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Automatic Vehicle Location (AVL) Systems are being introduced increasingly in many
major cities around the world to improve the efficiency of our road-based passenger trans-
port systems. Satellite-based location and communication systems, particularly the Global
Positioning System (GPS) have been the platform for AVL systems which are now support-
ing real-time passenger information (RTPI), fleet management and operations (FMOs) and
public transport priorities (PTPs), to name three key applications. The process of real-time
on-board bus location can result in a substantial database where the progress of the bus is
stored typically on a second-by-second basis. This is necessary for the primary real-time
applications such as those listed above (e.g. RTPI, FMO and PTP). In addition, it is clear that
such data could have an array of ‘secondary’ purposes, including use off-line for improving
scheduling efficiency and for automatic performance monitoring, thus reducing or remov-
ing the need for manual on-street surveys. This paper looks at these and other innovative
uses of AVL data for public transport, taking the recent iBus system in London as a current
example of a modern AVL/GPS application in a capital city. It describes the data architec-
ture and management in iBus and then illustrates two further examples of secondary data
use – dwell time estimation and bus performance analysis. The paper concludes with a dis-
cussion of some key data management issues, including data quantity and quality, before
drawing conclusions.

� 2011 Elsevier Ltd. Open access under CC BY license.
1. Introduction

Automatic Vehicle Location (AVL) Systems are being introduced increasingly in many major cities around the world to
improve the efficiency of our road-based passenger transport systems. Satellite-based location and communication systems,
particularly the Global Positioning System (GPS) have been the platform for AVL systems which are now supporting real-
time passenger information (RTPI), fleet management and operations (FMOs) and public transport priorities (PTPs), to name
three key applications (Gardner et al., 2009).

With the increasing uses of AVL in public transport, it is apparent that a wide range of architectures are being employed in
different cities across the globe. Taking an example of PTP, there are differences in the way priority need is assessed, the
method of priority request and the means of implementation. The variations in the bus priority architectures are usually
due to the evolutionary approach of improving a bus priority system in the existing infrastructures (rather than a revolution-
ary approach). These various architectures have been categorised and compared in earlier studies (e.g. Hounsell and Wall,
2002; Jones, 1998; Hounsell and Shrestha, 2005). Despite these differences in system architecture, the common feature of
these systems is to provide real time bus location data.

The process of real-time on-board bus location can result in a substantial database where the progress of the bus is stored
typically on a second-by-second basis. This is necessary for the primary applications such as those listed above (e.g. RTPI,
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FMO and PTP). In addition, it is clear that such data has an array of ‘secondary’ purposes, including use off-line for improving
scheduling efficiency and for automatic performance monitoring, thus reducing or removing the need for manual on-street
surveys.

The common thread across all operational systems of this type is the need for efficient data management systems, encom-
passing all the necessary elements of data collection, processing of the spatio-temporal information at high resolution, data
transmission and so on – all according to the system architecture. In some examples this process may be ‘driven’ from the
AVL centre or using roadside infrastructure, whilst in others substantial mobile on-bus data management is required. This
paper provides both a summary of AVL systems and their data architectures in cities around the world and a more detailed
look at data management issues in the 8000 strong London bus fleet – which has been equipped recently with a comprehen-
sive management system known as iBus. The paper also allows comparisons to be made more generally, to see where best
practice might be transferable across other systems with different characteristics.

2. AVL applications for public transport in international perspective

There are various examples of ITS applications around Europe. In these systems, buses are equipped with detection and
communication technologies to locate their position in a network and to communicate with the AVL centre. Most of the re-
cent systems are using GPS as the main locational technology for their AVL system. In these systems, the AVL centre is at the
heart of the system, monitoring buses in the network and assessing their performance. Examples include: Aalborg’s (Den-
mark) mobility centre (Jensen and Birk, 2007), Cardiff’s system (Hill et al., 2001), Genoa’s (Italy) SIMON system (UoS,
2002), Glasgow’s (UK) BIAS (Bus Information and Signalling System) (Glasgow CC, 2009), Helsinki’s (Finland) HeLMi (Hel-
sinki Public Transport Signal Priority and Passenger Information) (Helsinki, 2003), Toulouse’s (France) SITERE (UoS, 2002),
London’s iBus (Clarke et al., 2007), Sydney’s (Australia) PTIPS (Public Transport Information and Priority System) (Mehaffey
and Jarjees, 2001) and Auckland’s (New Zealand) SP/RTPIS (Signal Pre-emption/Real Time Information System) (Vencatachel-
lum, 2002). These centres collect locations of the buses in the network usually by polling in a pre-set interval of 10–30 s
depending on the fleet size and radio capacity. In London’s iBus system, in addition to polling, bus location information is
also passed to the Control centre when departing from a bus stop.

