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1. INTRODUCTION 

Let S and T represent sets, each the union of a finite number @I and v, 
respectively) of fixed disjoint intervals. We shall be interested in the 
behavior, as the parameter c+ co, of the eigenvalues {k,(c)} of the integral 
equation 

i 46 - Y> MY) & = h(c) hi XE CS, (1) 
YECS 

in which the Fourier transform of (2n)“* h, is x~(o), the characteristic 
function of T: 

The operator in (1) consists of restricting $k(~) to the set cS, restricting the 
Fourier transform of the function so obtained to the set T, and viewing the 
result again on cS. We can therefore represent it compactly as 
A c = WV Q(T) w9, where P(O) and Q(A) represent orthogonal 
projections in the Hilbert space I%*(--co, 00) onto the subspaces of those 
functions which vanish outside of R, and those whose Fourier transform 
vanishes outside of A. The interest of the problem lies in the fact that the 
eigenvalues are useful in describing the geometry of these subspaces, and 
thereby provide information about how the energy of a function can be 
distributed over time and frequency. From a comparison of Ck A,(c) and 
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Ck L:(c) it is easy to see that the eigenvalues (when arranged in non- 
increasing order) are very close to I, then very close to 0, the transition 
occurring in an interval of values of k which is centered at 
k = cm(S) m( 7’)/2 rc, with m(.) Lebesgue measure, and grows in width at the 
rate of only log c. This fact has found application to certain questions 
concerning sampling [4 ], to an extension of Szegti’s theorem [5], and to the 
eigenvalues of Hankel matrices [ 71. In a paper [6] devoted to asymptotic 
expressions for the eigenvalues and for the corresponding eigenfunctions, in 
the case that S and T are single intervals, Slepian conjectured that when 
n = (27~))’ m(S) m(7’)c + r*b log c, n,(c) -+ (1 + eb)-‘. Here we prove this 
result, by showing it to stem from like behavior of Hankel operators [ 71, and 
generalize it to sets S and T which are finite unions of intervals. Specifically, 
letting N(A, a) denote the number of eigenvalues of an operator A which 
exceed a, we will show that, for 0 < a < 1, 

WC, a) = 
m(s) m(T) c + 

2r 
( 

l-a 
Slog ~ 

) 
log c + o(log c). (2) a 

A traditional method for describing the distribution of eigenvalues for a 
difference kernel relies on finding the trace of iterates of the operator. The 
fact that the kernel of (1) is not absolutely integrable presents a severe 
impediment to that approach. We circumvent the difficulty here by 
considering, instead, the operator A,( 1 - A,) whose eigenvalues, 
~,(c>ll - W)l~ are large precisely when Ak(c) lies in the intermediate range 
which we wish to study. We will be able to compute the trace of 
[A,(1 - A,)]” and of A#,(1 - A,)]“. The resulting estimates, combined with 
the fact that, from (1) 

trA,= m(cs) m(r> 
W)&= - 2* 3 

are sufficient to establish (2). 
The discrete analogue of our results for S a single interval, concerning the 

eigenvalues of Toeplitz matrices, follows easily from a result of Basor [ 11 on 
the asymptotics of their determinants. Her methods, although more 
complicated, also give the next term in the asymptotic expansion. They could 
undoubtedly be adapted to the present situation. 

2. PRELIMINARIES 

The main tool we employ is that of the trace norm ]] A (1, of a compact 
operator A, defined as X21 s,(A), where {sf} are the eigenvalues of A*A. 
This norm is finite whenever A is the product C, C, of two operators of 
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Hilbert-Schmidt type, i.e., ones for which the eigenvalues of CTCi are 
summable. We will have occasion to use the following basic properties of the 
trace norm 13, Chap. 31: 

If B is a bounded operator, with (ordinary) norm ]] B 11, 

II BA II, G /I B II II A II, 
IlABII,~IIBIIIIAll,~ 

(5) 

For any orthonormal basis {tii}, tr A = CE I (A~i, #i) is independent of the 
choice of basis, and 

It~4~/IAII,. (6) 

Now let us turn specifically to the sorts of operators we will consider. The 
Hilbert space is L2(-00, co), in which the Fourier transform 

defines a unitary transformation. Let P(S) $ denote the orthogonal projection 
of 4 onto the subspace of functions vanishing outside the set S; explicitly, 

W) 4 =x,(t) 4(t). 

