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Abstract

The existence of modified group divisible designs with block size four is settled with a handful
of possible exceptions. (© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A group divisible design (GDD) is a triple (X, %, %) which satisfies the following

properties:

(1) 9 is a partition of a set X (of points) into subsets called groups,

(2) % is a set of subsets of X (blocks) such that a group and a block contain at most
one common point,

(3) every pair of points from distinct groups occurs in a unique block.

The group-type (type) of the GDD is the multiset {|G|: G € 4}. We usually use an

‘exponential’ notation to describe group-type: group-type g} - - - g% indicates that there

are u; groups of size g; for 1 <i<s. A pairwise balanced design (PBD) can be de-

fined as a GDD whose groups all have size 1 (in this case, the groups need not be

specified). See [6] for related definitions.

A K-modified GDD (K-MGDD) of type a’ is a set of ab points, equipped with a
parallel class of blocks of size a, a parallel class of blocks of size b, and every block
in the first parallel class meeting every block of the second; all other blocks having
sizes in the set K, so that every unordered pair of points occurs together in exactly
one block. As with GDDs, when K = {k}, we denote the K-MGDD by k-MGDD.

An incomplete group divisible design with block sizes from K is a quadruple
V.9, #,%) where V is a finite set of cardinality v, 4 = (Gy, G,,...,Gy) is a par-
tition of V, # ={H,,...,H,} is a set of disjoint subsets of V (the G;s are groups and
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Hjs are holes), and % is a family of subsets of V' (blocks) with the properties:

(1) Any pair of distinct elements of ' which occurs together in a group or a hole
does not occur in any block.

(2) Each other pair of distinct elements from V' occurs in exactly one block.

Let H;; = G; N H;, and h;; = |H;;|. The IGDD has type

(guis P b, ) (92 horshoos oo o)™ - (e et Byos oo g )™

when it has a; groups of size g; with sizes h;,hp,...,h; of intersections with the ¢
holes.

If we remove one or more subdesigns from a TD(k, v), we obtain a transversal design
with holes. In the case of one hole, it is an incomplete transversal design (1TD). More
formally, an ITD, denoted by TD(k,m)—TD(k,n), is a quadruple (X,Y,¥,%#), where
X is a set of km points, ¥ = {G,G,,...,G;} is a partition of X into k groups of m
points each, Y CX is a set of kn points such that |Y N G;| =n for 1 <j<k, and #
is a set of subsets (blocks) of X, each of which intersects each group in exactly one
point, and such that every pair of points {x, y} from distinct groups is either in ¥ or
occurs in a unique block but not both. The set Y is a hole.

A k-HTD (holey transversal design with block size k) of type {u;: 1<i<r} is a
structure (X, {Y:}1<i<r» %, #) where X is a km-set (of points), ¥ ={G,G,...,Gy} is
a partition of X into k groups of m points each, {Y},Y>,...,Y,} is a partition of X
into 7 holes, each hole Y;(1<i<r) is a set of ku; points such that |¥; N G;| =u; for
1<j<k, and Z is a collection of subsets of X (blocks), each meeting each group in
exactly one point, and such that no block contains two distinct points of any group or
any hole, but any other pair of points of X is contained in exactly one block of %.

The existence of modified group divisible designs has been studied by Assaf [3]
and Assaf and Wei [4]. They have applications in constructing various types of com-
binatorial objects [2,8]. The existence of modified group divisible designs with block
size three has been completely settled in [3]. In [4], the following result is proved. Let
E = {{10,8},{10,15},{10,18},{10,23},{19,11},{19,12},{19,14},{19,15},{19, 18},
{19,23}}.

Theorem 1.1. If m,n # 6, then a 4-MGDD of type m" exists if and only if
(m—1)(n— 1) = 0(mod 3) with the possible exception of {m,n} €E.

The case when one of the m or n takes on the value six, except for some small
cases, was left open, mainly due to the nonexistence of a 4-MGDD of type 6*. We
address the existence of 4-MGDDs of type 6”. We develop some new constructions
for MGDDs to settle this with few possible exceptions. We then settle the existence
of 4-MGDDs with index greater than one completely.

2. Main constructions

Before we proceed, we need some direct constructions.
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Lemma 2.1 (Asraf and Wei [4]). There is a 4-MGDD of type 6.
Proof. Let V=275, x {0,1}. A parallel class is G; ={(3i,/): i=0,1,..., 6} for j=0,1

and their translates. The second parallel class is {(74,/): i =0,1,2; j=0,1} and its
translates. The base blocks are:

{(0,0),(1,0),(5,0),(2, 1)}, {(0,0),(6,1),(17,1),(19, 1)},
{(0,0),(2,0),(10,1),(15,1)}, {(0,0),(8,0),(11,1),(12, 1)},
{(0,0),(10,0),(5,1),(9,1)}.

