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Abstract

We study a dual mixed formulation of the elasticity system in a polygonal domain of the plane with mixed boundary conditions
and its numerical approximation. The (essential) Neumann boundary conditions (or traction boundary condition) are imposed using
a discontinuous Lagrange multiplier corresponding to the trace of the displacement field. Moreover, a strain tensor is introduced
as a new unknown and its symmetry is relaxed, also by the use of a Lagrange multiplier (the rotation). The singular behaviour
of the solution requires us to use refined meshes to restore optimal rates of convergence. Uniform error estimates in the Lamé
coefficient λ are obtained for large λ. The hybridization of the problem is performed and numerical tests are presented confirming
our theoretical results.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Mixed FEM; Elasticity system; Lagrange multipliers; Mesh refinements; Hybrid method

1. Introduction

The analysis of classical finite element methods with Lagrange multipliers, originally developed in [6] has been
considered for diverse problems, like the Laplace problem, the biharmonic equation or the Stokes system. On the
other hand, the dual mixed finite element method (see [10,27,28]) has the advantage of introducing new unknowns
like strain tensors, quantities of physical interest, which are then computed directly with a good accuracy, avoiding
the use of numerical postprocessing. Many papers are devoted to the elasticity system; here let us quote [2–5,10,14,
16,15,18,29,31]. For the elasticity system, this method has, furthermore, the advantage of avoiding any locking effect
for large Lamé coefficients λ.

Recently Babuska and Gatica [7] have introduced a dual mixed finite element method for the Laplace equation
with a Lagrange multiplier in order to impose nonhomogeneous Neumann boundary conditions.

Accordingly, the goal of our paper is to extend the analysis carried out for the Laplace equation in [7] to the
elasticity system, but with discontinuous approximated Lagrange multipliers, in order to be able to hybridize the
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problem. We furthermore want to take into account the singular behaviour of the solution near the singular points of
the domain by using refined meshes. Therefore, contrary to [7], we do not use quasi-uniform meshes but instead use
locally refined meshes. As a consequence we need to modify the norm of the approximation space in order to obtain
a uniform discrete inf-sup condition. In [23,24] the authors used a weighted mesh-dependent norm, we here prefer
to use a standard L2-norm (see below for the details). In comparison with the norm used in [7] and in [23,24], our
norm is more simple from a practical point of view and allows us to consider P1-discontinuous approximations for
the Lagrange multiplier.

Here as in [14,16] and contrary to [2], we split up the stress tensor into the strain tensor and the pressure, allowing
us to avoid cancellation errors which could appear for nearly incompressible materials (i.e., µ quite smaller than λ),
when trying to compute the strain tensor from the stress tensor. Moreover the hybridization of the method allows us to
use reduction to solve a linear system involving only the Lagrange multiplier (u along the edges of the triangulation)
and the pressure. Its resolution is then relatively cheap (see below).

The paper is organized as follows. In Section 2, we introduce the considered boundary value problem and give
its new dual-mixed formulation. We then show the equivalence between this formulation and the standard one.
We finally prove that the dual-mixed formulation has a unique solution by establishing an inf-sup condition and a
coerciveness result uniform with respect to λ. In Section 3, we introduce the discrete dual-mixed formulation and
show again a uniform discrete inf-sup condition and a coerciveness result uniform with respect to λ. Section 4 gives
some regularity results of the solution of our elasticity system in terms of weighted Sobolev spaces. In Section 5,
based on some interpolation error estimates in these weighted Sobolev spaces, we prove some optimal error estimates.
Finally Section 6 is devoted to the hybridization of the problem and to numerical tests confirming our theoretical
results.

2. The dual mixed variational formulation

Let Ω be a simply connected domain of R2 with polygonal boundary Γ such that the interior angle at each corner
lies in (0, 2π). Let ΓD and ΓN be disjoint open subsets of Γ such that |ΓD| 6= 0 and |ΓN | 6= 0 and Γ = ΓD ∪ ΓN .