Analogously, let Q(7) q5 = F-‘P(q F# denote the orthogonal projection of 4 
onto the subspace of functions whose Fourier transform vanishes outside T. 
Q(7) $ can be represented in the form 

Q(T) 4 = 1 W - Y) 4(v) dy> 

If S or T is an interval [a, b], we will often write P(a, b) or Q(u, b) in place 
of P(S) or Q(7). In this situation, 

409’77,2 IO 
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Moreover, in an operator of the form P(J) Q(a, b)P(K), with J and 
K intervals having disjoint interiors, we can pass to the limit as 
a+--03 or b + co, obtaining an integral operator with kernel 
xK(y) &x)(eibCx-y)/27ri(x - y)) or x&y) ,(x)(-eiacx-Y’/2ni(x - y)) for 
P(J) Q(-co, b) P(K) or P(J) Q(a, co) P(K), respectively. 

Suppose now that J, K, L, IV, N are intervals, finite or semi-infinite, and 
consider the operator R = P(J) Q(M) P(K) Q(N)P(L). Let us say that R, 
and R, are unitarily equivalent, written R, - R,, if R, = UR, U-’ for some 
unitary transformation U. By definition, both tr R and ]I R 11, are unchanged 
under this equivalence. By choosing U to be, successively, resealing 
[f(t) + ] y I-“’ f(rt)], translation [S(t) + f(t + y)], shift in frequency 
[f(t) + e”tf(t)], complex conjugation [f(t) --f f(t)], and the Fourier 
transform [f + Ff], we find, for any scalar yj, 

R - ZYJh,) Q(r,M) ZYKh) Q(r, N) P(Lh, ), (7) 

- Z’(J + ~2) QW + ~3) P(K + YZ) Q(N + YJ Z’(L + YZ), (8) 

- P(J) Q(-W Z’(K) Q(-N) Z’(L), (9) 

- Q(J) Z’(M) Q(K) W) Q(L). (10) 

Moreover, if J and K intersect in a set of measure 0, and A and B are 
complementary, then since Q(A) = I - Q(B), we have 

Z-W QtA > WI = -WI Q(B) JVO (11) 

We will be interested in conditions under which (] R (]r is uniformly 
bounded, independently of the choice of the intervals J, AI, K, N, L within a 
certain class, a property we will denote by R = O(1). To discuss this, let us 
observe that an integral operator in Lz whose kernel is p(x) q(y) has rank 1 
and trace norm I( p 1) ]I q ]I, where )I f]]’ = I?, ( f(x)]’ dx. Consequently, by 
(6) and (4), if an operator A is defined by a kernel ] p(x, z) q(y, z) dz, 

I tr A I G II A IL G 1 II P(., z)ll II qt., zIl&. (12) 

As an immediate consequence we obtain the following criterion. 

LEMMA. Suppose that the interiors of J and L lie in the complement of K. 
Then R = 0( 1) under each of the conditions: 

(Ll) Zf m(K) is uniformly bounded, and either J and L are on opposite 
sides of K, or one of J, L is untformly separated from K. 

(L2) ZfK = (-00, 01, m(J) or m(L) is untformly bounded, and J or L 
is untformly separated from 0. 
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(L3) If K = (-00, 01, the finite endpoints of M and N are uniformly 
separated from one another, and either J or L is uniformly separated from 0. 

(u) IfK = (-a, 01, m(N) or m(M) is uniformly bounded, and m(J) 
or m(L) is uniformly bounded. 

