, then there is a 4-MGDD of type 6^{rh} .

Proof. Align the *h* copies of 4-MGDD of type 6^r on the *h* groups of the IGDD so that the block of size *r* coincides with the hole. Use each hole to form a new block of size *rh*. \Box

Let $I_n = \{1, 2, ..., n\}$ be an index set on *n* elements.

Lemma 2.9. Suppose there exists a TD(7,m) and a 4-MGDD of type $(3a+1)^6$ where $0 \le a \le m - 1$. Then there exists a 4-MGDD of type $(6m + 3a + 1)^6$.

Proof. Let G_1, \ldots, G_7 be the groups of a TD(7,*m*), and let \mathscr{B} be its blocks. Let $V = \bigcup_{i=1}^{6} G_i$. Truncate G_7 to a + 1 points, s_0, s_1, \ldots, s_a . We construct a 4-MGDD of type $(6m + 3a + 1)^6$ on the point set $(V \times I_6) \cup (\{s_0\} \times I_6) \cup (\{s_i: i = 1, 2, \ldots, a\} \times I_3 \times I_6)$. The first parallel class, consisting of blocks of size 6m + 3a + 1, of the 4-MGDD contains $(G_j \times I_6) \cup (\{s_0\} \times \{j\}) \cup (\{s_i: i = 1, 2, \ldots, a\} \times I_3 \times \{j\})$, for $j \in I_6$. The second parallel class, consisting of blocks of size six, contains $\{x\} \times I_6$ for $x \in \{s_0\} \cup (\{s_i: i = 1, 2, \ldots, a\} \times I_3)$, and $(B \setminus \{s_0\}) \times \{i\}$ for $i \in I_6$ and all $B \in \mathscr{B}$ with $s_0 \in B$.

For every block B of size seven in the original TD(7,m) containing the point s_0 , we put a 4-MGDD of type 6^7 on $B \times I_6$ so that the blocks of size six align on

 $(B \setminus \{s_0\}) \times \{i\}$ for $i \in I_6$, and the block $\{s_0\} \times I_6$, and the blocks of size seven align on $(\{x_j\} \times I_6) \cup (\{s_0\} \times \{j\})$ where $x_j \in B \cap G_j$ for $j \in I_6$. Omit the blocks of size seven in each placement, as each contains points of a block of size 6m + 3a + 1.

For every other block $B \in \mathscr{B}$ of size seven in the truncated TD(7, *m*), put a 4-IGDD of type $(9,3)^6$ on $((B \setminus \{s_i\}) \times I_6) \cup (\{s_i\} \times I_3 \times I_6)$ so that the hole aligns on $\{s_i\} \times I_3 \times I_6$ and the groups align on $(\{a_i\} \times I_6) \cup (\{s_i\} \times I_3 \times \{i\})$ where $a_i = B \cap G_i$, with G_i being the *i*th group in the original design. For every block *B* of size six, put a 4-GDD of type 6^6 on the set $B \times I_6$, aligning the groups on $\{x\} \times I_6$ for $x \in B$. Finally, put a 4-MGDD of type $(3a + 1)^6$ on the set $(\{s_0\} \times I_6) \cup (\{s_i: i = 1, 2, ..., a\} \times I_3 \times I_6)$, to get a 4-MGDD of type $(6m + 3a + 1)^6$. \Box

With the two recursions, we are now in a position to close the spectrum of 4-MGDDs of type 6^r .

Lemma 2.10. If $g \equiv 1 \pmod{6}$, $g \ge 43$, there exists a 4-MGDD of type 6^g .

Proof. When *m* is odd and $m \ge 7$, there exists a TD(7, *m*) with the possible exceptions of m = 15, 39 [1]. Apply Lemma 2.9 with a = 0, 2, 4, 6 to obtain a 4-MGDD of type $(6m + 1)^6$, $(6m + 7)^6$, $(6m + 13)^6$ and $(6m + 19)^6$. \Box

Combining Lemmas 2.1, 2.3-2.7 and 2.10, we obtain:

Lemma 2.11. If $g \equiv 1 \pmod{6}$, there exists a 4-MGDD of type 6^g .

Lemma 2.12. There are 4-MGDDs of type 6^{28} and 6^{40} .

