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SUMMARY

Rapid regulation of oxidative phosphorylation is
crucial for mitochondrial adaptation to swift changes
in fuels availability and energy demands. An intrami-
tochondrial signaling pathway regulates cytochrome
oxidase (COX), the terminal enzymeof the respiratory
chain, through reversible phosphorylation. We find
thatPKA-mediatedphosphorylationof aCOXsubunit
dictatesmammalianmitochondrial energy fluxes and
identify the specific residue (S58) of COX subunit IV-1
(COXIV-1) that is involved in this mechanism of meta-
bolic regulation. Using protein mutagenesis, molec-
ular dynamics simulations, and induced fit docking,
we show thatmitochondrial energymetabolism regu-
lation by phosphorylation of COXIV-1 is coupled with
prevention of COX allosteric inhibition by ATP. This
regulatory mechanism is essential for efficient oxida-
tive metabolism and cell survival. We propose that
S58COXIV-1 phosphorylation has evolved as ameta-
bolic switch that allows mammalian mitochondria to
rapidly toggle between energy utilization and energy
storage.

INTRODUCTION

To maintain cellular energy homeostasis, mitochondria adapt to

changes in substrate availability and metabolic demands by

modulating oxidative phosphorylation (OXPHOS). Reversible

phosphorylation of mitochondrial proteins is an important player

in OXPHOS modulation (Hopper et al., 2006; Pagliarini and

Dixon, 2006), but only recently have the molecular mechanisms

started to emerge. We described a metabolic-sensing signaling

pathway in the mitochondrial matrix, involving mitochondrial

soluble adenylyl cyclase (sAC), which generates cAMP and

activates PKA in response to mitochondrial CO2 generated in

the Krebs cycle. This pathway modulates cytochrome oxidase

(COX), the terminal enzyme of the electron transfer chain

(ETC), as one of its targets (Acin-Perez et al., 2009a, 2009b).

COX translocates protons across the inner mitochondrial

membrane, contributing to the proton electrochemical gradient
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used by the ATP synthase to generate ATP. In living cells, COX

is a pacemaker of ETC function (D’Aurelio et al., 2001; Dalmonte

et al., 2009; Villani et al., 1998), and its activity is modulated by

phosphorylation of its subunits (Helling et al., 2008; Lee et al.,

2005; Miyazaki et al., 2003; Samavati et al., 2008; Steenaart

and Shore, 1997) and by allosteric ATP inhibition (Bender and

Kadenbach, 2000; Kadenbach, 2003). However, the molecular

mechanisms of COX regulation in response to changes of

substrate availability have been elusive.

The nuclear-encoded subunits of COX have tissue specific

isoforms (Lomax and Grossman, 1989) regulated during devel-

opment (Bonne et al., 1993). Subunit IV (COXIV) has two iso-

forms, COXIV-1 and COXIV-2, which evolutionarily diverged

about 320 million years ago. COXIV-1 is expressed ubiquitously,

while COXIV-2 is highly expressed in adult lung and only at low

levels in brain and heart (Hüttemann et al., 2001).

Here, we identify phosphorylation of amino acid residue S58 in

the matrix loop of COXIV-1 as a mechanism for PKA-dependent

regulation of COX. We show, by computational means, that S58

is involved in binding ATP at the allosteric site and that its

phosphorylation prevents this interaction. S58 phosphorylation

modulates the kinetics of the enzyme by controlling ATP allo-

steric inhibition. We propose that this is a regulatory mechanism

of oxidative phosphorylation, because it allows cells to match

mitochondrial ETC activity with the availability of metabolic

substrates and energy consumption requirements.

