Volume 13 2005: Keyword Index

A
Accuracy, 782
ACL-T, 1100
ADAMTS4, 269
Adenosine, 250
Adipose tissue, 845
AG-041R, 287
Ageing, 614, 1084
Aggrecan degradation, 269
Aggrecan, 887
Aggrecanase, 162
Aging, 643, 1004
Animal model, 798, 971
ANKH gene, 745
Ankle, 93
Anterior cruciate ligament transection, 790
Anterior cruciate ligament, 808
Arthritis, 345, 958, 1092
Arthroscopy, 361, 368, 728
Articular cartilage repair, 404
Articular cartilage, 48, 54, 80, 139, 250, 672, 709, 745, 958, 1050, 1084, 1100
Articular chondrocytes, 330
Articular, 345
Association, 497
Asymptomatic knee, 181
AUSCAN, 561
Autologous chondrocyte implantation, 589, 601

B
β-aminopropionitrile, 120, 709
Biglycan, 817
Bioavailability, 1041
Biochemical marker, 716
Biochemical markers, 258, 1059
Biomarker, 762, 837
Biomaterial, 896
Biomechanics, 129, 368, 471, 906, 1092
Bioreactor, 896
Bioreactors, 129
Birefringence, 368
Blood biomarkers, 861
BMI/body mass index, 861
BMP, 404
BMP-2, 527
Bone area, 198
Bone marrow, 679, 845
Bone metabolism, 310
Bone mineral density, 872
Bone remodeling, 896
Bone turnover, 716
Bone, 608, 1059
Brachymorph, 417
C
Calcium, 1012
CAM, 887
Cancellous bone, 998
Cartilage biology, 971
Cartilage biomechanics, 1066
Cartilage catabolism, 162
Cartilage damage, 250
Cartilage defect, 181, 187
Cartilage defects, 198
Cartilage mechanics, 958
Cartilage metabolism, 925, 942
Cartilage oligomeric matrix protein, 1092
Cartilage radiography, 187
Cartilage repair, 146, 297, 589, 798
Cartilage segmentation, 48
Cartilage thickening, 808
Cartilage tissue engineering, 655, 828
Cartilage volume measurements, 338
Cartilage volume, 722
Cartilage volume, 925
Cartilage, 74, 146, 508, 614, 688, 697, 887, 915
Chondrogenesis, 287, 527, 845
chondroitin polysulphate, 887
Chondroitin sulfate, 387, 1092
Chondromalacia, 1029
Chondropathy, 361
CL-1, 287
Clonal growth, 146
Collagen fibril orientation, 1050
Collagen, 120, 258, 278, 345, 497, 709, 798, 906, 1050, 1059
Collagen type II, 139
COMP, 34, 1092
Compression, 964
Compressive load, 225
Confocal laser scanning microscopy, 665
Co-occurrence, 211
COX-2 inhibition, 519
Coxibs, 545
CPPD, 745
CPS, 887
Crosslink, 709
Cyclodextrin polysulphate, 887, 887
Cyclooxygenase, 243
D
Deformation, 1100
Degeneration, 93
Degenerative joint disease, 345, 417
Deletion, 1004
Diagnosis, 861
Diet, 20
Differentially expressed gene, 1115
Differentiation, 527
Diffraction enhanced imaging, 187
Digital, 455
Dihydrorhodamine 123, 614
Disability measures, 1
Disease modification, 14
Disease-modifying, 216
Dislocation, 1029
Diurnal variation, 837
Dixon fat-water separation, 338
Dog model, 310
Dog, 225
DynaPort(r)KneeTest, 738
E
ECM, 887
Effectiveness, 104, 111
Effusion, 568
Elastin, 345
Enthesis, 790
Epidemiology, 211
Esculetin, 269
Estrogen, 330