Proof. In Ll we may, by (8) and (7), suppose that K = [0, 11. The 
operator R is then given by a kernel of the form 

I 
’ du 

einr(u-~) -e inl(u-y) eim2Cx - u) -e iml(x-u) 

0 2ni(u - y) 27ri(x- u) ’ 

with x E J, y E L; if M or N is semi-infinite, the exponentials corresponding 
to the infinite endpoint are omitted. Let us write the integrand as a sum of 
terms of the form 

eifli(U-Y) eimk(x- u) 

U-Y x-u * 

If Jc [l, co) and L c (-co, 01, we find from (12), with y an appropriate 
constant, 

l(RiI,<yj’(l -~)-~‘~u-“~du=O(l). 
0 

Likewise, if J and L are on the same side of 0 or 1, but L is uniformly 
separated from K, say L c [ 1 + 6, co), then 

11 R [I1 < y I’ (1 -u)-“’ (1 + 6- u)-“~ du = O(1). 
0 

For L2, arguing analogously with J = [a, b], 0 6 a < b, and L c [6, 03 1, we 
find 

lIRll,<~ lo du[(a-u)-“* - (b - u)-~‘~]@ - u)-“* = O(1). 
‘-cc 

In L3, R is given by a sum of at most four kernels of the form 
ei(e1X-e2y)y I”, du(eiaU/(u - x)(u - y)) with I a 1 bounded uniformly away 
from 0, x E J, y E L. Integration by parts converts this to 

If both J and L are uniformly separated from 0, say J, L c [6, oo), the first 
component, of rank 1, has trace norm y/ad, while the second has uniformly 
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bounded trace norm by (12). If only one of J, L is separated from 0, say 
J= [6, co), L = [0, co), then by (8) 

Now the first operator on the right is 0( 1) by the preceding reasoning, while 
the second is 0( 1) by Ll. 

In L4 we may again suppose N= [O, 11, whereupon the kernel is 

’ due 
i(u-y) -1 e imz(x-u) imt(x-u) 

.I 
-e 

-cc 2ni(u - y) 2ni(x- u) ’ 

Since ] eeis- 1 l/l s I G Y/(1 + I s I> we see that the integrand is bounded by 
r/( 1 + y - u)(x - u). If either J or L c [0, co) is uniformly bounded in 
length, boundedness of /] R )I, g a ain follows from (12). This completes the 
proof of the lemma. 

3. RESULTS 

We now return to (l), restricting for the moment to the case that S and T 
consist of a single interval. By (7) and (8) we can renormalize so that 
T’ = [0, l] and S’ = [0, m(S) m(T)], whereupon cS’ = [0, cm(S) m(T)]. On 
resealing c by c’ = cm(S) m(o, we see that to establish (2) it is sufficient to 
prove it for the case m(S) = m(T) = 1. Accordingly, let A, = 
P(O, c) Q(O, 1) f’(O, c). 

THEOREM 1. ForO<a< 1, 

N(A,,a)=&+ slog7 
( 

l-a 

1 
log c + o(log c). 

Proof: Since P and Q are orthogonal projections, P2 = P and Q* = Q. 
Thus A: = P(0, c) Q(0, 1) P(0, c) Q(0, 1) P(0, c), hence 

A, -A: = W-4 c) Q(O, l)[P(-co, 0) + P(c, co>] Q(O, 1) P(O, c) 

= P(O, c) Q<O, 1) PC-m, 0) Q(0, 1) P(0, c) 

+ P(O, c> Q(O, 1) P(c, 00) Q(O, 1) P(O, c>. 
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The product of the two operators on the right contains the factor 
P(-co, 0) Q(0, 1) P(0, c) Q(0, 1) P(c, co), which by (7) is equivalent to 
P(-co,O) Q(0, c)P(O, 1) Q(0, c)P(l, co), and so is O(1) by Ll. The 
remaining factors, consisting of projections, have norm bounded by 1, so the 
product is O(1) by (5). Thus for each n, 

[A,(Z -A,)]” = [P(O, c) Q(0, 1) P(-co, 0) Q(0, 1) P(0, c)]” 

+ [WA c) Q<O, l)fYc, a> Q<O, 1)W-h cl]” + O(l). (13) 

If we now replace the first P(0, c) by P(1, c) in P(0, c) Q(0, 1) P(-co, 0) 
Q(0, 1) P(0, c), the difference is P(0, c) Q(0, 1) P(-co, 0) Q(0, 1) P(0, l), 
which is O(1) by L4. Thus 

P(O, c> Q(O, 1) PC-~0, 0) Q@, 1) J’(O, c) 

= P(Lc)Q(O, l)f'(-m,O)Q<O, l)P(l,c)+O(l). 
Continuing, let us write Q(0, 1) = Q(0, co) - Q(1, co) in the right-hand 
operator and expand. The terms involving both Q(0, co) and Q(1, co), for 
example, P(1, c) Q(0, co) P(-co, 0) Q(1, co)P(l, c), are each O(1) by L3. 
Thus 