RESULTS

Serine 58 Is a Candidate Target for Intramitochondrial
PKA Phosphorylation of COXIV-1
We had identified COXIV as a putative PKA target (Acin-Perez

et al., 2009b). Since most mammalian tissues express COXIV-1

and not COXIV-2, we narrowed our study to the former. Serines

and threonines of murine COXIV-1 (NP_034071.1) were analyzed

for probability of phosphorylation. Six candidates were identified

(Table 1), four of which were predicted to be PKA targets. Three

were excluded: S16 is in the cleaved signaling peptide, S157 is in

the COXII/IV interface in the inner membrane, and T142 is in the

intermembrane space. The fourth, S58, is localized on the matrix

side of COXIV-1, has a high PKA prediction score, and is pre-

dicted to be a PKA target by KinasePhos 2.0 and pka prediction

site (data not shown).
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Table 1. Prediction of S/T Phosphorylation in Mouse COXIV-1

NetPhos 2.0 Prediction PhosphoMotif Finder

Position Sequence Score Kinase Localization

S16 KRAISTSVC 0.930 PKA/PKC/Calmodulin K signal peptide

S58 MLSASQKAL 0.992 PKA/PKC matrix

S74 WSSLSRDEK 0.966 CK II matrix

S157 IQGFSAKWD 0.830 PKA/PKC subunit IV/II interface

T17 RAISTSVCL 0.721 CK II signal peptide

T142 VAIETKRML 0.949 PKA/PKC IMS

NetPhos 2.0 predicts six putative phosphoresidues with different probability scores. The amino acid positions refer to the precursor protein, including

the signal peptide. Putative kinases for S/T residues were identified by PhosphoMotif Finder. PKA, protein kinase A; PKC, protein kinase C; CK II,

casein kinase II. The putative function of the protein domain containing phosphorylated amino acids is indicated (NCBI Reference Sequence features).
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Newly generated polyclonal antibodies against a mouse

S58phospho-COXIV-1 peptide were used to show that S58phospho-

COXIV-1 signal in mouse liver mitochondria was increased by

8Br-cAMP (PKA activator) and decreased by H89, PKI 14-22

(PKA inhibitors) and KH7 (sAC inhibitor) (Figure S1 available on-

line), thus confirming S58 as a PKA phosphorylation target.
Mutagenesis of S58 of COXIV-1
To prove that S58 phosphorylation is involved in COX regulation

we used mouse fibroblasts (C1), where COXIV-1 is silenced

(Li et al., 2006), resulting inmarked decrease of COXIV-1 expres-

sion (Figure S2A), COX activity (Figures S2B and S2C), and cell

respiration (Figure S2D).

Transient expressed rat COXIV-1 (NP_058898.1) that has 92%

identity with mouse, but contains one mismatch in the RNAi

target region (Figure S3A) that prevents its silencing, partially

complemented COX activity in C1 cells (Figures S3B and S3C).

Next, we generated C1 cells stably expressing wild-type (WT),

a nonphosphorylatable S58A, or a phosphomimetic S58D

COXIV-1. The levels of COXIV-1 in mass cultures (Figure 1A)

and six clones (Figure S3D) were recovered to normal levels.

Blue-native gel electrophoresis (BNGE) both in first (Figure 1B)

and second (Figure S3E) dimensions showed restoration of

COX assembly. COX activity was partially rescued but did not

reach the values of A9 controls (Figure 1C and Figure S3F),

possibly because assembly of rat COXIV-1 in the mouse enzyme

results in a mildly defective activity (Dey et al., 2000). We also

excluded a compensatory increase in the expression of endog-

enous COXIV-1 or COXIV-2 (Figures S3G and S3H). Importantly,

expression of S58A COXIV-1 resulted in reduced COX activity

(Figure 1C and Figure S3F), intact cell respiration (Figure 1D),

and COX-driven respiration (Figure 1E), as compared to WT

and S58D cells, indicating that loss of COXIV-1 S58 phosphory-

lation results in COX deficiency.