In the static theory of linear isotropic elasticity, the equation satisfied by the displacement field u is

−divσs(u) = f in Ω , (1)

where f represents the body force density, ε(u) = 1
2 (∇u + (∇u)T) is the strain tensor,

σs(u) = 2µε(u)+ λtr ε(u)δ,

is the stress tensor, δ is the identity tensor, and finally µ, λ are the Lamé coefficients with µ ∈ [µ1, µ2] and λ > 0.
This balance equation is completed by boundary conditions to get the system:−divσs(u) = f in Ω ,

u = 0 on ΓD,

σs(u)n = g on ΓN ,

(2)

where g corresponds to the surface force density and n is the unit outward normal vector to Γ .
In the sequel, we will use the following notations. For τ = (τi j ) ∈ (H(div;Ω))2; we denote by

divτ =
(
∂τ11

∂x1
+
∂τ12

∂x2
,
∂τ21

∂x1
+
∂τ22

∂x2

)
,

as(τ ) = τ21 − τ12.

For v = (v1, v2) ∈ (H1(Ω))2, we recall that

curl v =
∂v2

∂x1
−
∂v1

∂x2
.

As usual, we denote by L2(.) the Lebesgue space and by H s(.), s ≥ 0, the standard Sobolev space. The usual norm
and seminorm of H s(D) are denoted by ‖ · ‖s,D and | · |s,D . For brevity the L2(D)-norm will be denoted by ‖ · ‖D
and in the case D = Ω , we will drop the index Ω . The inner product in (L2(Ω))2 will be written (·, ·) and the duality
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pairing between (H−
1
2 (Γ ))2 and (H

1
2 (Γ ))2 will be denoted by 〈·, ·〉Γ . If σ = (σi j ), τ = (τi j ) ∈ (L2(Ω))2×2, then

we denote by

σ : τ =
∑
i, j

σi jτi j ,

(σ, τ ) =

∫
Ω
σ : τdx .

We now introduce the Hilbert space

H1
0,ΓD

(Ω) = {v ∈ H1(Ω); v|ΓD = 0}.

We further recall that the Hilbert space H−
1
2 (ΓN ) is the dual space of H

1
2

00(ΓN ) defined as follows:

H
1
2

00(ΓN ) = {v|ΓN
; v ∈ H1

0,ΓD
(Ω)}.

The duality pairing will be denoted by 〈·, ·〉ΓN .
In the sequel, the symbol | · | will denote either the Euclidean norm in R2, or the length of a line segment, or finally

the area of a domain of R2. Finally the notation a . b means here and below that there exists a positive constant C
independent of a and b, of the mesh-size of the triangulation (see below) and of the Lamé parameter λ (but it may
depend on µ1, µ2 and Ω ), such that a ≤ C b. The notation a ∼ b means that a . b and b . a hold simultaneously.

Before going on, let us recall the following Green’s formula (see [16])

Lemma 2.1. Let τ ∈ (H(div;Ω))2 and v ∈ (H1(Ω))2, then

(ε(v), τ ) = 〈τn, v〉Γ − (divτ, v)−
1
2
(as(τ ), curl v),

where τn = (τ11n1 + τ12n2, τ21n1 + τ22n2).

The variational formulation of (2) is well known (see Section I.1.2 of [11]), and is summarized in the next lemma.

Lemma 2.2. Let f ∈ (L2(Ω))2 and g ∈ (H−
1
2 (ΓN ))

2; then there exists a unique solution u ∈ (H1
0,ΓD

(Ω))2 of∫
Ω
(2µε(u) : ε(v)+ λtr ε(u)tr ε(v))dx =

∫
Ω

f vdx + 〈g, v〉ΓN , ∀v ∈ (H
1
0,ΓD

(Ω))2. (3)

For the mixed formulation of problem (3), we introduce the additional unknowns

σ = 2µε(u), p = −λdivu, ω =
1
2

curl u, ξ = −u|ΓN .

This last unknown is a Lagrange multiplier, which is introduced in order to impose the boundary condition on ΓN (see
below).