Develop these under Z,; to obtain the blocks of the 4-MGDD. [

Lemma 2.2 (Asraf and Wei [4]). There is a 4-MGDD of type 6'°.

Proof. Let V =75 x Zy9 U Hyo, where Hyg = {ho,hy,..., he}. The first parallel class
is {(0,a): a€Z,o} and its translates together with Hjo. The second parallel class is
{(a,0): a€ Zs} U {ho} and its translates. The base blocks are:

{(3,0),(4,1),(6,2).(7.3)}, {(4.0),(5,1),(7.3),(8,2)}, {(5,0),(6,1).(8,2),(9,3)},
{(0,0),(6,1),(7,3).(9,2)}, {(0,0),(1,1),(7.2),(8,3)}, {(1,0),(2,1).(8,4),(9,2)},
{(0,0),(2,1),(3,2).(9,4)}, {(1,0),(4,2).(6,4).(9,3)}, {(0,0),(3,1),(5.3),(8,2)},
{(2,0),(4,2),(7,1), (9.4}, {(1,0),(3,3),(6,2),(8, 1)}, {(0,0),(2,2),(5,1),(7,4)},
{(0,0),(1,3),(3,4), (4. D}, {(2,0),(3,3),(5,2).(6, )}, {(1,0),(2,3),(4,4),(5, D},

{(0,4),(3,6),(1,8), 17},
{(0,1),(3,7),(4.9), o},
{(0,3),(4,8),(1,9), hs},
{(0,3),(3,4).(2,8), ho},
{(0,0),(3,6),(1,9), s},
{(0,4),(3,7),(1,8), 12},
{(0,2),(2,3),(3,7), ho},
{(0,0),(4,2),(3,4), s},
{(0,2),(3,4),(2.,6), hs},
{(0,0),(3,3),(2,4), s},

{(0,5),(4,7),(1,9), hs},
{(0,0),(3,2).(4,8), 1 },
{(0,2),(4,7),(2,8), ha},
{(0.4),(4,5).(3,9). 1},
{(0,1),(4,2),(3,8), e},
{(0,3).(1,5),(2,7), e},
{(0,0),(2,1),(1,7), hs},
{(0,1),(4,3),(2,5), ha},
{(0,0),(4,1),(2,5), h7},
{(0,1),(1,4),(4,5), ho},

{(0,0),(4,6),(1,8), o},
{(0,1),(2,3).(1,9), i},
{(0,0),(4,4).(3,9). hs},
{(0,5),(3,9),(2.5). 3},
{(0,2),(4.3),(2,9). 17},
{(0,1),(3,6).(2.7). s},
{(0,3),(1,6),(4,7), h },
{(0,0),(4,5).(2,6), h },
{(0,1),(2,2).(1,6), s},
{(0,2),(1,5).(3,6), ho}-

These base blocks under the group o: (x, y) — (x+1,y) and a: h; — h;1 generate the
design. [J

Lemma 2.3. There is a 4-MGDD of type 6'3.



210 A.C.H. Ling, C.J. Colbournl Discrete Mathematics 219 (2000) 207-221

Proof. Let V' = Zs3. A parallel class is {6i:i=0,1,...,12} and its translates. The
second parallel class is {13i:i=0,1,...,5} and its translates. The base blocks are
{0,1,3,10},{0,4,27,38},{0,5,25,33}, {0, 14,29,61},{0,16,35,57}. Develop these
blocks over Z75. [

Lemma 2.4 (Asraf and Wei [4]). There is a 4-MGDD of type 6'°.

Proof. Let V' = Zs; x {0,1}. The first parallel class is {(3i,j): i =0,1,...,18} for
j=0,1 and their translates. The second parallel class is {(194,/): i=0,1,2; j=0,1}
and its translates. Base blocks are

{(0,0),(8,0),(28,0),(2, 1)}, {(0,0),(10,0),(26,0),(6, 1)},
{(0,0),(1,1),(9,1),(35, 1)}, {(0,0), (10, 1), (15, 1),(32, 1)},
{(0,0),(11,0),(25,0), (4, D}, {(0,0),(3,1),(5,1),(16, 1)},
{(0,0),(1,0),(13,1),(56, 1)}, {(0,0),(2,0),(22,1),(42, 1)},
{(0,0),(4,0),(28,1),(29, 1)},{(0,0),(5,0), (44, 1), (54, 1)},
{(0,0),(7,0),(18,1),(34, 1)}, {(0,0),(13,0),(21,1),(46, 1)},
{(0,0),(17,0),(43,1),(47, 1)}, {(0,0),(22,0),(17,1),(45,1)},

{(0,0),(23,0),(7,1),(14,1)}.
Develop the blocks under Zs;. [J

Lemma 2.5. There is a 4-MGDD of type 6%.