In WT COXIV-1 cells, PKA stimulation with membrane perme-

ant 8Br-cAMP or its inhibition with H89 resulted in increased and

decreased respiration and COX activity, respectively (Figures 1D

and 1E). C1 cells displayed a greater OXPHOS increase and

a lesser decrease than controls, because the enzyme is consti-

tutively dephosphorylated (Acin-Perez et al., 2009a). However,

S58A and S58D cells, which cannot be phosphorylated, had

blunted responses to PKA modulation, indicating loss of sensi-

tivity to PKA modulation.
C

Protein Phosphorylation Is Reduced in COXIV-1 S58
Mutants
COXIV-1 phosphorylation was investigated by 2D-BNGE in cells

treatedwith 8Br-cAMP. The intensity of phosphorylatedCOXIV-1

detected with a phospho Ser/Thr antibody was normalized by an

unknown phosphoprotein (asterisk in Figure 1F), which was

unchanged in all samples. This ratio was then normalized by total

COXIV determined with anti-COXIV antibody. S58A and S58D

COXIV-1were less phosphorylated thanWTCOXIV-1 (Figure 1F),

indicating that S58 accounts for most of PKA-dependent

COXIV-1 phosphorylation. Most COXIV-1 appeared phosphory-

lated in A9 control cells, as shown by almost complete immuno-

depletion from the supernatant after immunoprecipitation with

S58phospho-COXIV-1 antibodies (Figure 1G). These antibodies

did not detect the rat protein, due to sequence differences in

the epitope. Nevertheless, by immunoprecipitation with COXIV

antibody and detection with an antibody that recognizes PKA

phosphorylated peptides, in C1 cells expressing the WT, but

not the mutant rat COXIV-1, the protein was phosphorylated,

and H89 decreased its phosphorylation (Figure 1H).

Molecular Dynamics Simulations of COX Containing WT
or Mutant COXIV-1
Dimeric WT (Figure 2A) and mutant COX (COXIV-1 S58A, S58D,

and S58phospho) were simulated in the membrane by molecular

dynamics (MD). The mean backbone (bb) root mean square

deviations (rmsd) from the initial structure, and the mean back-

bone fluctuations (rmsf) around the average structure of each

subunit (Table S1) suggest that neither mutation of COXIV-1

S58 to A or D nor its phosphorylation change COX conformation

significantly. A superposition of the most prevalent conforma-

tions of the matrix domain of WT and mutant COXIV-1 (Fig-

ure 2B) did not show major structural changes (bb rmsds

between each superimposed structure and the average struc-

ture of 0.753, 0.732, 0.702, and 0.629 Å for WT, S58A, S58D,

and S58phospho, respectively). Thus, the effects of S58A and

S58D mutations reflect the functional role played by S58 in

COX regulation.

ATP Binding Site in the Matrix Domain of COXIV-1
At high ATP:ADP ratios, ATP binds COXIV and other enzyme

subunits and reversibly inhibits COX activity (Arnold and Kaden-

bach, 1997; Bender and Kadenbach, 2000; Napiwotzki et al.,

1997). Two ATP binding sites have been proposed in COXIV,
ell Metabolism 13, 712–719, June 8, 2011 ª2011 Elsevier Inc. 713



Figure 1. C1 Cells Expressing WT and

Mutant COXIV-1

(A) Western blot of C1 cells expressing WT, S58A,

and S58D COXIV-1 with anti COXIV antibodies.

FpSDH is a loading control.

(B) First dimension BNGE to detect COX assembly

with anti-COXI antibodies. bATPase is a loading

control.

(C) COX activity measured spectrophotometrically

in C1 cells expressing COXIV-1.

(D) Intact cell respiration upon PKA activation or

inhibition by 8Br cAMP (1 mM, for 2 hr) or H89

(1 mM, for 2 hr), respectively.

(E) Modulation assessed by TMPD/ascorbate-

driven respiration. Error bars represent the aver-

ages of mass cultures and two clones (in tripli-

cate). Statistical differences are relative to mock

C1 cells (transfected with empty vector). A9 mock

cells are included as reference. *p < 0.01;

***p < 0.0001. Unt, untransfected cells.

(F) 2D-BNGE and western blot of mitochondria

from transfected cells treated with 8Br cAMP

(1 mM, for 2 hr), with an anti-phospho Ser/Thr

antibody. The dashed box indicates the region of

COXIV migration (inset below each panel), when

the membrane was reprobed with anti-COXIV

antibody. P-COXIV/COXIV ratios are shown (aver-

age of three independent gels ± standard devi-

ation [SD]).