Proof. There exist 4-HTDs of type 7^6 and 10^6 [1]; these are 4-IGDDs of types $(42; 7, 7, 7, 7, 7, 7)^4$ and $(60; 10, 10, 10, 10, 10)^4$, respectively. Apply Lemma 2.8.

Lemma 2.13. There exists a 4-MGDD of type 6^{34} .

Proof. Start with a 3-GDD of type 6^6 , whose blocks can be partitioned into frame parallel classes [10]. Give weight 4 using a resolvable 3-MGDD of type 3^4 , and extend the resulting parallel classes to get a 4-IGDD of type $(6^{4}9^1)^6$. Use 4-MGDDs of types 6^7 and 6^{10} to fill groups. \Box

Lemma 2.14. If $m \ge 63$, there exists a 4-MGDD of type $(6m + 10)^6$.

Proof. A TD(7, m) exists for all $m \ge 63$ [1]. Apply Lemma 2.9 with a = 3 to obtain a 4-MGDD of type $(6m + 10)^6$, using the 4-MGDD of type 6^{10} from Lemma 2.2.

Lemma 2.15. Let $g \equiv 4 \pmod{6}$. If $g \notin \{70, 94, 100, 118, 130, 142, 166, 190, 214, 238, 244, 286, 334, 370, 382\}$ and $g \ge 52$, then there exists a 4-MGDD of type g^6 .

Proof. Lemma 2.14 handles all cases when g > 382. Now apply Lemma 2.9 with a=3 and values of $m \leq 62$ for which a TD(7,m) exists [1]. \Box

Lemma 2.16. If $g \ge 52$ and $g \ne 70, 118$, then there is a 4-MGDD of type g^6 .

Proof. First apply Lemma 2.15. Then use Lemma 2.9 with a = 9 and values of m = 11, 12, 17, 19, 23, 27, 31, 35, 36, 43, 51, 57, and 59. The 4-MGDD of type 6^{28} exists by Lemma 2.12. \Box

Lemma 2.17. There is a 4-MGDD of type 6^{46} .

Proof. Give weight nine to all points in a block of a TD(6,7), and give weight six to all other points. Append a new column of six points. Take a parallel class of blocks of size six including the block in which all points have weight nine. For every block in the parallel class, put a 4-MGDD of type $(k + 1)^6$ (k = 6, 9) on the corresponding points together with the new adjoined points. For every other block, put a 4-GDD of type 6^6 or 6^59^1 [9]. This gives a 4-MGDD of type 6^{46} .

Lemma 2.18. There exists a 4-MGDD of type 6^{70} .

Proof. Take a 4-MGDD of type 7^6 (Lemma 2.1) and give every point weight 10. For every block of size six, put a 4-MGDD of type 10^6 (Lemma 2.2) on the 60 points. For every block of size four, put a 4-GDD of type 10^4 . This gives a 4-MGDD of type 6^{70} .

Lemma 2.19. There exists a 4-MGDD of type 6^{118} .

Proof. Take a 4-MGDD of type 13^6 (Lemma 2.3). Give every point weight nine and append a new column of six points. For every block of size 6, employ a 4-MGDD of type 10^6 (Lemma 2.2). For every other block of size four, employ with a 4-GDD of type 9^4 [9]. This gives a 4-MGDD of type 6^{118} . \Box

Combining Lemmas 2.12, 2.15-2.19, we have the following result.

Lemma 2.20. If $g \equiv 4 \pmod{6}$, $g \neq 4, 16, 22$, there exists a 4-MGDD of type 6^g .

Finally, we combine Lemmas 2.11 and 2.20 to yield:

Theorem 2.21. *There is a* 4-*MGDD of type* 6^n *for all* $n \in \{16, 22\}$, $n \equiv 1 \pmod{3}$ *and* $n \ge 7$.

In addition, we update the theorem of Assaf and Wei [4].

Lemma 2.22. There is a 4-MGDD of type 10^8 .