Proof. We construct the 4-MGDD on the points (({a,b,c,d} x Zg) U {oc}) x Zs. The
first parallel class, containing blocks of size 25, consists of (({a,b,c,d} x {i} x Zg) U
({00} x {i}) for i € Zs. The second parallel class, containing blocks of size six, consists
of {x} x Z¢ x {i} for x€{a,b,c,d} and i € Zs, and the block {co} x Zs.

There is a 4-IGDD of type (36;6,6,6,6,6,6)*, which is a holey transversal design
TD(4,36) — 6TD(4,6) [1]. Place this 4-IGDD on the points {a,b,c,d} X Z¢ x Zg, with
holes on {a,b,c,d} x {i} x Zs for i € Zs and groups on {x} x Z¢x Z¢ for x € {a,b,c,d}.
For x € {a,b,c,d}, place a 4-MGDD of type 6’ on ({x} x Zs x Zs) U ({00} x Zs),
aligning the parallel class of blocks of size seven on ({x} x {j} x Zs)U ({oo} x {/j})
for j € Zg, and the parallel class of blocks of size six on {x} x Zs x {j} for j€Zs
together with the block {oco} x Zg. Omit the blocks of size seven in this placement
(each appears within one of the final blocks of size 25). [J

Lemma 2.6. There is a 4-MGDD of type 6.
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Proof. Let V = Zo3 x {0,1}. The first parallel class consists of the translates of
{(0,0),(31,0),(62,0),(0,1),(31,1),(62,1)}. The second parallel class is {(3i,/):
i=0,1,...,30} for j =0,1 and their translates. Base blocks are

{(0,0),(1,0),(8,0),(87, )}, {(0,1),(1,1),(8,1),(3,0)},
{(0,0),(5,0),(14,1),(27,1)},{(0,0),(10,0),(17,1),(67, 1)},
{(0,0),(14,0),(43,1),(53,1)}.

Multiply the first coordinate of each block by 16 for i =1,2,3,4 to obtain 20 further
blocks. Develop them over Zos;. [J

Lemma 2.7. There is a 4-MGDD of type 6.

Proof. Let V' = Z;,. The first parallel class is {37i:i=0,1,...,5} and its translates,
and the second parallel class is {6i: i=0,1,...,36} and its translates. The base blocks
are {0,1,8,21},{0,25,56,117},{0,43,128,28},{0,49, 182,196}, {0,67,129,70}. Multi-
ply each of them by 211 and 121 to obtain 10 more blocks. Develop these 15 blocks
over 2222. O

Here is the first recursive construction.

Lemma 2.8. Suppose there exists a 4-MGDD of type 6" and there exists a 4-IGDD
of type (6r;r,r,...,r), then there is a 4-MGDD of type 6.

Proof. Align the 4 copies of 4-MGDD of type 6" on the 4 groups of the IGDD so
that the block of size r coincides with the hole. Use each hole to form a new block
of size rh. O

Let 7, ={1,2,...,n} be an index set on n elements.

Lemma 2.9. Suppose there exists a TD(7,m) and a 4-MGDD of type (3a+1)° where
0<a<m — 1. Then there exists a 4-MGDD of type (6m + 3a + 1)°.

Proof. Let Gy,...,G; be the groups of a TD(7,m), and let # be its blocks. Let
V= U?:1 G;. Truncate G; to a + 1 points, sg,51,....5,. We construct a 4-MGDD of
type (6m + 3a + 1)® on the point set (V' x Is) U ({so} x Is) U ({si: i = 1,2,...,a} x
I; x Ig). The first parallel class, consisting of blocks of size 6m + 3a + 1, of the
4-MGDD contains (G; x Ig) U ({so} x {/DHU{s; : i=1,2,...,a} x I; x {j}), for
j €Is. The second parallel class, consisting of blocks of size six, contains {x} x I for
xe{so} U{si:i=1,2,...,a} x ), and (B\ {so}) x {i} for i €Iz and all B€ % with
s € B.

For every block B of size seven in the original TD(7,m) containing the point sy,
we put a 4-MGDD of type 67 on B x I so that the blocks of size six align on
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(B\ {so}) x {i} for i €I, and the block {so} X I, and the blocks of size seven align
on ({x;} x Is) U ({so} x {/j}) where x; € BN G; for j€ls. Omit the blocks of size
seven in each placement, as each contains points of a block of size 6m + 3a + 1.

