TCT-90
The Clinical SYNTAX score has an additive predictive value in high risk patients
Jeehoon Kang1, Kyung Woo Park2, Si-Hyuck Kang3, Ha Young Lee1, Hyun-Jae Kang1, Bon-Kwon Koo1, Inho Chae1, Tae-Jin Youn1, Hye-Soo Kim1
1Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea, Republic of, 2Seoul National University, Seoul, Korea, Republic of, 3Seoul National University College of Medicine, Seongnam, South Korea

Background: The SYNTAX score (SS) has been used as an angiographic grading tool to determine the complexity of coronary diseases, and was verified to predict outcomes after revascularization. However, the SS neglected clinical factors, which brought up an alternative, the clinical SS (cSS). Many studies compared the predictivity of SS and cSS, yet due to inconsistent results, the superiority of SS or cSS still remains as an issue. In this study, we investigated the predictivity of SS and cSS in various clinical situations.

Methods: Patients were enrolled from the Efficacy of XiencePromus versus Cypher in rtReducing Late Loss after stENTing (EXCELLENT) registry. SS and cSS were checked at an independent angiographic core lab. The primary clinical outcome was 3-year patient-oriented composite endpoint (POCE; a composite of all cause death, any myocardial infarction, and any revascularization).

Results: We calculated SS and cSS for the 5,102 patients from the EXCELLENT registry. When patients had a risk factor such as old age, hypertension, diabetes, current smoking, low ejection fraction, renal insufficiency and no use of statin, the SS was superior to SS, whereas in patients without risk factors, there was no additive value of the CSS. Patients were divided into 3 groups, according to the number of risk factors present. As a result, SS were in the low risk group (0-2 risk factors), 30.8% were in the intermediate risk group (3 risk factors) and 27.1% were in the high risk group (4-7 risk factors). POCE increased according to risk group: 10.4%, 13.4%, 18.9%; p < 0.001 in the low, intermediate, high risk groups.

Conclusions: SS is superior to cSS in low risk patients, whereas in high risk patients, the cSS has better predictivity. The presence of classical risk factors should be considered when using the SS as a predictive tool after revascularization.

TCT-91
Impact of Untreated Coronary Artery Disease After Percutaneous Coronary Intervention in Patients With Prior CAGB: The Residual CABG SYNTAX score
Sebastian Lluberas1, 2, Leandro Juhany1, Natasha Esmit1, Marcela Delipino1, Daniela Korytnicki2, Carolina Artucio2, Andres Tuzman2, Daniel Mallo2, Ricardo Lluberas2
1Instituto de Cardiologia Intervencionista - Casa de Galicia, Montevideo, Montevideo, Uruguay, 2Instituto de Cardiologia Intervencionista - Casa de Galicia, Montevideo, Montevideo, Uruguay

Background: Incomplete revascularization (IR) is associated with adverse short and long-term clinical outcomes after percutaneous coronary intervention (PCI). Recently the residual SYNTAX score was reported as an objective measure of the degree and complexity of residual stenosis after PCI. Limited information exists regarding IR in the residual SYNTAX Score after PCI (residual CSS) were assessed. Patients with residual CSS were higher in those patients with high residual CSS. Thirty-day mortality was 3.3% in the low residual CSS group, 5.5% in the intermediate residual CSS group, and 10.3% in the high residual CSS group.

Methods: One hundred twenty consecutive patients were studied and classified on the basis of residual CSS (≤5% or >5%) and MBG (0/1 or 2/3). Based on discordance or concordance between residual CSS and MBG after PCI, four groups were identified: group 1 (6 patients); residual CSS ≤5% and MBG 0/1; group 2 (5 patients); residual CSS >5% and MBG 0/1; group 3 (87 patients); residual CSS >5% and MBG 2/3; group 4 (2 patients); residual CSS >5% and MBG 2/3. Thirty-day residual thrombus was calculated, with OCT, as stent area minus lumen area; mean value of thrombus area (m-ThA, mm²) and % of thrombus area (%ThA: thrombus area / stent area x 100) were also calculated. Killip class, and left ventricular ejection fraction (LVEF) by echocardiography at discharge were available in every patients. Clinical follow-up was performed for all at 1,3,6,12 months by phone interview.