Proof. Let $V = \mathbb{Z}_{10} \times (\mathbb{Z}_7 \cup \{\infty\})$. The first parallel class is $\{\{i\} \times (\mathbb{Z}_7 \cup \{\infty\}): i \in \mathbb{Z}_{10}\}$. The second parallel class is $\{\mathbb{Z}_{10} \times \{j\}: j \in \mathbb{Z}_7 \cup \{\infty\}\}$. Base blocks are:

 $\{(0,0),(1,1),(3,3),(9,2\},\{(0,0),(4,4),(5,1),(8,6\},\\ \{(0,0),(5,5),(7,3),(1,6\},\{(0,\infty),(1,1),(7,3),(8,6\},\\ \{(0,\infty),(2,2),(5,1),(3,4\},\{(0,\infty),(4,4),(9,1),(6,0\}.$

Lemma 2.23. There is a 4-MGDD of type 10^{23} .

Proof. Let $V = \mathbb{Z}_5 \times \{0, 1\} \times \mathbb{Z}_{23}$. The two parallel classes are $\{(0, 0, i), (0, 1, i): i \in \mathbb{Z}_{23}\}$ and $\{(i, 0, 0), (i, 1, 0): i \in \mathbb{Z}_5\}$ and its translates. The base blocks are

 $\{(0,0,0),(1,0,1),(4,0,2),(0,1,3)\}, \{(0,0,0),(0,1,5),(2,1,1),(3,1,2)\},\$

 $\{(1,0,0),(4,0,5),(2,1,10),(3,1,15)\}.$

Multiply each block by $(-, -, 2^i)$ for i = 1, 2, ..., 10 to obtain the remaining base blocks. \Box

Lemma 2.24. There is a 4-MGDD of type 19^{11} .

Proof. Let $V = \mathbb{Z}_{19} \times \mathbb{Z}_{11}$. The two parallel classes are $\{(0,i): i \in \mathbb{Z}_{19}\}$ and $\{(i,0): i \in \mathbb{Z}_{11}\}$ together with their translates over $\mathbb{Z}_{19} \times \mathbb{Z}_{11}$. The base blocks are

 $\{(0,0),(1,1),(3,2),(12,3)\},\{(0,0),(1,2),(5,1),(13,8)\},\$

 $\{(0,0),(4,1),(6,7),(9,8)\}.$

Multiply each block by $(1,4)^i$ (i.e., multiply the first component by 1^i and the second by 4^i) for i = 1, 2, 3, 4 to obtain 12 more blocks. Develop these blocks over $\mathbb{Z}_{19} \times \mathbb{Z}_{11}$. \Box

Lemma 2.25. There is a 4-MGDD of type 19^{12} .

Proof. Take a 5-MGDD of type 6^{13} [10] and remove a group of size six to obtain a {4,5}-MGDD of type 6^{12} . Give weight three to each point and append a new column of 12 points. Employ 4-GDDs of type 3^4 and 3^5 and a 4-MGDD of type 4^{12} . \Box

Lemma 2.26. There is a 4-MGDD of type 19^{14} .

Proof. Let $V = \mathbb{Z}_{19} \times (\mathbb{Z}_{13} \cup \{\infty\})$. The first parallel class is $\{\{i\} \times (\mathbb{Z}_{13} \cup \{\infty\}): i \in \mathbb{Z}_{19}\}$. The second parallel class is $\{\mathbb{Z}_{19} \times \{j\}: j \in \mathbb{Z}_{13} \cup \{\infty\}\}$. Take the blocks

 $\{(0,0),(1,1),(3,3),(7,7)\},\{(0,0),(5,5),(14,1),(11,4)\}, \\ \{(0,0),(8,8),(18,5),(16,9)\},\{(0,0),(11,11),(15,8),(7,10)\}, \\ \{(0,0),(15,2),(9,7),(3,5)\},\{(0,\infty),(1,1),(15,8),(12,10)\}, \\ \{(0,\infty),(2,2),(16,8),(4,1)\}$

and multiply each by $(11,1)^i$ for i = 0, 1, 2 to obtain 21 base blocks. Develop these under the action of the group. \Box

Lemma 2.27. There is a 4-MGDD of type 19^{15} .