For every other block B € % of size seven in the truncated TD(7,m), put a 4-IGDD
of type (9,3) on ((B\ {s:})x1s)U({s;} x Is x Is) so that the hole aligns on {s;} x I3 x s
and the groups align on ({a;} x I)U({s;} x I5 x {i}) where a; =B N G;, with G; being
the ith group in the original design. For every block B of size six, put a 4-GDD of
type 6° on the set B x Is, aligning the groups on {x} x s for x € B. Finally, put a
4-MGDD of type (3a + 1)° on the set ({so} x I) U({si: i =1,2,...,a} x I3 x Is), to
get a 4-MGDD of type (6m +3a +1)°. [J

With the two recursions, we are now in a position to close the spectrum of 4-MGDDs
of type 6.

Lemma 2.10. If g = 1 (mod 6), g =43, there exists a 4-MGDD of type 6.
Proof. When m is odd and m =7, there exists a TD(7,m) with the possible exceptions
of m=15,39 [1]. Apply Lemma 2.9 with @ =0,2,4,6 to obtain a 4-MGDD of type
(6m + 1), (6m + 7)5, (6m + 13)® and (6m + 19)°. [

Combining Lemmas 2.1, 2.3-2.7 and 2.10, we obtain:
Lemma 2.11. If g = 1 (mod 6), there exists a 4-MGDD of type 69.

Lemma 2.12. There are 4-MGDDs of type 6°° and 6%,

Proof. There exist 4-HTDs of type 7° and 10° [1]; these are 4-IGDDs of types
(42;7,7,7,7,7,7)* and (60;10,10,10,10,10,10)*, respectively. Apply Lemma 2.8. [

Lemma 2.13. There exists a 4-MGDD of type 6**.

Proof. Start with a 3-GDD of type 6°, whose blocks can be partitioned into frame
parallel classes [10]. Give weight 4 using a resolvable 3-MGDD of type 3*, and extend
the resulting parallel classes to get a 4-IGDD of type (6*9!)°. Use 4-MGDDs of types
67 and 6'° to fill groups. [

Lemma 2.14. If m>63, there exists a 4-MGDD of type (6m + 10)°.

Proof. A TD(7,m) exists for all m>63 [1]. Apply Lemma 2.9 with ¢ =3 to obtain a
4-MGDD of type (6m + 10)°, using the 4-MGDD of type 6'° from Lemma 2.2. []

Lemma 2.15. Let g = 4(mod 6). If g ¢ {70,94,100,118,130, 142, 166, 190,214,238,
244,286,334,370,382} and g=52, then there exists a 4-MGDD of type ¢°.
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Proof. Lemma 2.14 handles all cases when g > 382. Now apply Lemma 2.9 with a=3
and values of m <62 for which a TD(7,m) exists [1]. [J

Lemma 2.16. If g=>52 and g # 70,118, then there is a 4-MGDD of type ¢°.

Proof. First apply Lemma 2.15. Then use Lemma 2.9 with ¢ =9 and values of
m=11,12,17,19,23,27,31,35,36,43,51,57, and 59. The 4-MGDD of type 6% exists
by Lemma 2.12. [

Lemma 2.17. There is a 4-MGDD of type 6*.

Proof. Give weight nine to all points in a block of a TD(6,7), and give weight six to
all other points. Append a new column of six points. Take a parallel class of blocks
of size six including the block in which all points have weight nine. For every block
in the parallel class, put a 4-MGDD of type (k + 1)¢ (k =6,9) on the corresponding
points together with the new adjoined points. For every other block, put a 4-GDD of
type 6° or 6°9' [9]. This gives a 4-MGDD of type 6*°. O

Lemma 2.18. There exists a 4-MGDD of type 67°.
Proof. Take a 4-MGDD of type 7° (Lemma 2.1) and give every point weight 10.
For every block of size six, put a 4-MGDD of type 10° (Lemma 2.2) on the 60
points. For every block of size four, put a 4-GDD of type 10*. This gives a 4-MGDD
of type 67°. [J
Lemma 2.19. There exists a 4-MGDD of type 6''3.
Proof. Take a 4-MGDD of type 13° (Lemma 2.3). Give every point weight nine and
append a new column of six points. For every block of size 6, employ a 4-MGDD of
type 10° (Lemma 2.2). For every other block of size four, employ with a 4-GDD of
type 9* [9]. This gives a 4-MGDD of type 6''8. [

Combining Lemmas 2.12, 2.15-2.19, we have the following result.
Lemma 2.20. If g =4 (mod6), g # 4,16,22, there exists a &-MGDD of type 6.

Finally, we combine Lemmas 2.11 and 2.20 to yield:

Theorem 2.21. There is a 4-MGDD of type 6" for all n € {16,22}, n = 1(mod 3)
and n=17.

