The Convergence of T-Sum of Fuzzy Numbers on Banach Spaces

S. Y. Hwang and D. H. Hong
Department of Mathematics, Taegu University
Kyungbuk, South Korea

and

Department of Statistics, Hyosung Women's University
Kyungbuk, South Korea

(Received November 1994; accepted June 1995)

Abstract—This paper presents the membership function of finite (or infinite) sum (defined by the sup-t-norm convolution) of fuzzy numbers on Banach spaces, in the case of Archimedean t-norm having convex additive generator function and fuzzy numbers with concave shape function, which generalizes Hong and Hwang's results [1] of the real case. As applications, we calculate the membership function of the limit distribution of Yager's, Hamacher's and Dombi's sum.

Keywords—Fuzzy numbers on Banach spaces, Archimedean t-norm, Convergence of T-sum.

1. INTRODUCTION

In 1991, Fullér calculated the membership function of the product-sum of triangular fuzzy numbers, and he asked for conditions on which the product-sum on L-R fuzzy numbers has the same membership function. The answer for this question was given by Triesch [2] and Hong [3], which is the conditions that log L and log R are concave functions.

Recently, Hong and Hwang [1] determined the exact membership function of the t-norm-based sum of fuzzy numbers, in the case of Archimedean t-norm having convex additive generator function and fuzzy numbers with concave shape functions, which is the generalization of Fullér and Keresztfalvi's result [4].

The purpose of this paper is to study the membership function of the t-norm-based sum of fuzzy numbers on Banach spaces, which generalizes earlier results by Fullér [5] and Hong and Hwang [1]. The idea follows from Hong and Hwang's paper [1].

2. DEFINITIONS

A function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is said to be a triangular norm (t-norm) iff it is symmetric, associative, nondecreasing in each argument, and $T(x, 1) = x$, for all $x \in [0, 1]$. A t-norm T is Archimedean iff T is continuous and $T(x, x) < x$, for all $x \in (0, 1)$.

Every Archimedean t-norm T is representable by a continuous and decreasing function $f : [0, 1] \rightarrow [0, \infty]$ with $f(1) = 0$ and

$$T(x, y) = f^{-1}(f(x) + f(y)),$$
where \(f^{-1} \) is the pseudo-inverse of \(f \), defined by

\[
 f^{-1}(y) := \begin{cases}
 f^{-1}(y), & \text{if } y \in [0, f(0)], \\
 0, & \text{if } y \in [f(0), \infty].
 \end{cases}
\]

The function \(f \) is the additive generator of \(T \) [6].

The associativity of triangular norm \(T \) allows us to extend these mappings to an arbitrary finite number of arguments in a unique way, by means of a recursive definition. Moreover if \(T \) is Archimedean, then for \(x_i \in [0, 1], i = 1, 2, \ldots, n \),

\[
 T(x_1, x_2, \ldots, x_n) = f^{[-1]}(f(x_1) + \cdots + f(x_n)).
\]

Let \(E \) be a real Banach space. A fuzzy set in \(E \) is a function \(\xi : E \to [0, 1] \). Suppose that a sequence of fuzzy sets \(\xi_1, \xi_2, \ldots \) and a t-norm \(T \) are given. The \(T \)-sum \(\xi_1 + \xi_2 + \cdots + \xi_n \) is the fuzzy set defined by \((\xi_1 + \xi_2 + \cdots + \xi_n)(z) = \sup_{x_1 + \cdots + x_n = z} T(\xi_1(x_1), \ldots, \xi_n(x_n)) \). If \(T \) is Archimedean, from the property that the additive generator \(f \) is continuous and decreasing, we have

\[
 (\xi_1 + \cdots + \xi_n)(z) = \sup_{x_1 + \cdots + x_n = z} f^{-1}\left(f(\xi_1(x_1)) + \cdots + f(\xi_n(x_n)) \right).
\]

A subset \(M \) of the Banach space \(E \) is said to be convex iff for all \(x, y \in M \), we have \(ax + (1 - a)y \in M \) for all real \(a \in [0, 1] \). Let \(M \) be a convex subset of \(E \), and let \(\phi : M \to R \). Then \(\phi \) is said to be convex in \(M \) if for every \(x_1, x_2 \in M \), \(\phi(\theta x_1 + (1 - \theta)x_2) \leq \theta \phi(x_1) + (1 - \theta)\phi(x_2) \) for every \(0 \leq \theta \leq 1 \). If \(-\phi \) is convex, then \(\phi \) is said to be concave on \(M \).