(G) Immunoprecipitation of phosphorylated

COXIV-1 inmitochondrial lysates fromA9cellswith

S58phospho-COXIV-1 (Ab6496 or Ab6497) and

detection with COXIV antibodies. Rabbit IgG was

used as negative control. IP, immunoprecipitation;

SN, supernatant.

(H) Immunoprecipitation of COXIV from untreated

and H89 treated (1 mM, for 2 hr) cells expressing

WT, S58A, and S58D COXIV-1.

Error bars indicate standard deviations.
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one facing the intermembrane space and regulated by cytosolic

ATP (Napiwotzki and Kadenbach, 1998) and another facing the

matrix and regulated by intramitochondrial ATP (Arnold and

Kadenbach, 1997). We hypothesized that phosphorylation of

COXIV-1 S58 regulates allosteric inhibition of COX by matrix

ATP. The binding site for ATP in the matrix domain of COXIV-1

was studied with a combination of induced-fit docking (IFD)

and QM-polarized ligand docking (QPLD). Five clusters of

conformations were identified in the MD simulations of WT and

S58phospho COXIV-1, and ranked from 1 to 5 based on the

number of frames contained (more frames reflect more likely

conformations). Charges on the ligand (ATP) and protein were

assigned based on amitochondrial matrix pH of 8.0 ± 0.2 (Metoki

and Hommes, 1984). In cluster 1 from WT COXIV-1, there were

two groups of ATP binding poses (Figure 2C) characterized by

an interaction of the g and/or b phosphate of ATP with the

hydroxyl moieties of the side chains of S56 and S58. In cluster
714 Cell Metabolism 13, 712–719, June 8, 2011 ª2011 Elsevier Inc.
2 (Figure 2D), there was binding of ATP

at S56/S58, but a minor site near the

K60 side chain (Figure 2G) started being

occupied. This site was fully occupied in

the remaining conformations (�20% of
all frames, Figure 2E). S56 and S58 are situated in the first helix

of the matrix domain of COXIV-1 (Figure 2B), and the dipole

moment of the helix provides 0.5–0.7 units of positive charge

that stabilizes the binding of the g and b phosphates of ATP (Fig-

ure 2G). The phosphate group of S58phospho obliterates the posi-

tive electrostatic potential (Figure 2H), thereby preventing ATP

binding. This is shown by failure of the IFD to identify a pose cor-

responding to the binding of ATP to the side chains of S56 and

S58 of COXIV-1 S58phospho (Figure 2F). Low-affinity binding sites

for ATP were recognized near the side chains of K60 and K65.

The posewith the best IFD scorewas refined byQPLD (Figure 2I).

The phosphate of ATP wraps around the side chain of S58, while

the sugar and base are contained in nearby pockets. When

COXIV-1 is phosphorylated, the phosphate of S58phospho
replaces the g phosphate of ATP, significantly weakening its

binding. The pose in Figure 2I was used to calculate by free-

energy perturbation (FEP) changes in the binding energy of



Figure 2. Structural Models of COX and ATP

Binding Site on the Matrix Side of COX

(A) Molecular surface of membrane (teal) embedded

dimeric WT COX. The enzyme is in yellow, with the two

COXIV subunits in magenta.

(B) Superposition of the matrix domain of COXIV in WT

(blue), S58A (red), S58D (green), and S58phopsho (yellow),

as derived from the most prevalent conformations in

the MD.

(C) Binding poses of ATP on the surface of WT COXIV-1 in

the most prevalent conformation (cluster 1). S56 and S58

side chains atoms are color coded (gray, carbon; red,

oxygen; white, hydrogen).

(D and E) Binding poses of ATP on the surface of

WT COXIV-1 in the conformations of cluster 2 and 3,

respectively.

(F) Binding poses of ATP on the surface of S58phospho
COXIV-1 derived from the entire MD simulation super-

imposed on the conformation of cluster 1. The phosphate

moiety of S58phospho is color coded (green, phosphorus;

gray, carbon; red, oxygen; white, hydrogen).