In addition, we update the theorem of Assaf and Wei [4].

Lemma 2.22. There is a 4-MGDD of type 108.
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Proof. Let V=279 x (Z7U{o0}). The first parallel class is {{i} x (Z;U{oc}:i € Z;o}.

The second parallel class is {Z;o x {j}: j € Z7; U {oc}}. Base blocks are:
{(0,0),(1,1),(3,3),(9,2},{(0,0),(4,4),(5,1). (8,6},
{(0,0),(5,5).(7.3),(1,6},{(0,00),(1,1),(7,3).(8,6},
{(0,00),(2,2),(5,1),(3,4},{(0,00),(4,4),(9,1),(6,0}. O

Lemma 2.23. There is a 4-MGDD of type 105.

Proof. Let V'=75x{0,1} x Z,3. The two parallel classes are {(0,0,1),(0,1,7): i € Z»;}

and {(i,0,0),(i,1,0): i € Zs} and its translates. The base blocks are
{(0,0,0),(1,0,1),(4,0,2),(0,1,3)}, {(0,0,0),(0,1,5),(2,1,1),(3,1,2)},
{(1,0,0), (4,0,5),(2,1,10),(3,1, 15)}.

Multiply each block by (—,—,2") for i = 1,2,...,10 to obtain the remaining base
blocks. [

Lemma 2.24. There is a 4-MGDD of type 19'!.

Proof. Let V' =79 x Zy;. The two parallel classes are {(0,i):i€Z;9} and {(i,0):
i €7} together with their translates over Z;9 x Z;;. The base blocks are

{(0,0),(1,1),(3,2).(12,3)}.{(0,0),(1,2),(5,1),(13,8)},

{(0,0),(4,1),(6,7),(9,8)}-
Multiply each block by (1,4)" (i.e., multiply the first component by 1’ and the

second by 4') for i = 1,2,3,4 to obtain 12 more blocks. Develop these blocks over
Zlg X le. J

Lemma 2.25. There is a 4-MGDD of type 19'2.

Proof. Take a 5-MGDD of type 6'* [10] and remove a group of size six to obtain a
{4,5}-MGDD of type 6'2. Give weight three to each point and append a new column
of 12 points. Employ 4-GDDs of type 3* and 3° and a 4-MGDD of type 4'2. [J

Lemma 2.26. There is a 4-MGDD of type 19'%.

Proof. Let V'=2719x(Z;3U{c0}). The first parallel class is {{i} x(Z3U{c0}): i € Z9}.

The second parallel class is {Zj9 x {j}: j€Z;3U{o0}}. Take the blocks
{(0,0),(1,1),(3,3),(7,7)},{(0,0),(5,5),(14,1),(11,4)},
{(0,0),(8,8),(18,5),(16,9)},{(0,0),(11,11),(15,8),(7,10)},
{(0,0),(15,2),(9,7),(3,5)},{(0,00),(1,1),(15,8),(12,10)},
{(0,00),(2,2),(16,8),(4,1)}



A.C.H. Ling, C.J. Colbournl Discrete Mathematics 219 (2000) 207-221 215

and multiply each by (11,1)" for i =0,1,2 to obtain 21 base blocks. Develop these
under the action of the group. [

Lemma 2.27. There is a 4-MGDD of type 193,

Proof. Let V' = Z19 x Z;5. The two parallel classes are {(i,0):i€ Z;9} and {(0,i):

i €75} together with their translates over Z;9 x Z;s. Take the blocks
{(0,0),(1,1),(3,3),(7.7)},{(0,0).(5,5),(14,14),(6,10)},
{(0,0),(10,10),(3,7),(1,9)},{(0,0),(13,13),(12,1),(16,9)},
{(0,0),(9,13),(8,9),(11,2)},{(0,0),(15,4),(3,12),(18,5)},
{(0,0),(17,6),(15,1),(4,3)}.

and multiply each by (11,1)" for i =0, 1,2 to obtain 21 base blocks. Develop these

under the action of the group. [

Lemma 2.28. There is a 4-MGDD of type 19'3.

Proof. Let V=279x(Z;7U{o0}). The first parallel class is {{i} x(Z;;U{o0}):i € Z19}.