Exercise, 34
Explants, 310
Expression analysis, 697
Extracellular matrix, 887
F
FACE, 828
Feline, 235
Femoral head, 998
Femoral trochlea, 1029
FGF, 278
FGF-2, 537
Fibrillation, 1029
Fibromodulin, 817
Fibronectin, 879
Fissuring, 1029
Focal lesion, 728
Foot, 211
Fourier transform infrared imaging, 1050
Fractal analysis, 39, 463, 998
Free radicals, 258
Functional joint space, 808
G
Gait, 139, 206
Gene polymorphism, 1025
Gene transfer, 80
Glucosamine sulfate, 1041
Glucosamine, 387
Glutathione peroxidase, 614
Glycosaminoglycan, 828
GREEN, 14
Growth factor, 623
H
Hand osteoarthritis, 1, 561
Hand, 455
Haplotypes, 608
Health status, 561, 854
Heritable osteoarthritis, 745
High field strength, 338
High-density chondrocyte pellets, 478
Hip osteoarthritis, 1025
Hip replacement, 1076
Hip, 379, 471, 854, 998
Histology, 171, 368
1H NMR spectroscopy, 762
Human cartilage, 519
Human chondrocytes, 80
Human, 672, 1041
Hyaluronan, 129, 297, 751, 837
Hyaluronans, 216
Hyaluronic acid, 688, 751
Hydrogel, 318
Hydrogen peroxide, 915
Hydrostatic pressure, 688
Hydroxyapatite, 745
Hylan G-F 20, 104, 111, 266, 751
Hypertrophy, 632
Hypoxia, 74
ICRS score, 958
Idiopathic osteoarthritis, 1004
IGF, 154, 278
IGF-binding protein, 438
IL-1, 395, 425
IL-1β, 887, 879
Impact, 54
Implant, 798
Implants, 318
In vitro test system, 478
In vivo, 971
Inflammation, 243, 258
Injury, 964
Input devices, 48
Insulin-like growth factor, 438
Integration, 129
Interactive co-culture model, 478
Interconnected porous hydroxyapatite (IP-CHA), 404
Interleukin, 887
Interleukin-1, 387, 915, 979
Interleukin-1β, 250
Interleukin-6, 66, 979, 1025
Joint distraction, 582
Joint laxity, 790
Joint loading, 925
Joint replacement surgery, 14
Joint space narrowing, 14
Joint space width, 379, 722
Joint space, 945
Keratan sulfate, 1092
Kinetics, 709
Knee joint, 338
Knee osteoarthritis, 20, 139, 206, 361, 568, 722
Knee, 39, 93, 216, 235, 353, 463, 471, 672, 716, 872, 945
Knock out mice, 66
Load-induced injury, 488
Locomotor mechanism, 139, 206
Long-term effects, 582
LRF5, 608
Lysyl oxidase, 120
Magnetic resonance imaging, 48, 181
Mannosamine, 269
MAP kinases, 287
Matrix biosynthesis, 1084
Matrix genes, 915
Matrix metalloproteinase, 225
Matrix metalloproteinases, 162
Mechanical compression, 1092
Mechanical loading, 935, 971
Mechanical stimulation, 1084
Mechanical stress, 54, 154, 632
Mechanism of action, 1041
Medial collateral ligament, 790
Median fluorescence intensity, 887
Meniscal abnormality, 181
Meniscal protrusion, 568
Medical meniscectomy, 139
Mesenchymal stem cell, 845
Metatarso-phalangeal, 211
MFI, 887
Mice, 817
Microarray, 425, 1115
Micro-computed tomography, 235, 417, 790
Microfracture, 655
Microstructure, 154
Minimal clinically important difference, 1076
Minimal detectable change, 1076