(G and H) Molecular surfaces of WT COXIV-1 and

S58phospho COXIV-1 colored according to electrostatic

potentials (blue, +1 kT/e; red, �1 kT/e).

(I) Matrix side of COX (yellow surface) embedded in the

membrane (shown as sticks) with ATP bound to subunit

IV-1 (gray surface).
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ATP, when S58 is replaced by A or D or is phosphorylated.

DDGbind values for ATP with respect to the WT were 0.82 ±

2.9 kcal/mol for S58A, 7.15 ± 3.5 kcal/mol for S58D, and 8.6 ±

3.5 kcal/mol for S58phospho (more positive values indicate weaker

binding), corresponding respectively to a �4-fold, �175,000-

fold, and �2,100,000-fold increase in Kd.

ATP Allosteric Inhibition of COX Is Regulated
by COXIV-1 Phosphorylation
Since S58 of COXIV-1 is a PKA target and S58phospho prevents

ATP binding, we investigated the functional consequences of

these molecular interactions. COX activity was measured in per-

meabilized cells in an ATP-regenerating system with increasing

concentrations of reduced cytochrome c, in the presence of

either ATP or ADP.WTCOXIV-1 cells had ATP-induced inhibition

at all cytochrome c concentrations, while S58A cells were insen-

sitive to ATP, and S58D cells had a lesser degree of ATP inhibi-

tion (Figures 3A–3D).

Next, mitochondria were sonicated and treated with pyro-

phosphatase to hydrolyze ATP and ADP. The removal of ATP

from all binding sites eliminated the differences in COX activity
Cell Metabolism 13
between WT and S58 mutant cells (Figure 3E),

indicating that ATP is responsible for the

differences.

COXIV-1 S58 Phosphorylation Is
Necessary for Efficient OXPHOS
Function
To study the physiological significance of S58

phosphorylation, we assessed cell growth in

WT and S58 mutant cells in medium containing

galactose as the main carbon source, where
cells are forced to utilize OXPHOS to generate ATP (Acin-Perez

et al., 2009a). C1 cells had a severe growth defect in galactose

(relative to glucose, Figure 3F). Cells expressing WT or S58D

COXIV-1, but not S58A COXIV-1, had a significant improvement

of growth in galactose, suggesting that loss of S58 COXIV-1

phosphorylation results in COX inhibition and a failure to main-

tain ATP synthesis, when cells need to upregulate oxidative

metabolism.

DISCUSSION

The discovery of a signaling system through sAC and PKA (Acin-

Perez et al., 2009b) contributed to our understanding of the regu-

lation of mitochondrial metabolism. However, the molecular

mechanisms underlying this regulation had not been defined.

Many proteins involved in OXPHOS function are targets of

phosphorylation (Balaban, 2010; Deng et al., 2011; Hopper

et al., 2006). In this study, we focused on COX, but it is likely

that other OXPHOS components may be involved in PKA-

mediated metabolic regulation (Papa et al., 2008). COX contains

13 subunits, ten of which are phosphorylated at various sites
, 712–719, June 8, 2011 ª2011 Elsevier Inc. 715



Figure 3. COX Allosteric Inhibition by ATP in Cells

Expressing COXIV-1 and Its Role in OXPHOS.

(A–C) Oxygen consumption using increasing concentra-

tions of cytochrome c in the presence of ATP (5 mM) or

ADP (5 mM) measured in WT (A), S58A (B), and S58D (C)

permeabilized COXIV-1-expressing cells (n = 3).

(D) Percentage of ATP inhibition at different cytochrome c

concentrations from values from (A)–(C) (n = 3).

(E) COX activity measured spectrophotometrically in

sonicated mitochondria after pyrophosphatase (PP) treat-

ment (n = 6 for each point).

(F) Doubling time ratio (n = 3) of cells grown in glucose

versus galactose medium (DT Glu/Gal). Statistically

significant differences are relative to WT COXIV-1 cells.