The second parallel class is {Z19 X {j}: j€ Z17 U {oo0}}. Take the blocks
{(0,0),(1,1),(3,3),(7.7)},{(0,0),(5,5),(14,14),(6,8)},
{(0,0),(8,8),(18,1),(11,13)},{(0,0),(15,15),(17,2),(13,4)},
{(0,0),(16,16),(2,6),(4,14)},{(0,0),(9, 11),(12,7),(15,16)},
{(0,0),(14,16),(18,9),(7,12)},{(0,00),(1,1),(4.8).(8,7)},
{(0,00),(2,2),(13,4),(17,16)}

and multiply each by (7,1)" for i = 0,1,2 to obtain 27 base blocks. Develop these

under the action of the group. [

Lemma 2.29. There is a 4-MGDD of type 193,

Proof. Let V' = Zy9 x Z53. The two parallel classes are {(0,7):i€ Zy3} and {(i,0):
i €719} together with their translates over Z;9 X Zp3. The base blocks are

{(0,0),(1,1),(3,2),(12,3)},{(0,0),(1,5),(5,1),(13,2)},
{(0,0),(4,1),(6,6),(9,11)}.
Multiply each block by (1,2) for i =1,2,...,10 to obtain 30 more blocks. Develop

these blocks over Zi9 x Zy3. [J

With these lemmas, we can restate the theorem.
Let F = {{6,16},{6,22},{10,15},{10,18}}.
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Theorem 2.30. If {m,n} #{6,4}, then there exists a 4-MGDD of type m" if and only
if (m—1)(n —1)=0(mod 3) with the possible exceptions of {m,n} €F.

3. Index greater than one

The definitions at the outset can all be generalized to require each pair not in a
group together (or not in a hole together, or not in a block of one of the distinguished
parallel classes together) to appear in exactly 4 blocks. In this case, we obtain various
classes of designs with index /. When 41=1, we recover the definitions of the preceding
sections.

In this section, we examine the existence of 4-MGDDs with index greater than one.
Simple counting establishes that for a 4-MGDD of type m" and index A to exist, one
requires that A(m —1)(n—1) = 0(mod 3) and m,n>4. Hence when 1 = 0(mod 3), the
basic necessary condition reduces to m,n>4. When A # 0(mod 3), the basic necessary
condition is the same as for index one. Now the union of two 4-MGDDs of type m”,
one of index /; and the other of index /,, is a 4-MGDD of type m" and index A; + 4.
Hence it suffices to examine cases with A€ {2,3} when the 4-MGDD of index one
and type m” is nonexistent or unknown although the basic necessary condition is met,
and cases with /=3 when m,n = 0,2 (mod 3) and m,n >4.

First, we treat the cases with A = 3.

Lemma 3.1. If whenever n,me S ={4,5,6,7,8,9,10,11,12,14,15,18,19,23} there is
a 4-MGDD of type n™ and index 3, then whenever n,m =4, there is a 4-MGDD of
type " and index 3.

Proof. There exist PBDs with block sizes from S of order » and m [5]. Let (V, %) be
such a PBD of order m, and (W, Z) be such a PBD of order n. We form the required
4-MGDD on the point set V' x W. For B€ # and D € &, place a 4-MGDD of index
3 on B x D, omitting the parallel classes on {b} x D for b€ B, and on B x {d} for
deD. [

Lemma 3.2. Let K C{4,7,10,13,19}. If a K-PBD of order m and index 3 exists,
and n €S, then a 4-MGDD of type n™ and index 3 exists except possibly when 4 € K
and n=6, or when 10 €K and ne {15,18}.

Proof. Let (V, %) be the K-PBD of order m and index 3. Let W be an n-set. We form
the required 4-MGDD on the point set ¥ x W. For B € 4, place a 4-MGDD of index
1 on B x W, omitting the parallel classes on {b} x W for b€ B, and on B x {w} for
weWw. O

In view of Lemma 3.1, useful ingredients for Lemma 3.2 have m € S.
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Lemma 3.3. There is a {4}-PBD of index 3 and order m whenever m = 0, 1(mod 4).
There is a {7}-PBD of index 3 and order 15. There is a {4,10}-PBD of index 3
and order 11. There are {4,7}-PBDs of index 3 and orders 14,18, and 23.

Proof. For the first two statements, see [7]. For order 11, employ base blocks {0, 1, 5,7}
and {00,0,1,3} over Zyo U {oc}, together with Z;y as a block of size 10. For order
14, on Z7 x {0,1}, take base blocks

{(0,0).(1,0),(0,1),(3,1)}.{(0,0),(2,0),(0, 1), (6, 1)},
{(0,0).(4,0),(0,1),(5,1)}.{(0,0), (1, 1),(2, 1), (4, 1)},

{(0,1),(1,0),(2,0),(4,0)}.{(0,1),(3,0),(5,0),(6,0)},

together with the single block Z; x {1} of size 7.
For order 18, on Zy x {0,1}, form the base blocks

{(0,0),(1,0),(2,0),(4,0),(0,1),(1,1),(3,1)},{(0,0),(1,0),(4,0), (4, 1)},
{(0,0),(2,0),(5,0),(7,1)},{(0,0),(1,1),(4,1),(5,1)},{(0,0),(2, 1),(4,1),(6, 1)},
{(0,0),(3,1),(6,1),(7, 1)}.