Minimum joint space width, 872
Mitochondrial DNA, 1004
MP, 679
MMP-13, 395, 632
MMPs, 697
Morphology, 672, 782
Mosaicplasty, 665
Mouse, 243, 632
MRI, 338, 728
MT4-MMP, 269
Multiphoton microscopy, 345
Multivariate data analysis, 762
Musculoskeletal modelling, 925
Musculoskeletal, 20
Mutation, 497
Nicotine, 942
Nitric oxide radical, 1066
Nitric oxide, 1059
Nitric oxide, 74, 387, 688, 935
Non-fluoroscopic, 945
NSAIDs, 545
OA, 471, 887
Obesity, 20
Orthopedic surgery, 345
Orthotic devices, 353
Osteoblasts, 310, 979, 988
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteochondral fragment</td>
<td>601</td>
</tr>
<tr>
<td>Osteochondral lesion</td>
<td>601</td>
</tr>
<tr>
<td>Osteochondral</td>
<td>665</td>
</tr>
<tr>
<td>Osteogenesis</td>
<td>845</td>
</tr>
<tr>
<td>Osteonecrosis</td>
<td>716</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>971</td>
</tr>
<tr>
<td>Outcomes assessment</td>
<td>1076</td>
</tr>
<tr>
<td>Outcomes</td>
<td>854</td>
</tr>
<tr>
<td>Ovariectomy</td>
<td>1066</td>
</tr>
<tr>
<td>Oxidative nitrosylation</td>
<td>258</td>
</tr>
<tr>
<td>Oxygen</td>
<td>643, 935</td>
</tr>
<tr>
<td>Pain</td>
<td>21</td>
</tr>
<tr>
<td>PAPSS2</td>
<td>417</td>
</tr>
<tr>
<td>Patella</td>
<td>1029</td>
</tr>
<tr>
<td>Patellofemoral joint</td>
<td>1100</td>
</tr>
<tr>
<td>Performance-based test</td>
<td>738</td>
</tr>
<tr>
<td>Pericellular matrix</td>
<td>488</td>
</tr>
<tr>
<td>Periosteum</td>
<td>146</td>
</tr>
<tr>
<td>Pharmacokinetics</td>
<td>1041</td>
</tr>
<tr>
<td>Physical activity</td>
<td>837</td>
</tr>
<tr>
<td>Physical function</td>
<td>20</td>
</tr>
<tr>
<td>Physical therapist</td>
<td>738</td>
</tr>
<tr>
<td>PKC</td>
<td>330</td>
</tr>
<tr>
<td>Placebo-controlled clinical trial</td>
<td>575</td>
</tr>
<tr>
<td>PLA-PEG</td>
<td>404</td>
</tr>
<tr>
<td>PLGA</td>
<td>297</td>
</tr>
<tr>
<td>PLLA</td>
<td>297</td>
</tr>
<tr>
<td>Polarized light microscopy</td>
<td>1050</td>
</tr>
<tr>
<td>Population-based</td>
<td>769</td>
</tr>
<tr>
<td>Positioning</td>
<td>379</td>
</tr>
<tr>
<td>Post-traumatic injury</td>
<td>235</td>
</tr>
<tr>
<td>Progenitor cells</td>
<td>537</td>
</tr>
<tr>
<td>Proliferation</td>
<td>817</td>
</tr>
<tr>
<td>Prostaglandin E₂</td>
<td>74, 243</td>
</tr>
<tr>
<td>Prostaglandin E₁</td>
<td>387</td>
</tr>
<tr>
<td>Prostaglandins</td>
<td>935</td>
</tr>
<tr>
<td>Proteins</td>
<td>906</td>
</tr>
<tr>
<td>Proteoglycan synthesis</td>
<td>66</td>
</tr>
<tr>
<td>Proteoglycan</td>
<td>623, 688, 1092</td>
</tr>
<tr>
<td>PTH/PTHrP</td>
<td>988</td>
</tr>
<tr>
<td>Pulsed electromagnetic fields</td>
<td>575</td>
</tr>
<tr>
<td>Rat</td>
<td>614</td>
</tr>
<tr>
<td>Reactive oxygen species</td>
<td>614</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>20, 29, 368, 738</td>
</tr>
<tr>
<td>Reliability</td>