*p < 0.01; **p < 0.001; ***p < 0.0001. Error bars indicate

standard deviations.
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(Thomson, 2002). With a combined proteomic (Acin-Perez et al.,

2009b) and informatics strategy, we determined that S58 in

COXIV-1 fulfilled the criteria for being accessible to matrix PKA

and part of a PKA target motif. Furthermore, phosphorylation

of this residue had been shown earlier in bovine heart mitochon-

dria (Helling et al., 2008). We pinpointed S58 of COXIV-1, as

a player in COX regulation by reversible phosphorylation and

identified S58 as part of the allosteric binding site for ATP on

the matrix side of COXIV-1, showing that phosphorylation of

S58 dramatically weakens the interaction with ATP. Further-

more, we have shown that lack of COXIV-1 phosphorylation in

S58A mutant cells results in reduced COX activity and defective

growth under oxidative conditions. These results suggest a link

between activation of the intramitochondrial CO2-cAMP-PKA

pathway and phosphorylation of COXIV-1 S58, which regulates

COX allosteric inhibition by matrix ATP. This interpretation

does not exclude that extramitochondrial ATP may bind other

sites in COX and regulate its activity differently.

Our findings suggest that mitochondria can switch from

a ‘‘storage mode’’ to a ‘‘consumption mode.’’ When ATP builds

up in mitochondria, because of reduced requirements, enzymes
716 Cell Metabolism 13, 712–719, June 8, 2011 ª2011 Elsevier Inc.
are inhibited and fuel utilization diminishes, re-

sulting in low intramitochondrial CO2 levels,

low sAC activity and cAMP, and low PKA

activity. COXIV-1 is dephosphorylated and

COX activity inhibited by ATP, shunting sub-

strates toward fat and glycogen accumulation.

On the other hand, when cellular ATP consump-

tion is high, large amounts of substrates are

oxidized, CO2 stimulatesCOXIV-1 phosphoryla-

tion, transiently preventing ATP inhibition and al-

lowing for maximal electron flux through COX

and high ATP production. Since the phosphomi-

metic S58D results in a small increase in COX

activity and the S58phospho-COXIV-1 antibodies

immunocapture most COXIV-1, we inferred

that normally the majority of COXIV-1 is phos-

phorylated. Studies in more complex organisms

will assess whether this applies to organs and

tissues in vivo.

The S58 residue is conserved among mam-

mals (Table S2), but not in nonmammalian
species, suggesting that S58 has coevolved with mammals.

Furthermore, two different isoforms of COXIV are found in

many species. Similarly to other nuclear-encoded COX subunits,

COXIV plays a regulatory role, in part through differential

temporal and spatial expression of its isoforms. COXIV-2 does

not have a PKA phosphorylation site corresponding to S58.

Instead, it has three glutamic acids, carrying negative charges

that may impede ATP binding. COXIV-2 confers higher activity

to COX than COXIV-1, thereby allowing for a fast electron flux

and possibly reducing the risk of forming reactive oxygen

species in highly oxygenated tissues (Hüttemann et al., 2007).

Under oxygen deprivation, COXIV-2 is induced in brain, where

it abolishes sensitivity to ATP inhibition (Horvat et al., 2006).

Furthermore, an increase of COXIV-2 expression regulated by

hypoxia-inducible factor 1 occurs under hypoxia, in association

with COXIV-1 degradation (Fukuda et al., 2007). These re-

sponses could be part of a hypoxia-preconditioning program

to prevent the wave of free radical production, after reperfusion.

The presence of S58 in COXIV-1 of mammalian species

could be related to a specific need for metabolic regulation in

animals exposed to variations in ambient temperature and
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food availability. In modern days, metabolic regulation through

reversible phosphorylation of respiratory chain subunits may

represent a trigger for metabolic diseases, such as obesity and

diabetes, or a potential target for therapy with approaches to

modulate consumption and storage of metabolic supplies.

EXPERIMENTAL PROCEDURES

Cell Lines and Treatments

The A9 cells and COXIV-1 silenced cells (C1) were reported elsewhere (Li et al.,

2006). Cell replication in glucose and galactose medium was measured as

described (Acin-Perez et al., 2009a). 8Br-cAMP 1 mM (Sigma-Aldrich) and

H89 1 mM (Calbiochem) for 2 hr were used to stimulate or inhibit PKA,

respectively.