The AVL centre processes the locational information collected and produces useful extracts for various applications such
as Bus Priority, RTPI and Fleet Management. In the case of RTPI and Fleet management applications, the processed informa-
tion is used directly, usually without further interaction with buses. However, in the case of bus priority traffic signals, buses
will operate within a specified priority architecture. For example, in London, Cardiff and Helsinki, the lateness information is
transmitted back to buses (from the AVL centre) so that they can pass the information to the traffic signal controller when
requesting priority at a junction. Short range radio is then often used to request such priority. This way of requesting priority
to the traffic signal locally is an example of decentralised architecture. In other cases such as Toulouse and Aalborg, the AVL
centre directly passes information to the UTC centre without involving buses. This type of communication between the AVL
centre and UTC centre is an example of a centralised architecture. In addition to these two main architectures, there are other
variant architectures according to the location for decision making, etc. For example, Glasgow’s case is slightly different in
the sense that bus lateness relative to its schedule is calculated on board based on the daily schedule stored in the on-board
computer unit (OBU) instead of at the AVL centre.

Table 1 illustrates how AVL applications in public transport are spreading globally and the range of architectures em-
ployed. London’s iBus system is similar to a number of other systems reviewed, apart from being very large in terms of the
scale of implementation and range of applications. iBus in London therefore provides a good case study of data management
in a large public transport fleet from which lessons can be learnt for other similar systems in Capital cities around the world.
3. iBus system

The iBus system in London (Fig. 1), is one of the world’s largest integrated AVL systems. It is a comprehensive AVL system
based on GPS and supporting technologies (e.g. dead reckoning, Kalman optimisation filter and map matching software) for
Table 1
Summary of ITS applications for public transport.

Place System
name

Communication technology Data storage
location

Data processing location Bus priority request
communication

Aalborg – GPRS, PMR Mobile Radio AVL centre AVL centre AVL centre to signal
Auckland SP/RTPIS GPRS AVL centre AVL centre AVL centre to UTC
Cardiff – VHF and UHF radio AVL centre AVL centre Bus to Signal
Genoa SIMON UHF radio, Landline AVL centre and Bus AVL centre AVL centre to UTC
Glasgow BIAS Two way Radio and Landline AVL centre and Bus Bus (lateness) Bus to UTC
Helsinki HeLMi VHF radio AVL centre AVL centre Bus to signal
London iBus GPRS AVL centre and Bus AVL centre (lateness) & Bus Bus to Signal
Toulouse SITERE UHF Radio AVL centre AVL centre AVL centre to UTC
Sydney PTIPS GPRS AVL centre AVL centre AVL centre to UTC
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bus location and the General Packet Radio System (GPRS) for data transfer (Clarke et al., 2007). The system has now been
rolled out to every bus and garage in London – that is over 8000 buses and 90 garages. iBus keeps track of London’s buses
which send the location of each bus to the AVL centre about every 30 s. This bus location information is then passed onto:
service controllers to better regulate services to make them more reliable; to the RTPI system to inform passengers; and to
buses themselves for priority at traffic signals and data storage for post processing.

Fig. 1 (TfL, 2006) gives a simplified overview of iBus system components. Among these (Wong and Hounsell, 2010), three
main components related to bus location data collection and storage are:

– an ‘on-board unit (OBU)’ mounted in each bus (Item L in Fig. 1);
– a ‘data server’ at individual bus garages (Item O);
– a central ‘system server’ located remotely (Item K), which holds the master records of bus routes, their timing points,

operating frequencies, as well as information for specific applications, such as the locations of ‘virtual’ detectors for
bus priority at traffic signals.