Proof. Let $V = \mathbb{Z}_{19} \times \mathbb{Z}_{15}$. The two parallel classes are $\{(i, 0): i \in \mathbb{Z}_{19}\}$ and $\{(0, i): i \in \mathbb{Z}_{15}\}$ together with their translates over $\mathbb{Z}_{19} \times \mathbb{Z}_{15}$. Take the blocks

 $\{(0,0),(1,1),(3,3),(7,7)\},\{(0,0),(5,5),(14,14),(6,10)\},\$

 $\{(0,0), (10,10), (3,7), (1,9)\}, \{(0,0), (13,13), (12,1), (16,9)\},\$

 $\{(0,0), (9,13), (8,9), (11,2)\}, \{(0,0), (15,4), (3,12), (18,5)\},\$

 $\{(0,0),(17,6),(15,1),(4,3)\}.$

and multiply each by $(11,1)^i$ for i = 0, 1, 2 to obtain 21 base blocks. Develop these under the action of the group. \Box

Lemma 2.28. There is a 4-MGDD of type 19^{18} .

Proof. Let $V = \mathbb{Z}_{19} \times (\mathbb{Z}_{17} \cup \{\infty\})$. The first parallel class is $\{\{i\} \times (\mathbb{Z}_{17} \cup \{\infty\}): i \in \mathbb{Z}_{19}\}$. The second parallel class is $\{\mathbb{Z}_{19} \times \{j\}: j \in \mathbb{Z}_{17} \cup \{\infty\}\}$. Take the blocks

 $\{(0,0),(1,1),(3,3),(7,7)\},\{(0,0),(5,5),(14,14),(6,8)\},\$

 $\{(0,0), (8,8), (18,1), (11,13)\}, \{(0,0), (15,15), (17,2), (13,4)\},\$

 $\{(0,0), (16,16), (2,6), (4,14)\}, \{(0,0), (9,11), (12,7), (15,16)\},\$

 $\{(0,0), (14,16), (18,9), (7,12)\}, \{(0,\infty), (1,1), (4,8), (8,7)\},\$

 $\{(0,\infty),(2,2),(13,4),(17,16)\}$

and multiply each by $(7,1)^i$ for i = 0, 1, 2 to obtain 27 base blocks. Develop these under the action of the group. \Box

Lemma 2.29. There is a 4-MGDD of type 19^{23} .

Proof. Let $V = \mathbb{Z}_{19} \times \mathbb{Z}_{23}$. The two parallel classes are $\{(0,i): i \in \mathbb{Z}_{23}\}$ and $\{(i,0): i \in \mathbb{Z}_{19}\}$ together with their translates over $\mathbb{Z}_{19} \times \mathbb{Z}_{23}$. The base blocks are

 $\{(0,0),(1,1),(3,2),(12,3)\},\{(0,0),(1,5),(5,1),(13,2)\},\$

 $\{(0,0),(4,1),(6,6),(9,11)\}.$

Multiply each block by $(1,2)^i$ for i = 1, 2, ..., 10 to obtain 30 more blocks. Develop these blocks over $\mathbb{Z}_{19} \times \mathbb{Z}_{23}$. \Box

With these lemmas, we can restate the theorem. Let $F = \{\{6, 16\}, \{6, 22\}, \{10, 15\}, \{10, 18\}\}$. **Theorem 2.30.** If $\{m,n\} \neq \{6,4\}$, then there exists a 4-MGDD of type m^n if and only if $(m-1)(n-1) \equiv 0 \pmod{3}$ with the possible exceptions of $\{m,n\} \in F$.

3. Index greater than one

The definitions at the outset can all be generalized to require each pair not in a group together (or not in a hole together, or not in a block of one of the distinguished parallel classes together) to appear in exactly λ blocks. In this case, we obtain various classes of designs with *index* λ . When $\lambda = 1$, we recover the definitions of the preceding sections.

In this section, we examine the existence of 4-MGDDs with index greater than one. Simple counting establishes that for a 4-MGDD of type m^n and index λ to exist, one requires that $\lambda(m-1)(n-1) \equiv 0 \pmod{3}$ and $m, n \ge 4$. Hence when $\lambda \equiv 0 \pmod{3}$, the basic necessary condition reduces to $m, n \ge 4$. When $\lambda \not\equiv 0 \pmod{3}$, the basic necessary condition is the same as for index one. Now the union of two 4-MGDDs of type m^n , one of index λ_1 and the other of index λ_2 , is a 4-MGDD of type m^n and index $\lambda_1 + \lambda_2$. Hence it suffices to examine cases with $\lambda \in \{2,3\}$ when the 4-MGDD of index one and type m^n is nonexistent or unknown although the basic necessary condition is met, and cases with $\lambda = 3$ when $m, n \equiv 0, 2 \pmod{3}$ and $m, n \ge 4$.