60, c> Q(O, 1) PC-co, 0) Q<O, 1) f'(O, c) 
= P(L c> Q<O, co)P(-m0) Q(O, 00) PO, c) 

+ f'(L c> Q(L ~0) P(-a, 0) Q(l, oo)P(L c) + O(1). 
The product of the two operators on the right contains the factor P(-co, 0) 
Q(0, co) P( 1, c) Q( 1, co) P(-00, 0), which is equivalent to P( 1, 00) Q(-00, 0) 
P(-c,O) Q(-co,--l)P(l, co) by (8) and (7), and so is O(1) by L3. The 
second operator on the right-hand side of (13) is unitarily equivalent to the 
first; on applying the analogous chain of argument to it, we finally obtain 

= [P(L c) Q(O, 00) P(-co, 0) Q(O, 00) P(1, c)]” 

+ [P(L c) Q(L a> PC-m, 0) Q<L a> J’(L c)]” (14) 

+[P(O,c--l)Q<O,~)P<c,oo)Q<O,~)P(O,c--l)l" 
+[P(O,c-l)Q(l,co)P(c,co)Q(l,~)P(O,c-l)]”+O(l). 

Now by suitably applying (7)-(g) we see that each of the operators on the 
right-hand side of (14) is unitarily equivalent to the first. Thus, setting 

K,=P(l,c)Q(O, oo)P(-oo,O)Q(O, co)P(l,c) 
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we find, by (6), 

tr[A,(Z-A,)]“=4trK,“+O(l). (15) 

Next, let us apply A, to both sides of (14), obtaining A,[A,(Z-AA,)]” as the 
sum of four operators plus 0( 1). By (8) with yz = 0, y3 = 1, (9), and (11) we 
see that the second, P(O, c) Q<O, 1) [P(l, c> QU, oo)Pt-=~, 0) Qtl, ~0) 
P(L c>l”, is unitarily equivalent to the first, and by analogous arguments, so 
are the third and fourth. We conclude that 

trA,[A,(Z-A,)]“=4trP(O,c)Q(O, l)K;+O(l). (16) 

Further, on replacing Q(0, 1) in (16) by Q(0, oo), the difference contains 
as factor the operator Q(l, co) P(l, c) Q(0, co) P(-co, 0) Q(0, co) = 
-Q(l, ~~)P(~,~)Q(--~~,O)P(-~AO)Q(O, co) by (11). But by (10) the 
latter is equivalent to -P(l, co) Q(1, c) P(-co, 0) Q(-co, 0) P(0, co), which 
is O(1) by L3. It follows that 

trA,[A,(Z-AA,)]” = 4 tr P(0, c) Q(0, co)K,” + O(1). (17) 

Finally, by (1 l), K, = P(l, c) Q(-co, 0) P(-co, O)Q(-oo,O) P(l, C) SO that, 
by (9)1 

tr P(0, c) Q(0, 00) K,” = tr P(0, c) Q(-co, 0) K,“. 

But as Q(0, co) + Q(-co, 0) = I, this shows that 

tr P(0, c) Q(0, co) K,” = $ tr P(0, c) K,” = f tr K,“, 

so that by (17) 

tr~c[~,(Z-AA.)]“=2trK,“+O(l)=ftr[A,(Z-AA,)]”+0(1). (18) 

Now K, is given by the kernel (l/47?) (F du/(u + x)(u + y), with 1 < x, 
y < c, and so resembles a Hankel operator. Proceeding then as in [7], we 
apply the change of variable x = e’“, y = e’*, u = et’, which transforms K, 
unitarily into the integral operator on L*[O, (log c)/2] defined by the 
difference kernel k(r - u), with 

sech r sech(s - r) dr, 

a rapidly decreasing function of s. In accordance with Szego’s theorem 
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12, 51, the eigenvalue distribution of K, can be determined from the Fourier 
transform of k. Specifically, since 

I 
02 
-0c 

due- i0s sech v = x sech 5 s, 

NW,, a) = 
log c 1 
22nm s]sech’Fs>4a +o(logc) 

I I 

log c Ix- 
4n 

2 g sechh’(4a)“’ + o(log c). 