The OBU mounted in each bus is the key component collecting bus location data. It is a computer programmed to receive
bus location as well as bus event information from various sources and store them in its memory. In terms of bus location, it
receives information every second from a GPS receiver mounted on the roof (Item J) and the odometer and gyroscope. The
System utilises this information along with optimisation and route/map matching algorithms to calculate the buses’ location
as accurately as possible. In addition to the bus location, the OBU also records activities of a bus along the route. For example,
it records the opening/closing of doors with time-stamped information from the door sensors (Item G). The bus location
information logged in the OBU is automatically uploaded to the data server at the bus garage when vehicles return to the
depot using a Wireless Local Area Networking (WLAN). This WLAN uploads data to the Depot host servers with each OBU
device and vehicle assigned a unique Media Access Control (MAC) address and Technical Vehicle Number (TVN) for data
Fig. 1. iBus system in London (from TfL, 2006).
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communications and identification purposes. The location and activities data is then forwarded from these servers to the TfL
central server via wide area communications links for post processing, historical storage and management reporting.

In addition to bus location data collection, the OBU is also responsible for triggering bus priority at traffic signals. The OBU
keeps a record of the priority-defined virtual detection points which are compared with the bus location to trigger priority at
each equipped traffic signal. For this priority triggering purpose, the OBU is connected to a transmitter mounted on the roof
of each vehicle (Item H); this sends Real-Time Information Group (RTIG)-compliant radio ‘telegrams’ to request bus priority
from individual traffic signal ‘controllers’ (Item E) via their aerials (Item C).

When buses return to their depots at the end of each ‘block’ of trips, their OBUs are connected to the garage’s data server
through the WLAN. This in turn, provides a link to the remote central system server for the purpose of downloading new
route and/or detector locations into the OBUs, and to upload the individual bus location/event ‘log’ files. The log files are then
consolidated centrally, to provide local databases for users, which are used for information storage, historical analysis, and
management reporting.

The real time information received at the AVL centre in regular intervals is used for three core applications: bus fleet man-
agement, real time passenger information and bus priority at traffic signals.

3.1. Real-time passenger information

One of the main real time applications of the bus location data available from iBus is to provide real time information on
bus service arrivals to passengers. London’s real time passenger information system, known as COUNTDOWN, was operated
initially using roadside beacons located along the bus route. Although the system was successful, it only served part of the
overall network. With the implementation of iBus, RTPI will be available at 2500 key bus stops in London by 2011 (TfL,
2010c). TfL also provide various other means for receiving this information, including: next-stop signage on board, text mes-
saging and the internet (see Fig. 2).

3.2. Fleet management and operations (FMOs)

FMO is another real time application of the bus location information available from iBus. In addition to the TfL control
centre, the real time location of buses is available to service controllers of respective operators’ garages. There is a provision
to display the location of every bus against tabular representation and geographical maps, along with their performance rel-
ative to the scheduled frequency or headway for that route, e.g. whether each bus is ‘early’, ‘on-time’, or ‘late’ (as defined in
the system). Such information available to the service controller allows him/her to take fleet management actions quickly in
the case of disruption in the network.

3.3. Bus priority at traffic signals

Another application of iBus is to enhance London’s successful bus priority at traffic signal system. This replaces earlier
infrastructure-based detection systems (Hounsell and Shrestha, 2005) used for bus priority at traffic signals. For example,
in-road inductive loops or physical road-side beacons with associated vehicle transponders to identify buses on approach
were used to trigger priority on the approaches of traffic signals to provide them with a green time extension or recall at
the signal. However, these physical infrastructure-based ‘Selective Vehicle Detection’ (SVD) systems are becoming increas-
ingly outdated, as they are relatively expensive to install and maintain, so are no longer being applied to London’s signal
junctions (TfL, 2006).