First, we treat the cases with $\lambda = 3$.

Lemma 3.1. If whenever $n, m \in S = \{4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23\}$ there is a 4-MGDD of type n^m and index 3, then whenever $n, m \ge 4$, there is a 4-MGDD of type n^m and index 3.

Proof. There exist PBDs with block sizes from S of order n and m [5]. Let (V, \mathscr{B}) be such a PBD of order m, and (W, \mathscr{D}) be such a PBD of order n. We form the required 4-MGDD on the point set $V \times W$. For $B \in \mathscr{B}$ and $D \in \mathscr{D}$, place a 4-MGDD of index 3 on $B \times D$, omitting the parallel classes on $\{b\} \times D$ for $b \in B$, and on $B \times \{d\}$ for $d \in D$. \Box

Lemma 3.2. Let $K \subseteq \{4, 7, 10, 13, 19\}$. If a K-PBD of order m and index 3 exists, and $n \in S$, then a 4-MGDD of type n^m and index 3 exists except possibly when $4 \in K$ and n = 6, or when $10 \in K$ and $n \in \{15, 18\}$.

Proof. Let (V, \mathscr{B}) be the *K*-PBD of order *m* and index 3. Let *W* be an *n*-set. We form the required 4-MGDD on the point set $V \times W$. For $B \in \mathscr{B}$, place a 4-MGDD of index 1 on $B \times W$, omitting the parallel classes on $\{b\} \times W$ for $b \in B$, and on $B \times \{w\}$ for $w \in W$. \Box

In view of Lemma 3.1, useful ingredients for Lemma 3.2 have $m \in S$.

Lemma 3.3. There is a $\{4\}$ -PBD of index 3 and order m whenever $m \equiv 0, 1 \pmod{4}$. There is a $\{7\}$ -PBD of index 3 and order 15. There is a $\{4, 10\}$ -PBD of index 3 and order 11. There are $\{4, 7\}$ -PBDs of index 3 and orders 14, 18, and 23.

Proof. For the first two statements, see [7]. For order 11, employ base blocks $\{0, 1, 5, 7\}$ and $\{\infty, 0, 1, 3\}$ over $\mathbb{Z}_{10} \cup \{\infty\}$, together with \mathbb{Z}_{10} as a block of size 10. For order 14, on $\mathbb{Z}_7 \times \{0, 1\}$, take base blocks

 $\{(0,0),(1,0),(0,1),(3,1)\},\{(0,0),(2,0),(0,1),(6,1)\},\$

 $\{(0,0), (4,0), (0,1), (5,1)\}, \{(0,0), (1,1), (2,1), (4,1)\},\$

 $\{(0,1),(1,0),(2,0),(4,0)\},\{(0,1),(3,0),(5,0),(6,0)\},\$

together with the single block $\mathbb{Z}_7 \times \{1\}$ of size 7.

For order 18, on $\mathbb{Z}_9 \times \{0,1\}$, form the base blocks

 $\{(0,0),(1,0),(2,0),(4,0),(0,1),(1,1),(3,1)\},\{(0,0),(1,0),(4,0),(4,1)\},$

 $\{(0,0),(2,0),(5,0),(7,1)\},\{(0,0),(1,1),(4,1),(5,1)\},\{(0,0),(2,1),(4,1),(6,1)\},$

 $\{(0,0),(3,1),(6,1),(7,1)\}.$

For order 23, on $\mathbb{Z}_{16} \cup \{\infty_i : 0 \leq i \leq 6\}$, form the base blocks

 $\{\infty_0, 0, 1, 3\}, \{\infty_1, 0, 1, 5\}, \{\infty_2, 0, 1, 8\}, \{\infty_3, 0, 2, 7\}, \{\infty_4, 0, 2, 5\},$

 $\{\infty_5, 0, 3, 9\}, \{\infty_6, 0, 4, 10\}$

with the short orbit $\{0, 4, 8, 12\}$, and a block of size 7 on the infinite points included three times. \Box

We must treat cases when n = 6 and $m \in \{4, 5, 6, 8, 9, 11, 12, 14, 18, 23\}$ to complete the solution for index 3.