Let us further define the spaces

Σ = {(τ, q) ∈ (L2(Ω))2×2
× L2(Ω) : div(τ − qδ) ∈ (L2(Ω))2},

Q = (L2(Ω))2 × L2(Ω),

M = Q × (H
1
2

00(ΓN ))
2.

For shortness we often write the pairs (σ, p), (τ, q) ∈ Σ by σ = (σ, p), τ = (τ, q), and similarly the pairs
(u, ω), (v, θ) ∈ Q by u = (u, ω), v = (v, θ). Clearly the space Σ is a Hilbert space equipped with the norm
‖τ‖Σ := ‖τ‖ + ‖q‖ + ‖div(τ − qδ)‖.

With these notations, the mixed variational formulation of problem (3) is: Find (σ , (u, ξ)) ∈ Σ × M such that{
A(σ , τ )+ B(τ , (u, ξ)) = 0 ∀τ ∈ Σ ,
B(σ , (v, α)) = F(v, α) ∀(v, α) ∈ M,

(4)
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where the bilinear forms A : Σ × Σ → R, B : Σ × M → R and the linear form F : M → R are defined by

A(σ , τ ) =
1

2µ
(σ, τ)+

1
λ
(p, q),

B(τ , (v, α)) = (div(τ − qδ), v)+ (as(τ ), θ)+ 〈(τ − qδ)n, α〉ΓN ,

F(v, α) = −
∫
Ω

f vdx + 〈g, α〉ΓN .

Let us first show the equivalence between the standard and mixed formulations:

Proposition 2.3. u ∈ (H1
0,ΓD

(Ω))2 is solution of (3) if and only if ((σ, p), ((u, ω), ξ)) ∈ Σ × M is solution of (4),

where σ = 2µε(u), p = −λdivu, ω = 1
2 curl u, ξ = −u|ΓN .

Proof. (i) (3)⇒ (4). Let u ∈ (H1
0,ΓD

(Ω))2 be the unique solution of (3). From the above considerations, we set

σ = 2µε(u), p = −λdivu, ω =
1
2

curl u, ξ = −u|ΓN .

Let us point out that p and ω belong to L2(Ω) because u ∈ (H1(Ω))2.
The proof of the first identity of (4) is similar to the corresponding one of part (i) of the proof of Theorem 3.2

of [16].
Let us now prove the second identity of (4): By (3) we may write∫

Ω
(2µε(u) : ε(v)+ λtrε(u)trε(v))dx =

∫
Ω

f vdx, ∀v ∈ (D(Ω))2.

Since 2µε(u)+ λtrε(u)δ is symmetric, and (D(Ω))2 is dense in (L2(Ω))2, we can conclude that

(−div(σ − pδ), v) = ( f, v), ∀v ∈ (L2(Ω))2. (5)

In this identity, restricting ourselves to function v ∈ (H1
0,ΓD

(Ω))2 and appealing to the Green’s formula (from
Lemma 2.1), we obtain

(ε(v), σ − pδ)− 〈(σ − pδ)n, v〉ΓN +
1
2
(as(σ − pδ), curl v) = ( f, v), ∀v ∈ (H1

0,ΓD
(Ω))2.

Again by the definition of σ , p and by the property as(σ − pδ) = 0, this identity is equivalent to

2µ(ε(u), ε(v))+ λ(trε(u), trε(v))− 〈(σ − pδ)n, v〉ΓN = ( f, v), ∀v ∈ (H1
0,ΓD

(Ω))2.

And by (3), we arrive at

( f, v)+ 〈g, v〉ΓN − 〈(σ − pδ)n, v〉ΓN = ( f, v)

which yields

〈(σ − pδ)n, α〉ΓN = 〈g, α〉ΓN ∀α ∈ (H1/2
00 (ΓN ))

2. (6)

As as(σ ) = 0, using the identities (5) and (6), we may write

(div(σ − pδ), v)+ (as(σ ), θ)+ 〈(σ − pδ)n, α〉ΓN = −( f, v)+ 〈g, α〉ΓN , ∀(v, α) ∈ M,

which is equivalent to the second identity of (4) by the definition of B.
(ii) (4)⇒ (3). Let (σ , (u, ξ)) ∈ Σ × M be a solution of (4).
By the same arguments as those used in the proof of Theorem 3.2 of [16], it follows that σ = 2µε(u), ω = 1

2 curl u,
and u ∈ (H1(Ω))2.