Results: MBG 2/3 was achieved in 91% (109/120) of the patients and residual CSS >5% in 77% of the patients (92/120). MBG and residual CSS were discordant in 23% (27/120) and concordant in 77% (93/120) of the patients. All 6 patients underwent successful OCT analysis. Overall mean value of m-ThA and %ThA were respectively 0.38±0.145 and 4.7±3.7. Group 2 and group 4 (with residual CSS and MBG discordance) respectively showed significant difference regarding the residual CSS (0.6±0.3 vs 0.3±1.2; p=0.008), %ThA (7.0±3.3 vs 3.7±1.5; p=0.004), LVEF at discharge (0.35±0.15 vs 0.51±0.48; p=0.008), Killip class (2.2 vs 1.0; p=0.002), and MACE (2.5% vs 0.22; p=0.03).

Conclusions: Residual intrastent thrombus after stenting for primary PCI can play a role differentiating patients with discordance between residual CSS and MBG. MBG 2/3 and residual CSS >5% is associated with lower residual thrombus, better LVEF and MACE than MBG 0/1 and residual CSS >5%, so that MBG has more impact on prognosis than residual CSS.

TCT-92
Discordance Between Myocardial Blush Grade And ST-Degression Resolution In STEMI After Primary PCI: Does The Residual Intrastent Thrombus Play A Role?
fabrizio imola1, Laura Gatto2, Enrico Romagnoli2, Davioz ramazzotti1, alexander pappalardo1, mario albertucci1, Francesco Prati1
1San Giovanni Addolorata Hospital, Casa di Lavoro, Rome, Italy, 2CLF Foundation, Rome, Italy, 3San Giovanni Addolorata Hospital, Rome, Italy

Background: ST-segment resolution (STR) and myocardial blush grade (MBG) after primary percutaneous coronary intervention (PCI) provide discordant measures of reperfusion with independent prognostic significance. Aim of the study was to evaluate with frequency domain OCT (FD-OCT) the amount of residual intrastent thrombus, and relate it with STR and MBG.

Methods: Among patients with previous CABG undergoing PCI, and formal quantification of the complexity of residual stenosis after PCI. Limited information exists regarding IR in residual SYNTAX Score after PCI (residual CSS).

Results: We calculated SS and cSS for the 5,102 patients from the EXCELLENT registry. SS and cSS were calculated at an independent angiographic core lab. The primary clinical outcome was 3-year patient-oriented composite endpoint (POCE; a composite of all cause death, any myocardial infarction, and any revascularization).

Conclusions: SS is superior to cSS in low risk patients, whereas in high risk patients, the cSS has better predictivity. The presence of classical risk factors should be considered when using the SS as a predictive tool after revascularization.

TCT-93
Super short scan C-arm tomography and segmentation for guidance of cardiac interventions
Dirk Schaefer1, Axel Saulbach2, Carsten Meyer1, Peter Eitius1, Rob van Boom1, Jürgen Weese1, Michael Gruss3
1Philips Research, Hamburg, Germany, 2Philis Research, Hamburg, Germany, 3Fachhochschule Kiel, Kiel, Germany

Background: Automatic 3D segmentation from rotational angiography is used for guidance during atrial fibrillation (AFIB) and transcatheater aortic valve replacement (TAVR) procedures. The workflow can be improved by avoiding high oblique an-gulations and hence the risk of a detector collision with the patient or equipment. We investigate the impact of 3D reconstruction artifacts from reduced range C-arm tomography on the accuracy of the segmentation and its utility for guidance.

Methods: First, 57 consecutive rotational angiographies covering 200° angular range of the left atrium (LA) and pulmonary veins (PV) acquired for AFIB treatment guidance were reconstructed with varying ranges down to 110° by omitting projections. Second, 20 consecutive XperCT's of the aortic root acquired with hypor-pacing for TAVR guidance and an angular range of 180° (8) or 160° (12) were reconstructed with ranges down to 110°. In both setups, for each range a dedicated segmentation model was trained, while expert annotations were available as ground truth.

Results: For AFIB, the mean segmentation error for the LA+PV model only slightly increases from 1.5mm for 200° to 2.0mm for 150° in matched training conditions (see Fig.A). For TAVR, the median error for the valve plane angle compared to those from full angular range stays below 2° down to about 140° (see Box-Whisker-Plot in Fig.B).

TCT Abstracts/Angiography and QCA