In the constructions of the next lemma, whenever the point set has the form $X \times Y$, parallel classes are obtained as $\{\{(x, y): x \in X\}: y \in Y\}$ and $\{\{(x, y): y \in Y\}: x \in X\}$.

Lemma 3.4. Whenever $m \in \{4, 5, 6, 8, 9, 11, 12, 14, 18, 23\}$, a 4-MGDD of index three and type 6^m exists.

Proof. For m = 4, the point set is $(\mathbb{Z}_5 \cup \{\infty\}) \times \{0, 1, 2, 3\}$. Base blocks are:

 $\{(0,0), (i,1), (2i,2), (3i,3)\}, \{(\infty,0), (i,1), (2i,2), (3i,3)\},\$

 $\{(0,0),(\infty,1),(2i,2),(3i,3)\},\{(0,0),(i,1),(\infty,2),(3i,3)\},\$

 $\{(0,0),(i,1),(2i,2),(\infty,3)\}$

for i = 1, 2, 3, and three copies of the base block $\{(0, 0), (4, 1), (3, 2), (2, 3)\}$.

For m = 5, the point set is \mathbb{Z}_{30} , parallel classes are equivalence classes modulo 5 and modulo 6, and base blocks are

 $\{0, 1, 2, 3\}, \{0, 2, 9, 16\}, \{0, 3, 7, 16\}, \{0, 3, 11, 22\}, \{0, 4, 8, 17\}.$

For m = 6, the point set is $(\mathbb{Z}_5 \cup \{\infty\}) \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

$$\begin{aligned} &\{(0,0),(1,1),(2,3),(3,2)\}, \{(3,0),(4,1),(1,3),(0,\infty)\}, \\ &\{(2,0),(3,1),(4,3),(0,\infty)\}, \{(0,3),(1,1),(2,4),(\infty,0)\}, \\ &\{(0,4),(2,3),(4,2),(\infty,0)\}, \{(4,2),(1,3),(0,\infty),(\infty,0)\}, \\ &\{(2,1),(3,4),(0,\infty),(\infty,0)\}, \{(1,2),(2,1),(0,\infty),(\infty,0)\}, \\ &\{(0,0),(1,4),(3,1),(\infty,\infty)\}. \end{aligned}$$

For m = 8, the point set is $(\mathbb{Z}_7 \cup \{\infty\}) \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

$$\{(0,0), (1,1), (3,3), (5,2)\}, \{(0,0), (4,4), (6,3), (1,2)\}, \\ \{(\infty,\infty), (0,0), (6,1), (5,2)\}, \{(0,\infty), (\infty,0), (1,1), (2,2)\}, \\ \{(0,\infty), (\infty,0), (3,2), (5,4)\}, \{(0,\infty), (\infty,0), (4,3), (1,4)\}, \\ \{(0,\infty), (4,0), (5,3), (6,1)\}, \{(0,\infty), (1,0), (4,3), (6,4)\}, \\ \{(0,\infty), (2,2), (3,4), (6,0)\}, \{(0,\infty), (2,4), (3,2), (5,0)\}, \\ \{(\infty,0), (0,1), (6,2), (3,3)\}, \{(\infty,0), (0,3), (1,4), (3,1)\}.$$

For m = 9, the point set is $\mathbb{Z}_9 \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

 $\{(0,0),(1,1),(2,2),(3,3)\},\{(0,0),(2,2),(6,1),(5,4)\},\\ \{(0,\infty),(1,1),(4,4),(3,2)\},\{(0,\infty),(1,1),(5,0),(6,3)\},\\ \{(0,\infty),(1,1),(7,2),(3,0)\},\{(0,\infty),(2,2),(4,3),(7,4)\}.$

Multiply each by $(8,1)^i$ for i = 0, 1 to obtain 12 base blocks, and develop over the group.