Now in the first identity of (4), let us take q = 0 and τ ∈ (C∞(Ω̄))2×2. We obtain:

1
2µ
(σ, τ)+ (divτ, u)+ (as(τ ), ω)+ 〈τn, ξ〉ΓN = 0, ∀τ ∈ (C∞(Ω̄))2×2.
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Knowing that ω = 1
2 curl u and that σ = 2µε(u), applying Green’s formula in the above identity we obtain

〈τn, u〉Γ + 〈τn, ξ〉ΓN = 0, ∀τ ∈ (C∞(Ω̄))2×2,

or equivalently

〈τn, β〉Γ = 0,

where β ∈ (H1/2(Γ ))2 is defined by

β =

{
u + ξ on ΓN ,

u on ΓD.

Taking respectively τ in the forms(
φ 0
0 φ

)
,

(
0 −ψ

ψ 0

)
,

with (φ, ψ ∈ C∞(Ω̄)) (as in the proof of Theorem 3.2 of [16]), we deduce that β · n = 0 on Γ , and β · t = 0 on Γ
and therefore β = 0 on Γ . This shows that ξ = −u|ΓN and u = 0 on ΓD .

In the second identity of (4), taking v = 0 and recalling that as(σ ) = 0, we get

〈(σ − pδ)n, α〉ΓN = 〈g, α〉ΓN , ∀α ∈ (H
1/2
00 (ΓN ))

2. (7)

It remains to prove (3): For that purpose, in the second identity of (4), taking v ∈ (H1
0,ΓD

(Ω))2, θ = 0 and α = 0,
we get

(div(2µε(u)+ λtr ε(u)δ), v) = −( f, v).

Applying the Green’s formula, we have:

(2µε(u)+ λtr ε(u)δ, ε(v))− 〈(σ − pδ)n, v〉ΓN = ( f, v).

Thus, using identity (7), we obtain (3). �

The previous proposition guarantees in particular the well-posedness of problem (4). But for further purposes, we
need to check that the so-called inf-sup condition holds, as well as a uniform coerciveness result with respect to the
Lamé coefficient λ.

We start with the inf-sup condition.

Lemma 2.4. The bilinear form B satisfies the inf-sup condition, which means that

sup
τ∈Σ ,τ 6=0

B(τ , (v, α))

‖τ‖Σ
& ‖(v, α)‖M , ∀(v, α) ∈ M. (8)

Proof. Fix an arbitrary element (v = (v, θ), α) ∈ M .
In the whole proof, we fix λ∗ > 0 and µ∗ > 0 independently of λ,µ and of (v, α).
(1) Let w ∈ H1(Ω)2 be the unique solution of the problemdiv(2µ∗ε(w)+ λ∗ divw δ) = v in Ω ,

w = 0 on ΓD,

(2µ∗ε(w)+ λ∗ divw δ)n = 0 on ΓN .

By Korn’s inequality, w satisfies (the constant below depends on λ∗, µ∗ and on Ω )

|w|1,Ω . ‖v‖. (9)

Setting τ 1
= 2µ∗ε(w)+λ∗divwδ and τ 1

= (τ 1, 0), we see that τ 1 belongs to Σ and is symmetric (i.e. as(τ 1) = 0).
Consequently

B(τ 1, (v, α)) = (divτ 1, v)+ (as(τ 1), θ)+ 〈τ 1n, α〉ΓN

= (divτ 1, v)+ 〈τ 1n, α〉ΓN .