Mitochondrial Isolations

Mitochondria-enriched fractions were obtained from 20 3 106 cells, as

described elsewhere (Birch-Machin and Turnbull, 2001). Mitochondria isola-

tion from mouse liver and pharmacological treatments were performed as

described (Acin-Perez et al., 2009b).

Cloning and Transfection of rat COXIV-1

Rat COXIV-1 complementary DNA (cDNA) was obtained by reverse transcrip-

tion (Superscript reverse transcriptase, Invitrogen) of rat PC12 cells total RNA

using appropriate primers (Supplemental Experimental Procedures) and

cloned in pcDNA3.1 (Invitrogen). S58A and S58D mutants of COXIV-1 were

generated by in situ mutagenesis with the QuickChange Site-Directed Muta-

genesis kit (Stratagene) with appropriate primers (Supplemental Experimental

Procedures). Stable cell lines expressing WT, S58A, and S58D COXIV-1 were

generated by transfection with FuGene6 (Roche), followed by selection in

250 mg/ml G418 for 3 weeks.

Oxygen Consumption and Enzymatic Assays

Oxygen consumption determinations in intact cells were carried out as

described (Hofhaus et al., 1996). COX activity was measured spectrophoto-

metrically on mitochondrial fractions (2–5 mg protein) or in cell lysates

(30–50 mg protein) as described (Birch-Machin and Turnbull, 2001). COX allo-

steric inhibitory effects of ATP were measured as described (Bender and

Kadenbach, 2000) in the presence of ATP or ADP (5 mM). Cell respiration

was measured in 50 mg Tween-permeabilized cells with increasing concentra-

tions of reduced cytochrome c (0.25–200 mM).

For pyrophosphatase treatments, mitochondria were sonicated as

described (Acin-Perez et al., 2009b), centrifuged at 20,000 g for 5 min at

4�C, and resuspended in 10 mM Tris-HCl (pH 7.4), 25 mM sucrose, 75 mM

sorbitol, 100 mM KCl, 10mM K2HPO4, 0.05mM EDTA, 5mM MgCl2, 1mg/ml

BSA. Pyrophosphatase (2 Units, Sigma-Aldrich) was added for 10 min at

25�C. COX activity was measured (Birch-Machin and Turnbull, 2001) with

increasing concentrations of reduced cytochrome c (0.1–100 mM).

mRNA Content Measurements by RT-PCR

mRNA levels of mouse COXIV-1 and 2 and rat COXIV-1 and b-actin

were measured with a LightCycler RNA Master SYBR Green I kit (Roche), in

a LightCycler capillary RT-PCR instrument (Roche) with appropriate primers

(Supplemental Experimental Procedures).

Immunoprecipitation of COXIV

Mitochondrial lysates (dodecyl maltoside; 1.6 g/g protein) (Schägger and von

Jagow, 1991) were incubated overnight with 1–3 mg antibody (COXIV-1 or

Ab6496 or Ab6497) or control rabbit IgG bound to protein G Sepharose beads

(Invitrogen). Beads were pulled down and washed twice with PBS containing

0.5% dodecyl maltoside. Proteins were eluted in 50–100 ml of 0.5M Tris-HCl

(pH 6.8), 5% glycerol, 2% SDS, and 100 mM DTT and used for western blot

analyses.