Thus, by definition of N, 

trK,“= 
I 

“4 x” d, [ -N(K,, x)] 
o+ 

l/4 

=$logc/ xn 
dx 

+ o(log c) 
o+ x( 1 - 4x)1/2 

and letting x = t(1 - t), 0 < t < i, we find 

trK:=&logc 
I 

I/Z 

0 
[W - Ql” & + dlog c> 

(19) 

=$logc/’ + o(log c). 
0 

We observe also that, by symmetry of the integrand in this expression, 

I ’ t(t(1 - t)]” &= 1’ 
0 0 

(1 - t)[t(l - 01” & 

so that 

I 
dt 1’ 

l t[t(1 - t)]” p= - 
I 0 t(1 -t) 2 0 

(20) 

It is now easy to convert (15) and (18) into information concerning 
N(A,, a). For by definition of N, 

tr[A,(Z-AA,)]“=/’ [t(l -t)]“d,[-N(A,,t)], 
o+ 

tr A,[A,(Z--AA,)]” = 1’ t[t(l - t)]” d,[-N(A,, t)], 
ot 
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and so by (15), (19), (18), and (20) 

I ’ [t(l -t)]“d,[-N(A,, t)] = FJ’ [t(1 - I)]$$) + 41% c), 
0 0 

I 
l t[t(l - t)]“d,]-N(A,, t)] = YJ’ 4f(l - 01” & + o(h c). 

0 0 

In consequence, for each fixed polynomial P which vanishes at 0 and at 1, 

i 
’ pw 4-w&~ 01 = F,’ P(t) & + o(log c). 

0 0 

We can eliminate the second restriction by writing P(t) = tP(1) + 
[P(t) - tP( l)] and applying (3) to the first component. We obtain, for every 
P vanishing at 0, 

=W)&+ $J’ PW - w )I & + +-x c), 
0 

and this relation can be extended by approximation from polynomials to any 
function F(t) for which [F(t) - tF( l)]/t( 1 - t) is Riemann-integrable on 
[0, I]. In particular, taking F(t) to be the characteristic function of the 
intervalO<a<t<l,wefind 

c+ 
log c l-a =- 

27t 
7 log 7+ o(log c). 

This completes the proof of Theorem 1. 
The same argument is sufficient to prove the more general case. 

THEOREM 2. Let S and T each be the union of a finite number, p and v, 
respectively, of jixed disjoint closed intervals. Let A, = P(cS) Q(T) P(cS) 
denotre the operator of (1). Then, for 0 < a < 1, 

NA,, 0) = 
m(s) m(T) c + 

( 
w l-a 

2n glog -y ) 
log c + o(log c). 
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Proof. We will show how to reduce the proof to that of Theorem 1. Let 
yi: gi < y < G,, with g, < G, < ‘. < g, < G,, denote the constituent 
intervals of S. The complement S’ of S now consists of E,,: -co < y < g,, 
ci: G, < y < gi+,, i = l,..., ,u - 1, and E,: G, < y < a~. Let di: di < t < Di, 
with d, < D, < d, < D, , denote the constitutent intervals of T. As before, 
we consider 

A,(Z - 4) = f'(cS) Q(T) WV Q(T) PW) 

= C P(cY~) Q<dm> P(C&,) Q(dk> f'(CYj>* 
n,m,l,k.j 

(21) 

Now by (7), 

and, by Ll and L2, this is O(1) unless n = j and yj is adjacent to E,. If E, is a 
finite interval with yj adjoining it one one side, and we extend sI to co on the 
other side, the difference, for example, P(g,, G,) Q(cc?,) P(-a~, G,) Q(c8,) 
P( g,, G,), is 0( 1) by L2. We conclude that we can reduce the sum in (21) 
to 

= S f’(CYj> Q(Sm>[P(- ~0, Cgj) +f’(cG,j, a>I Q(ak)P(c~j) + O(l)* (22) 
i,m,k 

Moreover, by L4, as in Theorem 1 

P(CYj> Q<am> PC- COT Cgj> Q(~k>P(CYj) 
=f’(Cgj + 1, cG,i> Q(J,) P(-a, Cgj> Q(dk> P(Cgj + 1, cG,i) + O(1) 

and by L3 the latter operator is O(1) unless m = k. The same applies to the 
remaining operators of (22) and so we find 

= z f'(Cgj + 13 CGj) Q<dm> PC-00 3 Cgj> Q(a,> f'(cgi + 1) cG,~) 

+P(Cgj,cGj- 1) Q(a,>f'(CGj, 00) Q(d,) P(Cgj, cG,~- 1) + O(1). 