With iBus, SVD is triggered through the use of ‘virtual’ detectors. These locations associated with each signal junction and
defined in terms of a set of GPS longitude and latitude coordinates, are programmed onto the OBU of each bus. These bus
detector locations are configured in the on-bus computer of iBus equipped buses and have no physical presence – hence their
name as ‘virtual detectors’ (Hounsell et al., 2006). The predefined virtual detector coordinates are compared with the
Fig. 2. Various channels of real time passenger information system in London (from TfL, 2010c).
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location of the bus obtained from the on-bus navigation system to ascertain whether a bus has reached the detection posi-
tion to trigger a priority request by transmitting a bus priority telegram to the traffic signal controller. Virtual detectors allow
much more flexibility in terms of installation and repositioning. They may be used at new junction sites or to replace (or
supplement) existing physical SVD detector locations, as they do not require road-side infrastructure changes. iBus is en-
abling bus priority at traffic signals to be introduced much more widely across London, because of the reduced infrastructure
costs associated with ‘virtual’ bus detectors and improved system functionality/benefits. A simple representation of bus pri-
ority at traffic signals using iBus is shown in Fig. 3.

At present, virtual detectors for priority are only being located where physical detection would have been located. How-
ever research (Hounsell et al., 2004) has shown that bus delay savings can sometimes be improved by increasing the number
of virtual detectors on a traffic signal approach and thus monitoring the buses progress more closely. For example, a detector
upstream of a bus stop and/or at the junction exit can be particularly beneficial in the right circumstances.

In addition to the flexibility of virtual detectors to trigger priority at traffic signals, iBus also provides bus performance
information relative to other buses serving the route or relative to the timetable the bus is on. With iBus, the control centre
has the information of all the buses serving the network. It uses such information to calculate the headway of a bus (relative
to other buses on the same route) or the earliness/lateness of the bus relative to the predefined timetable. Such information
is available in real time. This provides an opportunity to implement ‘differential priority’ at traffic signals – a strategy where
priority is given according to the individual needs of buses, e.g. depending on differing thresholds of regularity or punctu-
ality. This form of priority helps to reduce the impact on other traffic, and leads to more regular and improved journey times
for buses overall.
4. Data architecture and post processing applications

In addition to the real time applications described above, iBus stores historic second-by-second information of all the
buses in the network. This data is then post-processed for monitoring and reporting purposes, including such data as average
route journey times (Hardy, 2009). Fig. 4 shows two distinct paths of iBus data applications: real time applications and post-
processing applications.

Looking now at the post-processing applications, these are largely driven by user requirements relative to the information
available. So, for example, the bus event log files and databases provide a vast repository of operational information collected
by London’s buses, including vehicles’ real-time GPS locations and messages of their interactions with traffic signals, as well
as trip journeys times, relative headways, and average speeds on route. Key examples of the current and forthcoming uses of
this data include; (i) average route journey times (Hardy, 2009) and (ii) automatic performance monitoring, particularly for
bus punctuality and regularity statistics which have previously relied on manual surveys on-street.

Looking to the future, it is clear that the quantity and detail of the information recorded in the bus log files and central
databases lends itself to a variety of other applications, including: improved bus service monitoring, enhanced operational
reporting/scheduling, enriched spatio-temporal analysis, dwell time estimation, emission estimation and bus priority sur-
veys. Some of these applications are now described and others are discussed in more detail.
4.1. Improved bus service monitoring

TfL produces a quarterly service performance report (TfL, 2010b) on high-frequency services (representing services with 5
or more buses per hour). This has been based on manual on-street data collection typically at a set of five or six pre-set points
Fig. 3. Simple representation of bus priority at traffic signals using iBus.



Fig. 4. Simple representation of logical data flow in iBus.
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along a route (TfL, 2010a). The availability of bus journey times throughout a route allows these reports to now be produced
automatically using data available in the system. Potentially though, the system contains many more location points which
record times, allowing many more timing points to be defined, thereby significantly increasing the sample size for measure-
ments to be taken along a route for the monitoring of average and ‘excess’ passenger waiting times at bus stops. The ‘excess
waiting time’ is the difference between the actual waiting time of passengers at bus stops and the average waiting time
based on the scheduled headway. This excess waiting time for the passengers is the key performance criterion adopted in
the UK for buses operating headway-based services (DfT, 2005; TfL, 2007). The ‘excess waiting time’ of the passengers is cal-
culated as follows (TRG, 1997):
Excess waiting time ¼ Actual average waiting time� Scheduled average waiting time
where
Actual average waiting time ¼
P

iActual headway2
i

2�
P

iActual headwayi

Scheduled average waiting time ¼
P

iScheduled headway2
i

2�
P

iScheduled headwayi
where Actual headwayi and Scheduled headwayi are time headways for bus i.
The excess waiting time thus calculated is valid for high frequency services where passengers tend to arrive randomly

without knowing the arrival time of the buses. The excess waiting time (EWT) is the extra waiting time borne by passengers
over and above the waiting time that might be expected if all the buses on the route ran on time. It reflects the regularity of
the service. This is identified as the most important factor for quality of a bus service and its importance is reflected in DfT’s
Webtag (DfT, 2011) by valuing non-working time (‘commuting’ and ‘other’) spent waiting for public transport as two and a
half times the ‘commuting’ and ‘other’ values.