The following lemma is well known.

Lemma 1. (See [7].) Let \(\phi \) be convex [concave] in a convex set \(M \subset E \). Let \(\{x_i\}_{i=1}^n \) be points in \(M \) and \(\{\lambda_i\}_{i=1}^n \) satisfy \(\lambda_i \geq 0 \) and \(\sum_{i=1}^n \lambda_i = 1 \). Then,

\[
 \phi \left(\sum_{i=1}^n \lambda_i x_i \right) \leq \sum_{i=1}^n \lambda_i \phi(x_i).
\]

3. T-NORM-BASED ADDITION OF FUZZY NUMBERS

Let \(M \) be a convex subset of \(E \) whose interior contains the origin. Let \(g : M \to [0, 1] \) be a concave function on \(M \).

Define a fuzzy set \(\xi \) on \(E \) by

\[
 \xi(x) = \begin{cases}
 g(x), & \text{if } x \in M, \\
 0, & \text{otherwise}.
 \end{cases}
\]

If we assume the concavity of shape function \(g \) of a fuzzy set \(\xi \) in Banach space instead of the concavity of functions \(L, R \) in the real case, we have the following result.

Theorem 3.1. Let \(T \) be an Archimedean t-norm with additive generator \(f \) and let \(\xi_i(i = 1, \ldots, n) \) be fuzzy sets such that \(\xi_i(x) = \xi(x - a_i) \), where \(a_i \in E, i = 1, \ldots, n \). If \(f \) is a convex function, then the membership function of \(T \)-sum \(\tilde{A}_n = \xi_1 + \cdots + \xi_n \) is given by

\[
 \tilde{A}_n(z) = \begin{cases}
 f^{[-1]}\left(n f \left(g \left(\frac{z - A_n}{n} \right) \right) \right), & \text{if } z \in nM, \\
 0, & \text{otherwise},
 \end{cases}
\]

where \(A_n = a_1 + \cdots + a_n \) and \(nM = \{na \mid a \in M \} \).
Proof. Since M is convex, $\overline{M + \cdots + M} = nM$. It is easy to see that the support of \mathcal{A}_n is included in nM. Since $\xi_i(x) = \xi(x - a_i)$ for all x, we have by (*)

$$\mathcal{A}_n(z) = f^{-1} \left(\inf_{x_1 + \cdots + x_n = z} \left(\sum_{i=1}^{n} f(\xi_i(x_i)) \right) \right)$$

$$= f^{-1} \left(\inf_{y_1 + \cdots + y_n = z - A_n} \left(\sum_{i=1}^{n} f(\xi_i(y_i)) \right) \right)$$

$$\mathcal{A}_n(z) = \overline{B}_n(z - A_n),$$

where \overline{B}_n denotes the n-fold sum $\xi + \cdots + \xi$. We note that if $x_1 + \cdots + x_n = z$ and some x_i are outside of M, then $f^{-1}(\sum_{i=1}^{n} f(\xi(x_i))) = 0$. Hence by (*), we have that

$$\overline{B}_n(z) = f^{-1} \left(\inf_{x_1 + \cdots + x_n = z} \left(\sum_{i=1}^{n} f(\xi_i(x_i)) \right) \right)$$

$$= f^{-1} \left(\inf_{x_i \in M, i=1,\ldots,n} \left(\sum_{i=1}^{n} f(\xi_i(x_i)) \right) \right).$$

Suppose that $x_1 + \cdots + x_n = z$ and $x_i \in M, i = 1,\ldots,n$. Then we have

$$\frac{1}{n} \sum_{i=1}^{n} f(\xi_i(x_i)) = \frac{1}{n} \sum_{i=1}^{n} f(g(x_i))$$

$$\geq f \left(\frac{1}{n} \sum_{i=1}^{n} g(x_i) \right)$$

$$\geq f \left(g \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) \right) = f \left(g \left(\frac{z}{n} \right) \right),$$

where the first inequality comes from the convexity of f and the second inequality comes from the decreasing property of f and the concavity of g. By taking $x_i = z/n, i = 1,\ldots,n$, $\overline{B}_n(z) = f^{-1}(nf(g(z/n)))$, which implies that $\mathcal{A}_n(z) = f^{-1}(nf(g((z - A_n)/n))), z \in nM$.