By taking powers on both sides and applying similar considerations to show 
that the cross-product terms are O(1) we see that 
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=z [P(Cgj + 1, CGj) Q<a,> J’(--oo, Cgj) Q(a,) P(cgj + 1, CGj)]” 

+ [J’(Cgj, CGj - 1) Q(S,) P(CGj, 00) Q(d,) P(Cgj, CGj - I)]” + O(1) 

=z [‘(Cgi + 1, CGj) Qtdm, a)P(-a, cgj> Q(d,, c~)P(cgj + 1, CGj)]” 

+ [P(Cgi + 1, CGj> Q(o,, Co) f’(-CO, Cgj) Q(l),, a) Z’(cgj + 1, cG~)]” 

+ [f’(Cgj, CGj - 1) Q(d, 3 a)J’(CGj, o~)Q(d,, a)P(Cgj>CGj- I)]” 

+ [f’(Cgj,CGj- 1) Q<o,l oO)J’(CGj, 00) Q(D,, a)P(cgjy cG~- l)]” 

+ O(1). (23) 

As in Theorem 1, for given j and m, each of these four operators is now 
unitarily equivalent to 

Kcrn(yj) = P( 1, m(yj)) Q(O, 00) J’(-m, 0) Q(O, 00) P(l, m(Yj>)y 

so that tr[A,(Z-A,)]“=z,,,, 4 tr Kz,,,(Y,) + O(1). But from (19), tr KF,,,‘,,Yj,= 
tr K: + 0( 1 ), consequently 

(24) 

Now let us apply A, = Ca.6,d P(cy,) Q(6,)P(cy,) to (23). For the first 
component of (23), which we denote by B(j, m), we have 

4.W ml = c WY,) Q(Jb> WY~) WY 4 
a.b,d 

We now argue that the only significant contribution from this sum comes 
when a = d = j and b = m. For if d # j, the corresponding operator vanishes. 
If a # j, the operator contains the factor 

P(c~cz) Q<ab> f’(Cgj + 1, CGj) Qtdm 7 ~0) J’(--oc), Cgj> 

- P(Ya) Q<Cab) P( gj + c-‘, Gj> Q(cdm 3 00) J’(-a, gj> 

and the latter operator is 0( 1) by Ll. Finally, P(qj) Q(s,) P(cy,) B(j, m) 
contains the factor 

Q(‘b> f’(Cgj + 1, CGj) Q(d,, ~0) J’(-mv Cgj) Q(d,v W) P(Cgj + 1, cGj)* (25) 
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If b < m, 6, is in the complement of [d,, co). Then by (1 l), the operator of 
(25) coincides with 

-Q(d,) P(Cg,j + 1, cG,j) Q(dm, ~0) f’(-ao, Cgj) Q(-a, d,) P(Cgj + 1, cG,j) 

and, by (lo), this contains a factor unitarily equivalent to -P(6,) 
Q(cgj + 1, cGj) P(d,, co) Q(-co, cgj)P(--co, d,) which is O(1) by L3. 
Similarly, if b > m, (25) coincides with -Q(&) P(cgj + 1, cGj) Q(-co, d,) 
P(-co, cgj) Q(d,, co) P(cgj + 1, cGj), and again contains a factor equivalent 
to -P(6,) Q(cgj + 1, cGj) P(-co, d,) Q(-co, cgj) P(d,, co); as 6, is now in 
the complement of (-co, d,], this is O(1) by L3. We conclude that 

and similarly for each of the remaining terms of (23). Continuing as in 
Theorem 1. we find 

trA,[A,(Z-AA,)]“=ftr[A,(Z-AA,)]“+O(l). (26) 

The remaining argument of Theorem 1 now applies without change to (24) 
and (26), and yields Theorem 2. 
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