4.2. Enhanced operational reporting/scheduling

Historically, TfL has only given passengers an indication of the scheduled journey times e.g. between two given points for
a particular service, although actual journey times can vary according to level of traffic congestion and the time of day. Given
that iBus holds the second-by-second timing of each vehicle, the iBus data may now be used to calculate actual journey time
performance or the ‘run’ times between two pre-determined timing points, e.g. between two bus stops. On a simplistic level,
this may be grouped by different time-of-day periods (i.e. morning peak, evening peak, and two inter-peaks) to provide pas-
sengers with improved journey time reporting, as well as an indication of their variability – see Fig. 5.

Fig. 5 shows the actual weekday average, maximum and minimum journey times (compared to scheduled) between two
bus stops on a given London bus route (No. 198) in June 2010. The scheduled journey time between stops for the service is
set at 1 min, while the average actual time varies from 0.91 to 1.12 min, depending on the time of day (it is principally a
shopping service), with a maximum and minimum of 0.68 and 1.50 min respectively. Taken across the entire route of 48
bus stops, this data may be used to improve the run time of vehicles for scheduling purposes, including their variation with
the time of day. A similar analysis can be performed for other days of the week, or to analyse journey times for other time
periods (e.g. the night-time service). The run times could also be analysed over a longer period of time to review the service
performance of a certain route for operational review purposes. This information can be used to help improve bus schedules,



Fig. 5. Bus journey time performance by different time-of-day periods (illustrative).
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and allow operators to submit more realist schedules for future operations. Where bus services are tendered out to private
operators, as is the case in London (where bus operators typically perform against a 5-year Quality Incentive Contract), this
last point is of paramount importance, as operators are rewarded for bus reliability or their adherence to the contracted
headway (for high-frequency services) or timetable (for low-frequency services), and it is therefore necessary to have ade-
quate benchmarks for comparison purposes.

4.3. Spatio-temporal analysis

The provision of historic second-by-second GPS location information from each bus allows for the complex spatio-tem-
poral analysis of bus services, including vehicle and driver locations. For example, from time-to-time, it may be necessary to
view the performance of individual vehicles. Fig. 6 shows the simplified Northbound and Southbound journeys undertaken
by one vehicle on a route north of Central London during 1 weekday in September 2009. On one of the Southbound routes, it
can be seen that the driver needed to take a detour around Mornington Crescent Station, which can be used for audit check-
ing (e.g. where operators incur lost mileage), driver and vehicle performance monitoring, and for providing supporting evi-
dence to the emergency services.

4.4. Dwell time estimation

The ability to derive typical dwell times at bus stops from the iBus data has a variety of uses. For example, the dwell time
profiles could help TfL to optimise the location of vehicle detectors in providing bus priority through iBus, and provide guid-
ance values to systems like SCOOT or Countdown to improve their performance. Dwell times are also useful generally in pub-
lic transport operations, traffic management and micro-simulation modelling, by providing an improved understanding of
the expected delay of vehicles at bus stops and therefore their impact on other traffic, and help predict more effectively
the overall link journey times for both buses and other vehicles.

Previous research on dwell times in London (York, 1993) is now largely outdated, due to major changes to the vehicle fleet
composition, passenger demand, and road traffic conditions. While other countries have conducted more recent research,
these have involved operations on a smaller scale, used different definitions of dwell times, or relied on Automatic Passenger
Counter technologies in their estimates, which have yet to be applicable to London.