<td>28, 368</td>
</tr>
<tr>
<td>Remodeling</td>
<td>971</td>
</tr>
<tr>
<td>Repair</td>
<td>93, 537</td>
</tr>
<tr>
<td>Repeat courses</td>
<td>111</td>
</tr>
<tr>
<td>Repeat treatment</td>
<td>751</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>782</td>
</tr>
<tr>
<td>Responder criteria</td>
<td>104</td>
</tr>
<tr>
<td>Responsiveness</td>
<td>28, 1076</td>
</tr>
<tr>
<td>Retrovirus</td>
<td>508</td>
</tr>
<tr>
<td>Risedronate</td>
<td>790</td>
</tr>
<tr>
<td>Scaffold</td>
<td>655, 828</td>
</tr>
<tr>
<td>Scaffolds</td>
<td>297</td>
</tr>
<tr>
<td>Second-harmonic generation</td>
<td>345</td>
</tr>
<tr>
<td>Segmentation</td>
<td>338</td>
</tr>
<tr>
<td>Severe acute inflammatory reactions</td>
<td>266</td>
</tr>
<tr>
<td>Sex differences</td>
<td>769</td>
</tr>
<tr>
<td>Sex-specificity</td>
<td>330</td>
</tr>
<tr>
<td>SF-36</td>
<td>1076</td>
</tr>
<tr>
<td>Sheep</td>
<td>1066</td>
</tr>
<tr>
<td>Smoking</td>
<td>942</td>
</tr>
<tr>
<td>Sodium hyaluronan</td>
<td>751</td>
</tr>
<tr>
<td>Sodium hyaluronate</td>
<td>266, 751</td>
</tr>
<tr>
<td>SOX9</td>
<td>80</td>
</tr>
<tr>
<td>SSFP sequences</td>
<td>338</td>
</tr>
<tr>
<td>Stereology</td>
<td>614</td>
</tr>
<tr>
<td>Strain</td>
<td>964</td>
</tr>
<tr>
<td>Strain rate</td>
<td>964</td>
</tr>
<tr>
<td>Structural change</td>
<td>722</td>
</tr>
<tr>
<td>Structure modifying trials for osteoarthritis</td>
<td>14</td>
</tr>
<tr>
<td>Subchondral bone</td>
<td>39, 463, 679</td>
</tr>
<tr>
<td>Superoxide dismutase</td>
<td>614</td>
</tr>
<tr>
<td>Suspension culture</td>
<td>1012</td>
</tr>
<tr>
<td>Synoviocytes</td>
<td>527</td>
</tr>
<tr>
<td>Synovitis</td>
<td>361</td>
</tr>
<tr>
<td>Systematic review</td>
<td>1, 455</td>
</tr>
<tr>
<td>Talus</td>
<td>187</td>
</tr>
<tr>
<td>Temporomandibular joint (TMJ)</td>
<td>817, 1115</td>
</tr>
<tr>
<td>TGF-β</td>
<td>287, 425</td>
</tr>
<tr>
<td>Therapeutic approaches</td>
<td>545</td>
</tr>
<tr>
<td>Therapy</td>
<td>455</td>
</tr>
<tr>
<td>Thickness</td>
<td>782</td>
</tr>
<tr>
<td>Tibial rim alignment</td>
<td>945</td>
</tr>
<tr>
<td>Tidemark</td>
<td>679</td>
</tr>
<tr>
<td>TIMP-3</td>
<td>395</td>
</tr>
<tr>
<td>Tissue engineered cartilage</td>
<td>129, 478, 896</td>
</tr>
<tr>
<td>Tissue engineering</td>
<td>297, 318, 589, 798</td>
</tr>
<tr>
<td>Tissue maturity</td>
<td>488</td>
</tr>
<tr>
<td>Toll-like receptor</td>
<td>879</td>
</tr>
<tr>
<td>Trapeziometacarpal osteoarthritis</td>
<td>953</td>
</tr>
<tr>
<td>Trapeziometacarpal subluxation</td>
<td>953</td>
</tr>
</tbody>
</table>
XXVI Keyword Index

Treatment, 582
Turkish WOMAC, 28
Type II collagen, 198, 243

U
Ultrasonography, 568
Ultrasound biomicroscopy, 171
Unconfined compression, 958

V
Validity, 28, 368, 738
Volume, 198

W
Walking, 34
Weight loss, 20
WOMAC, 561, 1076