For m = 11, the point set is $\mathbb{Z}_{11} \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

 $\{(0,0),(1,1),(2,2),(3,3)\},\{(0,\infty),(1,1),(5,0),(9,4)\},\\\{(0,\infty),(2,2),(8,0),(6,4)\}.$

Multiply each by $(4,1)^i$ for i = 0, 1, 2, 3, 4 to obtain 15 base blocks, and develop over the group.

For m = 12, there is a 5-MGDD of type 6^{13} [11] and hence a {4,5}-MGDD of type 6^{12} . Triplicate each block of size 4, and replace each 5-block by a {4}-PBD of order 5 and index 3.

For m = 14, the point set is $(\mathbb{Z}_{13} \cup \{\infty\}) \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

$$\{(0,0), (6,1), (1,4), (10,3)\}, \{(0,0), (7,2), (6,4), (10,1)\}, \\\{(0,0), (11,1), (5,3), (6,2)\}, \{(0,0), (3,3), (6,4), (1,2)\}, \\\{(0,0), (9,2), (2,3), (5,1)\}, \{(\infty,\infty), (0,0), (2,2), (11,1)\}, \\\{(0,\infty), (\infty,0), (3,1), (11,4)\}, \{(0,\infty), (\infty,0), (5,3), (9,2)\}, \\\{(0,\infty), (\infty,0), (4,1), (8,3)\}, \{(\infty,0), (0,2), (1,3), (2,4)\}, \\\{(0,\infty), (0,4), (12,1), (2,2)\}, \{(0,\infty), (1,0), (12,1), (7,2)\}, \\\{(0,\infty), (1,0), (2,4), (7,2)\}, \{(0,\infty), (1,0), (4,1), (9,4)\}, \\\{(0,\infty), (3,0), (2,2), (11,4)\}, \{(0,\infty), (2,0), (6,2), (12,1)\}, \\\{(0,\infty), (6,0), (10,4), (7,2)\}, \{(0,\infty), (11,0), (8,2), (10,3)\}, \\\{(0,\infty), (3,0), (5,2), (9,1)\}.$$

For m = 18, the point set is $(\mathbb{Z}_{17} \cup \{\infty\}) \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

 $\{(0,0),(1,1),(2,2),(3,3)\}, \{(0,0),(4,4),(13,3),(10,2)\}, \\ \{(0,0),(6,1),(12,4),(4,3)\}, \{(0,0),(7,2),(1,3),(14,1)\}, \\ \{(0,0),(8,3),(2,4),(7,1)\}, \{(0,0),(9,4),(4,1),(3,2)\}, \\ \{(0,0),(6,3),(2,1),(8,2)\}, \{(\infty,\infty),(0,0),(7,4),(5,1)\}, \\ \{(0,\infty),(\infty,0),(5,4),(10,1)\}, \{(0,\infty),(\infty,0),(1,2),(8,1)\}, \\ \{(0,\infty),(\infty,0),(7,2),(2,3)\}, \{(\infty,0),(0,1),(12,3),(14,4)\}, \\ \{(0,\infty),(0,4),(1,2),(15,3)\}, \{(0,\infty),(1,0),(3,2),(13,1)\}, \\ \{(0,\infty),(6,0),(9,3),(8,4)\}, \{(0,\infty),(1,0),(3,2),(13,1)\}, \\ \{(0,\infty),(6,0),(9,3),(8,4)\}, \{(0,\infty),(12,0),(8,1),(15,4)\}, \\ \{(0,\infty),(10,0),(14,4),(11,2)\}, \{(0,\infty),(16,0),(2,1),(6,2)\}, \\ \{(0,\infty),(14,0),(7,1),(11,2)\}, \{(0,\infty),(13,0),(7,1),(15,3)\}, \\ \{(0,\infty),(15,0),(9,1),(12,3)\}, \{(0,\infty),(3,0),(12,1),(4,2)\}, \\ \{(0,\infty),(6,0),(14,2),(3,4)\}. \end{cases}$

For m = 23, the point set is $\mathbb{Z}_{23} \times (\mathbb{Z}_5 \cup \{\infty\})$. Base blocks are:

 $\{(0,0),(1,1),(2,2),(3,3)\},\{(0,\infty),(1,1),(3,3),(10,0)\},$

 $\{(0,\infty),(1,1),(5,0),(14,4)\}.$

Multiply each by $(2,1)^i$ for i = 0, 1, ..., 10 to obtain 33 base blocks, and develop over the group. \Box

Theorem 3.5. A 4-MGDD of index 3 and type n^m exists whenever $n, m \ge 4$.