Extracting the dwell time-related data from the iBus databases is not necessarily automatic or straightforward. The data-
base records are not relational so it is not easy to associate when a vehicle has entered the capture zone of a bus stop, and
determine when its doors opened and closed, and other associated vehicle stationary times. These three types of events are
independently recorded in the bus log files, and logic must be written to associate these records based on their sequence or
relative timings. The data required needed to be derived using new computer algorithms, via timestamps of when vehicles
recorded these events, as stored in these files.

Among over 35 different record types stored within the bus log file, there are four which may be used individually or col-
lectively to derive dwell time. These are:

1. vehicle halt events (either a halt ‘beginning’ or a halt ‘end’);
2. bus stop zone events (either vehicle ‘enters’ or ‘exits’ the capture zone of a bus stop, which is typically defined as 30 or

50 m before and after the site of the bus stop ‘flag’ or pole);
3. door events (when the doors have either ‘opened’ or ‘closed’);
4. detailed GPS second-by-second location, with associated vehicle speed (from the odometer pulses).

Middleware programs have been developed in C++ by the Authors of this paper to convert the raw bus log file data into
more meaningful forms, by capturing and comparing the recorded timestamps of when vehicles entered and exited the bus



Fig. 6. Mapping of a journey undertaken by a bus.
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stop capture zones, halted, opened and closed doors, and/or when the speed remained at zero, and using these to derive the
bus stop dwell time durations – see Fig. 7 below.

There are many different definitions of what constitutes bus stop dwell times, for example York (1993), DfT (2006), and
Robinson (2009). In addition to the time taken for passengers to board and alight (which is included within the door open
and close times), dwell time may also be defined to include other associated vehicle ‘dead’ times (York, 1993), for example
when the bus remains stationary while waiting to re-join the traffic flow. These various definitions of dwell may be derived
using one or more combinations of the different bus log file events, since these provide the necessary information to calcu-
late the range of stationary or dead time durations at a bus stop.
4.5. Bus performance analysis for bus priority

The provision of bus priority at traffic signals with iBus requires buses to identify when they are at the relevant virtual
detection point (VDP) and to send a telegram to each ‘bus processor’ located within each traffic signal controller cabinet on
street. The telegram contains various items of data including punctuality information of the bus which the bus has received
from the control centre. This telegram information, which is used to request priority, is also stored in the bus processor unit.
The punctuality information is categorised into sixteen different groups such as ‘within 1 min of the expected time’, and
‘2 min late’. This level of information is provided to give different levels of priority to the buses depending on their punctu-
ality situation. However, such information can also be used to analyse the performance of the buses in terms of their punc-
tuality along the route.

To carry out such analysis, a survey was carried out in February 2010 by collecting bus processor data from 10 north-
bound and nine southbound junctions on a bus route in North London. The bus processor data included: Site ID, Date, Time,
Input priority, Output priority, Output action, Vehicle number, Movement number, Trigger point and Schedule deviation va-
lue. An example frequency distribution showing the punctuality of southbound buses at three different locations (the start,
middle and end of the route) is shown in Fig. 8.

Fig. 8 shows that the profile is flatter towards the end point of the route in comparison to the start. This illustrates how
bus punctuality deteriorates along the route (as expected). The average percentages of buses in different punctuality



Fig. 7. Processed iBus data for estimating dwell time information.
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categories taking account of all the junctions in the northbound and southbound directions included in this study are given
in Table 2.

The table shows that in average 37% of buses were more than 1 min early and 42% were more than 1 min late. There were
21% of buses within 1 min of the expected time. This punctuality information could be used to ascertain the percentages of
buses getting different levels of priority depending on the priority logic, or to design a priority logic within given punctuality
constraints. Table 3 provides an example of a possible logic for ‘differential’ bus priority of this sort.

If the priority logic given in Table 3 is implemented, based on Table 2 and 11% of buses (buses more than 7 min late) will
get the highest priority (level 3). Similarly, 22% of buses will get level 2 priority and 31% will get level 1 priority. The per-
centage of buses not getting priority (early by more than 1 min) is 34%. In addition, information given in Table 2 could be
Fig. 8. Punctuality of buses at different locations along a route.



Table 2
Average punctuality percentages of buses along a route.