Western Blot Analyses

For denaturing SDS-PAGE proteins (10–25 mg from cell lysates and 25 ml from

the immunoprecipitated) were electrophoresed in a 12.5% acrylamide dena-
C

turing gel and electroblotted onto PVDF (BioRad) filters. For 1D-BNGE and

2D-BNGE, 50–75 mgmitochondrial protein was applied on a 5%–13%gradient

BN gel followed by separation in a 12.5% denaturing gel (Schägger and von

Jagow, 1991). After electrophoresis, proteins were electroblotted onto PVDF

filters. For protein detection, the following antibodies were used: FpSDH,

Core2, COXIV, and bATPase (all from Invitrogen); cyt c (BD PharMingen);

GAPDH (Abcam); phospho Ser/Thr (BD Biosciences); and PKA-P-substrate

(Cell Signaling). Rabbit polyclonal antibodies against the mouse COXIV-1

S58phospho-peptide VAHVTMLSApSQKALKEKE (Ab6496 and Ab6497) were

generated (Phosphosolutions).
Informatics Analyses

Phosphorylation prediction was by NetPhos 2.0 software (http://www.cbs.dtu.

dk/services/NetPhos/) with a threshold score >0.5. Kinase prediction was

with PhosphoMotif Finder (http://www.hprd.org/PhosphoMotif_finder/). PKA-

dependent phosphorylation prediction was by Kinase Phos 2.0 (http://

kinasephos2.mbc.nctu.edu.tw/). Potential PKA phosphorylation sites were

predicted by PKA Prediction Sites (pkaPS) (http://mendel.imp.ac.at/sat/

pkaPS/). COXIV-1 cDNA sequence alignment was by Nucleotide BLAST

(http://blast.ncbi.nlm.nih.gov/). Protein sequence alignments were by Clus-

talW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html).
Molecular Dynamics Simulations

Models of membrane embedded COX were built from the X-ray structure of

dimeric bovine COX (PDB entry 1V55) with Desmond (D.E. Shaw Research)

(Bowers et al., 2006), by addition of an explicit bilayer of 1-palmitoyl-2-

oleoyl-phosphatidylcholine around COX and solvation of the enzyme and

both sides of the membrane with SPC water (Berendsen et al., 1981):

a minimum distance of 12 Å was left between any protein atom and the

edge of the simulation box. The ensemble was energy minimized under peri-

odic boundaries condition using the 2005 OPLS-AA force-field (Jorgensen

et al., 1996). MD simulations (1.2 ns) were carried out with Desmond in the

NPT ensemble at 298.15K (25�C), via the Nose-Hoover thermostat method

(Evans and Holian, 1985) and theMartyna-Tobias-Klein barostat method (Mar-

tyna et al., 1994). SHAKE constraints (Ryckaert et al., 1977) were imposed on

all the heavy-atom-hydrogen covalent bonds. Coordinates were saved every

4.8 ps.
Identification of the Binding Site for ATP in the Matrix Domain

of COXIV

Identification of the ATP binding site in the matrix domain of COXIV-1 was by

IFD (Sherman et al., 2006). The QPLD protocol (Cho et al., 2005) was used to

refine selected poses to improve the partial charges on the ligand atoms in

a docking run, by replacing themwith charges derived from quantummechan-

ical calculations on the ligand in the field of the receptor. IFD and QPLD were

implemented in the Schrödinger Suite 2010 (Schrödinger LLC.). FEP (Zwanzig,

1954) were calculated with Desmond in the NPT ensemble at 298.15K in the

protein:ATP complex+solvent and the protein alone+solvent environments.

Simulations ran for 0.6 ns for each l window (12 windows for each perturba-

tion). Results were collected and analyzed by the Bennett method (Bennet,

1976; Shirts et al., 2003). DDGbind values were calculated by subtraction of

the protein+solvent DGFEP from the complex+solvent DGFEP value. Kd

changes for ATP binding to COXIV-1 were calculated from the relationship

DDGbind = � RT ln
�
Kd WT=Kd Mutant

�
;

where R is the gas constant and T is the absolute temperature.

Electrostatic potentials at the molecular surface were determined with the

Poisson-Boltzmann solver of QSite (Schrödinger LLC), using a continuum

model with a solvent dielectric constant 3s = 78, and a protein dielectric

constant 3p = 2.
Statistical Analyses

Comparisons among groups were made with one-way ANOVA. Pair-wise

comparisons were made by post hoc Fisher PLSD test with StatView (Adept

Scientific). Differences were considered statistically significant at p < 0.05. In

all graphs, error bars indicate the standard deviations.
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