Proof. If $m, n \in S$, apply Lemma 3.1. If $m \in S \setminus \{6\}$, apply Lemma 3.2 using the PBDs from Lemma 3.3. This handles all cases except when n = 6, or $m \in \{10, 11\}$ and $n \in \{15, 18\}$. When $n \in \{15, 18\}$ and $m \in \{6, 10, 11\}$, but $(n, m) \neq (18, 6)$, the cases are treated by using $m \in \{15, 18\}$ in Lemma 3.2. When m = 6 and $n \in \{7, 10, 19\}$, triplicate a 4-MGDD of index one. The remaining cases arise when m = 6, and these are treated in Lemma 3.4. \Box

Now we turn to index 2. The only cases to treat are those missing when $\lambda = 1$. For types 10^{15} and 10^{18} , employ a {4}-PBD of order 10 and index 2 together with a 4-MGDD of type 4^{15} or 4^{18} .

For 6^4 , the point set is $(\mathbb{Z}_5 \cup \{\infty\}) \times \{0, 1, 2, 3\}$. Base blocks are:

 $\{(\infty, 0), (i, 1), (2i, 2), (3i, 3)\}, \{(0, 0), (\infty, 1), (2i, 2), (3i, 3)\},\$

 $\{(0,0), (i,1), (\infty,2), (3i,3)\}, \{(0,0), (i,1), (2i,2), (\infty,3)\}.$

for i = 1, 2, and two copies of the base blocks $\{(0,0), (4,1), (3,2), (2,3)\}$ and $\{(0,0), (3,1), (1,2), (4,3)\}$. Since $\{4,7\}$ -PBDs of order 16, 22, 25, and 34 all exist, this settles the remaining cases for index 2.

Putting the pieces together, we obtain:

Theorem 3.6. A 4-MGDD of type n^m and index λ exists whenever $\lambda(m-1)(n-1) \equiv 0 \pmod{3}$ and $m, n \ge 4$, except when $\lambda = 1$ and $\{m, n\} = \{6, 4\}$, and possibly when $\lambda = 1$ and $\{m, n\} \in \{\{6, 16\}, \{6, 22\}, \{10, 15\}, \{10, 18\}\}$.

Acknowledgements

Thanks to Ron Mullin and two anonymous referees for useful suggestions, and to Ahmed Assaf for the preprint of [4]. The research of the first author was sponsored by NSERC postgraduate scholarship, while he was a doctoral student at the University of Waterloo. The research of the second author was undertaken at the Department of Computer Science, University of Auckland, whose hospitality is gratefully acknowledged.

References

- R.J.R. Abel, A.E. Brouwer, C.J. Colbourn, J.H. Dinitz, Mutually orthogonal latin squares (MOLS), in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton FL, 1996, pp. 111–142.
- [2] A. Assaf, An application of modified group divisible designs, J. Combin. Theory A 68 (1994) 152-168.
- [3] A. Assaf, Modified group divisible designs, Ars Combin. 29 (1990) 13-20.
- [4] A. Assaf, R. Wei, Modified group divisible designs with block size 4 and $\lambda = 1$, preprint.
- [5] F.E. Bennett, H.D.O.F. Gronau, A.C.H. Ling, R.C. Mullin, PBD-closure, in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Ruton, FL, 1996, pp. 203–213.
- [6] T. Beth, D. Jungnickel, H. Lenz, Design Theory, Cambridge University Press, Cambridge, England, 1986.
- [7] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975) 255-369.
- [8] A.C.H. Ling, Pairwise balanced designs and related codes, Ph.D. Thesis, University of Waterloo, 1996.
- [9] R.C. Mullin, H-D.O.F. Gronau, PBDs: Recursive Constructions, in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 193–203.
- [10] R. Rees, D.R. Stinson, Frames with block size four, Canadian J. Math. 44 (1992) 1030-1049.
- [11] J.X. Yin, A.C.H. Ling, C.J. Colbourn, R.J.R. Abel, The existence of uniform 5-GDDs, J. Combin. Desi. 5 (1997) 275–299.