Punctuality Northbound Southbound Average

>15 min early 0.31 0.14 0.23
>10 min early 1.01 0.71 0.86
>7 min early 3.46 3.00 3.23
>5 min early 6.04 5.51 5.77
>3 min early 11.00 9.02 10.01
>2 min early 7.83 7.02 7.42
>1 min early 9.55 9.43 9.49
Within 1 min of time 20.44 21.50 20.97
>1 min late 9.03 10.55 9.79
>2 min late 6.64 7.32 6.98
>3 min late 9.02 9.58 9.30
>5 min late 5.05 5.18 5.12
>7 min late 4.61 4.57 4.59
>10 min late 3.18 3.48 3.33
>15 min late 2.83 2.99 2.91

Table 3
Example of initial priority logic for differential priority in iBus.

Criteria Priority level

Early by more than 1 min 0
Up to late by 2 min 1
Late by more than 2 min 2
Late by more than 7 min 3
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used to design the priority logic to remain within a constraint. For example, if it is decided that highest level priority should
not be given to more than 10% buses, then the criteria for such level should be late by more than 10 min (based on Table 2).

5. Discussion

Although there are clearly many potential benefits/applications of iBus data, there are also many issues, including:

5.1. Data aggregation and management

The System provides a vast repository of AVL and fleet operations data collected by London buses, including vehicles’ real-
time GPS locations and (by calculation) their journeys times and headways. AVL-based systems such as iBus can almost pro-
vide too much data, and one of the challenges for bus operators and local transit authorities users is getting to grips with the
structure and quality of the data captured, how to store it (and for how long), and to understand where the information is
good enough to justify further research and development, and that can provide tangible benefits to users and bus operators.

5.2. Data consistency

There is typically a 2 day lag between when files are recorded by vehicles, to when they are uploaded into the local data
servers at bus garages and transferred to the central reporting databases, although this process can sometimes take up to a
week, and longer in extreme cases. TfL have conducted a great deal of work to improve the quality of data in the System, but
it should be recognised that, like many AVL systems, there will always be incidences when the bus log file data fails to cap-
ture, for example when there is a fault in the logging or communications equipment of a vehicle, which causes the record
capture or file transfer process to break down. Nevertheless, the post-processing data coming from iBus is considerably more
comprehensive than that collected previously using on-street, sample survey methods.

5.3. Selection of timing points

A key issue is the determination of where the start (or end) point for a measurement is. Most timing points are taken from
bus stops, and iBus defines several records which define bus stop events, as discussed previously. For Quality of Service (QSI)
and/or journey time measurement, the number of timing points chosen can be key, and depends on where they are located
on a route. While an increase in timing points will provide a larger sample, it is known from previous operational experience
that for example, bus punctuality and regularity often deteriorates from the start of a journey towards its end, so the selec-
tion of representative timing points for QSI measurements will be important.
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5.4. System and data integration

iBus is a proprietary system, and the issue of integrating its data with other systems is not necessarily straightforward.
The use of iBus data needs to be considered more strategically if, for example, we are to derive benefits of encouraging the
transfer of information (and therefore passengers) to and from other modes. To this end, it is helpful that major transport
providers such as TfL are clear on their information management strategy, to describe the data they hold, how they relate
to each other, how it may be used, and what information could be make available to other institutions, for example to
third-party system developers and research organisations. In longer term, the development of industry standards for import-
ing and exporting such public transit-related information, similar to the work performed by the Real-time passenger infor-
mation group, will also be beneficial.

6. Conclusions

The use of AVL systems to improve public transport performance through various real time applications is growing. In
addition to the real time applications, these systems also provide a rich source of bus location and performance data avail-
able for various post-processing applications. Those described in this paper include: improved bus service monitoring, en-
hanced operational reporting/scheduling, enriched spatio-temporal analysis, dwell time estimation and bus priority
surveys. The use of such data reduces the manual data collection resources and has the potential to provide much more de-
tailed information that is not possible to collect from manual surveys. However, as well as providing opportunities, this vast
amount of data also presents challenges for data storage and processing requirements, as a platform for subsequent inter-
pretation and analysis.

The examples presented in this paper have come from London – a capital city with an extensive bus network and a state-
of-the-art AVL system that uses satellites-based location technology. However, this technology is widely available for towns
and cities across the world, even where bus fleets are much smaller than London, and efficient data management will remain
a key requisite for successful systems to support the quest for sustainable city transport.
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