For order 23, on Z;s U {00;: 0<i<6}, form the base blocks
{00,0,1,3},{001,0, 1,5}, {00,,0,1,8}, {03,0,2,7},{04,0,2,5},
{05,0,3,9},{006,0,4, 10}

with the short orbit {0,4,8,12}, and a block of size 7 on the infinite points included
three times. [J

We must treat cases when n =6 and m € {4,5,6,8,9,11,12,14, 18,23} to complete
the solution for index 3.

In the constructions of the next lemma, whenever the point set has the form X x ¥,
parallel classes are obtained as {{(x,y):x€X}: ye ¥} and {{(x,y): yeY}:xeX}.

Lemma 3.4. Whenever me€ {4,5,6,8,9,11,12,14,18,23}, a 4-MGDD of index three
and type 6" exists.

Proof. For m =4, the point set is (Zs U {oo0}) x {0,1,2,3}. Base blocks are:
{(0,0), (i, 1),(24,2),(34,3)}, {(00,0), (7, 1),(21,2),(3,3) },
{(0,0),(00,1),(24,2),(37,3)},{(0,0), (i, 1), (o0, 2), (37, 3) },
{(0,0),(1,1).(2i,2),(00,3)}

for i =1,2,3, and three copies of the base block {(0,0),(4,1),(3,2),(2,3)}.

For m =5, the point set is Z3g, parallel classes are equivalence classes modulo 5
and modulo 6, and base blocks are

{0,1,2,3},{0,2,9,16},{0,3,7,16},{0,3,11,22},{0,4,8,17}.
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For m = 6, the point set is (Zs U {o0}) x (Zs U {co}). Base blocks are:

{(0,0),(1,1),(2,3).(3,2)}.{(3,0).(4,1),(1,3),(0,00)},
{(2,0).(3,1),(4,3),(0,00)},{(0,3),(1,1),(2,4),(0,0)},
{(0,4),(2.3),(4,2),(00,0)}.{(4,2).(1,3),(0,00),(0,0)},
{(2,1).(3,4),(0,00), (c0,0)},{(1,2),(2,1),(0,00), (0,0},
{(0,0),(1,4),(3,1),(c0,00)}.

For m =8, the point set is (Z7 U {oo}) x (Zs U {oo}). Base blocks are:

{(0,0),(1,1),(3,3).(5,2)}.{(0,0),(4.4),(6,3).(1,2)},
{(00,00),(0,0),(6,1),(5,2)},{(0, 00), (o0, 0), (1, 1),(2,2)},
{(0,00),(0,0),(3,2),(5,4)}.{(0,00),(0,0),(4,3),(1,4)},
{(0,00),(4,0).(5,3).(6,1)},{(0,00),(1,0),(4.3),(6,4)},
{(0,00),(2,2),(3,4).(6,0)},{(0,00),(2,4),(3,2).(5,0)},
{(00,0),(0,1),(6,2).(3,3)},{(o0,0),(0,3),(1,4),(3, )}

For m =9, the point set is Zg X (Zs U {co}). Base blocks are:

{(0,0),(1,1),(2,2).(3,3)},{(0,0),(2,2),(6, 1), (5, 4)},
{(0,00),(1,1),(4,4).(3,2)},{(0,00),(1,1),(5,0).(6,3)},
{(0,00),(1,1),(7,2),(3,0)},{(0,00),(2,2),(4.3),(7.4)}.

Multiply each by (8,1)' for i = 0,1 to obtain 12 base blocks, and develop over the
group.
For m = 11, the point set is Zy; x (Zs U {co}). Base blocks are:

{(0,0),(1,1),(2,2).(3,3)},{(0,00),(1,1),(5,0), (9, 4)},
{(0,00),(2,2),(8,0),(6,4)}.

Multiply each by (4,1)" for i =0,1,2,3,4 to obtain 15 base blocks, and develop over
the group.

For m =12, there is a 5-MGDD of type 6'* [11] and hence a {4,5}-MGDD of type
6'2. Triplicate each block of size 4, and replace each 5-block by a {4}-PBD of order
5 and index 3.
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For m = 14, the point set is (Z;3 U {o0}) x (Zs U {cc0}). Base blocks are:

{(0,0),(6,1),(1,4),(10,3)},{(0,0),(7.2),(6,4),(10, 1)},
{(0,0),(11,1),(5,3),(6,2)}.{(0,0),(3,3),(6,4),(1,2)},
{(0,0),(9,2),(2,3),(5, 1)}, {(00,00),(0,0),(2,2), (11, 1)},
{(0,00),(0,0),(3, 1), (11,4)}, {(0, 00), (20, 0),(5,3),(9,2)},
{(0,00),(00,0),(4,1),(8,3)}.{(c0,0),(0,2),(1,3),(2,4)},
{(00,0),(0,4),(12,1),(2,2)}.{(0,00),(1,0),(12,1),(7,2)},
{(0,00),(1,0),(2,4).(7,2)}.{(0,00),(1,0), (4, 1),(9,4)},
{(0,00),(3,0),(2,2), (11,4)}.{(0,00),(2,0).(6,2), (12, 1)},
{(0,00),(8,0),(5,3),(6,4)}.{(0,00),(10,0),(4,2),(12,3)},
{(0,00),(6,0),(10,4),(7,2)},{(0,00),(11,0),(8,2),(10,3)},
{(0,00),(3,0),(5,2),(9, D}.

For m = 18, the point set is (Z;7 U {o0}) x (Zs U {c0}). Base blocks are:

{(0,0),(1,1),(2,2).(3,3)}.{(0,0),(4,4).(13,3),(10,2)},
{(0,0),(6,1),(12,4),(4,3)}.{(0,0),(7,2).(1,3),(14, 1)},
{(0,0).(8,3),(2,4).(7.1)}.{(0,0),(9,4),(4,1),(3,2)},
{(0,0),(6.3),(2,1),(8,2)},{(00,00),(0,0),(7.4),(5, 1)},
{(0,00),(0,0),(5,4), (10, 1)}, {(0, 00), (00, 0),(1,2),(8, 1)},
{(0,00),(00,0),(7,2),(2,3)},{(00,0),(0,1),(12, 3),(14,4)},
{(00,0),(0,4),(1,2),(15,3)}.{(0,00),(1,0),(3,2),(13, 1)},
{(0,00),(6,0),(9,3).(8,4)}.{(0,00),(2,0),(5,3).(9, 1)}
{(0,00),(10,0),(14,4),(11,2)},{(0, 00),(12,0),(8, 1),(15,4)},
{(0,00),(1,0),(7,1),(11,2)},{(0,00),(16,0),(2,1),(6,2)},
{(0,00),(4,0),(11,2),(16,3)},{(0,00),(4,0),(12,3),(16, 1)},
{(0,00),(14,0),(5,3).(13,2)},{(0,00),(13,0),(7.1),(15,3)},
{(0,00),(15,0),(9, 1), (12,3)}, {(0, 00),(3,0),(12,1),(4,2)},
{(0,00),(6,0),(14,2),(3,4)}.
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For m =23, the point set is Z3 X (Z5 U {c0}). Base blocks are:

{(0,0),(1,1),(2,2),(3,3)},{(0,00),(1,1),(3,3),(10,0)},
{(0,00),(1,1),(5,0),(14,4)}.

Multiply each by (2,1) for i=0,1,...,10 to obtain 33 base blocks, and develop over
the group. [J

Theorem 3.5. 4 4-MGDD of index 3 and type n™ exists whenever n,m=4.

Proof. If m,n €S, apply Lemma 3.1. If m € S\ {6}, apply Lemma 3.2 using the PBDs
from Lemma 3.3. This handles all cases except when n =6, or me {10,11} and
ne{15,18}. When n € {15,18} and m € {6,10, 11}, but (n,m) # (18,6), the cases are
treated by using m € {15,18} in Lemma 3.2. When m=6 and n € {7, 10, 19}, triplicate
a 4-MGDD of index one. The remaining cases arise when m =6, and these are treated
in Lemma 3.4. [J

Now we turn to index 2. The only cases to treat are those missing when 4 = 1.
For types 10> and 10'®, employ a {4}-PBD of order 10 and index 2 together with a
4-MGDD of type 4" or 4'8,

For 6%, the point set is (Zs U {co}) x {0,1,2,3}. Base blocks are:

{(00,0),(1,1),(24,2),(31,3)},{(0,0), (00, 1),(24,2), (34,3) },
{(0,0), (i, 1),(00,2),(3,3)},{(0,0), (i, 1), (2,2), (0, 3)}.

for i = 1,2, and two copies of the base blocks {(0,0),(4,1),(3,2),(2,3)} and {(0,0),
(3,1),(1,2),(4,3)}. Since {4,7}-PBDs of order 16, 22, 25, and 34 all exist, this settles
the remaining cases for index 2.

Putting the pieces together, we obtain:

Theorem 3.6. 4 4-MGDD of type n" and index A exists whenever J(m—1)(n—1) =
0(mod 3) and m,n>=4, except when A=1 and {m,n} ={6,4}, and possibly when =1
and {m,n} € {{6,16},{6,22},{10,15},{10,18}}.
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