Remark 3.2. Theorem 3.1 is the generalization of Hong and Hwang's theorem [1, Theorem 2] in the real case. In fact, if $E = R$, then the convex set M is a closed interval $[-\alpha, \beta]$ containing 0. And ξ_i is the fuzzy number $(a_i, \alpha, \beta)_{L-R}$ of $L-R$ type. Let the shape function g be satisfied with $g(0) = 1$ and $g(\partial M) = 0$, where ∂M is the boundary of M. Define functions $L, R : [0, 1] \to [0, 1]$ by the following:

$$g(z) = \begin{cases}
R \left(\frac{z}{\beta} \right), & \text{if } 0 \leq z \leq \beta, \\
L \left(\frac{-z}{\alpha} \right), & \text{if } -\alpha \leq z \leq 0, \\
0, & \text{otherwise.}
\end{cases}$$

Then ξ_i is the fuzzy number $(a_i, \alpha, \beta)_{L-R}$ of $L-R$ type. Since

$$g \left(\frac{z - A_n}{n} \right) = \begin{cases}
R \left(\frac{z - A_n}{n\beta} \right), & \text{if } A_n \leq z \leq A_n + n\beta, \\
L \left(\frac{A_n - z}{n\alpha} \right), & \text{if } A_n - n\alpha \leq z \leq A_n, \\
0, & \text{otherwise,}
\end{cases}$$
by Theorem 3.1, we obtain the following form:

\[\tilde{A}_n(z) = \begin{cases}
 f^{-1}\left[nf\left(R\left(\frac{z-A_n}{n\beta}\right)\right)\right], & \text{if } A_n \leq z \leq A_n + n\beta, \\
 f^{-1}\left[nf\left(L\left(\frac{A_n-z}{n\alpha}\right)\right)\right], & \text{if } A_n - n\alpha \leq z \leq A_n, \\
 0, & \text{otherwise,}
\end{cases} \]

which is exactly the formula of Theorem 2 [1] in the real case.

Now we restrict considerations to Euclidean n-space \(\mathbb{R}^n \). Suppose that \(g: \mathbb{R}^n \to \mathbb{R} \) is a concave function with \(g(0) = 1 \). Let \(\alpha(s) \) be a differentiable curve parametrized by arc length, such that \(\alpha(0) = 0 \). For sufficiently large \(s_0 \), if \(0 \leq s_2 \leq s_1 < s_0 \), then by the concavity of \(g \),

\[
g(\alpha(s_2)) = g\left(1 - \frac{\alpha(s_2)}{\alpha(s_1)}\right) \cdot 0 + \frac{\alpha(s_2)}{\alpha(s_1)} \cdot \frac{\alpha(s_1)}{\alpha(s_1)}
\]

Hence,

\[
\lim_{n \to \infty} \tilde{A}_n(z) = f^{-1}\left(\frac{1}{|z-A|}f'_{\alpha(0^+)g}\right),
\]

where \(\alpha(s) \) is a differentiable curve parametrized by arc length, passing through \((z - A_n)/n\), and \(\alpha(0) = 0 \).

Proof. Suppose first that \(z \neq A \). Then for sufficiently large \(n \), \(z \neq A_n \). Assume that the generator function \(f \) is convex. If \(0 \leq y < x < 1 \), then

\[
f(x) = f\left(\frac{y-x}{y-1}\cdot 1 + \frac{x-1}{y-1}y\right) \leq \frac{y-x}{y-1}f(1) + \frac{x-1}{y-1}f(y) = \frac{x-1}{y-1}f(y),
\]

hence, \(f(x)/(x-1) \) is increasing and \(\lim_{x \to 1^-} f(x)/(x-1) = f'_{\alpha}(1) \) exists. If we consider the following relation:

\[
nf\left(g\left(\frac{z-A_n}{n}\right)\right) = \frac{f\left(\frac{(z-A_n)/n}{g\left((z-A_n)/n\right)-1}\right)}{f\left((z-A_n)/n-1\right)(z-A_n)/n} \leq f^{-1}\left(\frac{1}{|z-A|}f'_{\alpha(0^+)g}\right),
\]

it converges to \(f'_{\alpha}(1)D_{\alpha(0^+)g}|z-A| \) as \(n \to \infty \). If \(z = A \), we have the following inequality:

\[
\tilde{A}_n(A) = f^{-1}\left(\inf_{x_1+\ldots+x_n=A} \sum_{i=1}^{n} f\left(\xi_i(x_i)\right)\right)
\]

\[
\geq f^{-1}\left(f\left(\xi_1(a_1 + A - A_n)\right) + \sum_{i=2}^{n} f\left(\xi_i(a_i)\right)\right)
\]

\[
= f^{-1}\left(f\left(\xi_1(a_1 + A - A_n)\right)\right),
\]

where the last equality holds because \(f(\xi_1(a_1)) = f(g(0)) = f(1) = 0 \). Since the shape function \(g \) of \(\xi_i \) is continuous, \(\tilde{A}_n(A) \) tends to 1. This completes the proof.
This theorem is also the extension of Hong and Hwang's convergence theorem [1, Theorem 3] in the real case, by the following meaning.

REMARK 3.4. In particular, if the curve α in Theorem 3.3 is a straight line, by referring to Remark 3.2, we find that

$$D_{\alpha'(0^+)}g = \begin{cases} \frac{R_+'(0)}{\beta}, & \text{if } z > A, \\ \frac{L_+'(0)}{\alpha}, & \text{if } z < A. \end{cases}$$

Hence, by Theorem 3.3 we have

$$\lim_{n \to \infty} \tilde{A}_n(z) = \begin{cases} f[-1]\left(\frac{z-A}{\beta}f'_-(1)R_+'(0)\right), & \text{if } z \geq A, \\ f[-1]\left(\frac{A-z}{\alpha}f'_-(1)L_+'(0)\right), & \text{if } z \leq A, \end{cases}$$

which is the exact formula of Hong and Hwang's theorem [1, Theorem 3] in the real case.

REMARK 3.5. As shown in Theorem 3.3, we note that the membership function of the limit of T-sum \tilde{A}_n is independent of the shape in the outside of sufficiently small neighborhood of the origin.

4. APPLICATIONS

Now we apply Theorem 3.1 and Theorem 3.3 for Yager's, Hamacher's and Dombi's parametrized t-norms. To simplify the representations, let $M = \{(x, y) \in R^2 \mid x^2 + y^2 \leq 1\}$ and $a_i = (0, 0) \in R^2$. And let g be the shape function defined by $g(x, y) = 1 - \sqrt{x^2 + y^2}$. For each parametrized t-norm of above, we compute the membership function of t-norm-based sum \tilde{A}_n and its limit.

(i) Yager's t-norm with $r \geq 1$:

$$T(x, y) = 1 - \min\left\{1, \sqrt{1 - x}^r + (1 - y)^r\right\},$$

with the additive generator $f_r(x) = (1 - x)^r$. Then,

$$\tilde{A}_n(z) = \begin{cases} 1 - n^{(1/r) - 1}|z|, & \text{if } |z| > n^{1-(1/r)}, \\ 0, & \text{otherwise}. \end{cases}$$

For $r = 1$,

$$\lim \tilde{A}_n(z) = \begin{cases} 1 - |z|, & \text{if } |z| \leq 1, \\ 0, & \text{otherwise}, \end{cases}$$

and for $r > 1$, $\lim \tilde{A}_n(z) = 1$.

(ii) Hamacher's t-norm with $0 \leq r \leq 2$:

$$H_r(x, y) = \frac{xy}{r + (1 - r)(x + y - xy)},$$

with the additive generator $f_r(x) = \log(r + (1 - r)x)/x$. Then,

$$\tilde{A}_n(z) = \begin{cases} r \left(\frac{r+(1-r)(1-|z|/n)}{1-|z|/n}\right)^n, & \text{if } |z| \leq n, \\ 0, & \text{otherwise}, \end{cases}$$

and the limit is $\lim \tilde{A}_n(z) = r/(e^{|z|} - 1 + r)$.
(iii) Dombi's t-norm with $r > 1$:

$$T(x, y) = \frac{1}{1 + \sqrt[1/r]{((1/x) - 1)^r + ((1/y) - 1)^r}},$$

with the additive generator $f_r(x) = (1 - x)^r / x^r$. Then,

$$\tilde{A}_n(z) = \begin{cases}
\frac{n - |z|}{n + (n^{1/r} - 1)|z|}, & \text{if } |z| \leq n, \\
0, & \text{otherwise},
\end{cases}$$

and the limit is $\lim \tilde{A}_n(z) = 1$.

REFERENCES