L. Boulaajine et al. / Journal of Computational and Applied Mathematics 221 (2008) 234–260 239

And by the above problem solved by w, we get

B(τ 1, (v, α)) = ‖v‖2. (10)

By the definition of τ 1, we further have ‖τ 1
‖Σ = ‖τ

1
‖ + ‖divτ 1

‖ and consequently (9) yields

‖τ 1
‖Σ . ‖v‖. (11)

(2) Let us fix Φ ∈ (H−
1
2 (ΓN ))

2 such that

〈Φ, α〉ΓN = ‖α‖
2

(H
1
2

00 (ΓN ))
2
, (12)

‖Φ‖
(H−

1
2 (ΓN ))

2
≤ ‖α‖

(H
1
2

00 (ΓN ))
2
. (13)

As before let us consider te w ∈ (H1(Ω))2 solution ofdiv(2µ∗ε(w)+ λ∗ divw δ) = 0 in Ω ,
w = 0 on ΓD,

(2µ∗ε(w)+ λ∗ divw δ)n = Φ on ΓN .

Setting τ 2
= 2µ∗ε(w) + λ∗ divw δ, we see that τ 2 is symmetric, i.e., as(τ 2) = 0, divτ 2

= 0 and τ 2n = Φ on ΓN .
Hence τ 2

= (τ 2, 0) fulfils

B(τ 2, (v, α)) = (divτ 2, v)+ (as(τ 2), θ)+ 〈τ 2n, α〉ΓN = 〈Φ, α〉ΓN ,

and by the above property of Φ:

B(τ 2, (v, α)) = ‖α‖2

(H
1
2

00 (ΓN ))
2
. (14)

Again Korn’s inequality implies that

‖τ 2
‖Σ = ‖τ

2
‖ . ‖Φ‖

(H−
1
2 (ΓN ))

2
,

and again by the above property of Φ:

‖τ 2
‖Σ . ‖α‖

(H
1
2

00 (ΓN ))
2
. (15)

(3) Since D(Ω) is dense in L2(Ω), there exists a sequence θk ∈ D(Ω) such that

θk −→ θ in L2(Ω), as k −→∞.

Now, for each k ∈ N, consider wk ∈ (H1
0,ΓD

(Ω))2, the unique solution of the problem:
div(2µ∗ε(wk)+ λ

∗ divwk δ) =
1
2

curl θk in Ω ,

wk = 0 on ΓD,

(2µ∗ε(wk)+ λ
∗ divwk δ)n = 0 on ΓN .

Its variational formulation is∫
Ω
(2µ∗ε(wk) : ε(v)+ λ

∗tr ε(wk)tr ε(v))dx = −
1
2

∫
Ω
θkcurl vdx, ∀v ∈ (H1

0,ΓD
(Ω))2.

Consequently by Korn’s inequality we have

|wk |1,Ω . ‖θk‖. (16)

Then we set

τ 3
k = 2µε(wk)+ λdivwkδ +

1
2
θkχ,
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where χ is the antisymmetric matrix defined by:

χ =

(
0 −1
1 0

)
.

With respect to the above problem, we remark that

divτ 3
k = 0 in Ω ,

as(τ 3
k ) = θk in Ω ,

τ 3
k n = 0 on ΓN .

Moreover, from (16), we clearly have

‖τ 3
k − τ

3
l ‖ . ‖θk − θl‖, ∀k, l ∈ N.

This means that the sequence (τ 3
k )k is a Cauchy sequence in H(div,Ω)2. Denote by τ 3 its limit. By the above

properties of τ 3
k , τ 3 satisfies

divτ 3
= 0 in Ω ,

as(τ 3) = θ in Ω ,
τ 3n = 0 on ΓN ,

‖τ 3
‖ . ‖θ‖.

Setting τ 3
= (τ 3, 0), we then have

B(τ 3, (v, α)) = (divτ 3, v)+ (as(τ 3), θ)+ 〈τ 3n, α〉ΓN = (θ, θ) = ‖θ‖
2, (17)

as well as

‖τ 3
‖Σ = ‖τ

3
‖ . ‖θ‖. (18)

(4) The three above points suggest that we set

τ = τ 1
+ τ 2

+ τ 3.

Indeed the bilinearity of B and the identities (10), (14) and (17) lead to

B(τ , (v, α)) = ‖(v, α)‖2M ,

while the estimates (11), (15) and (18) show that

‖τ‖Σ . ‖(v, α)‖M .

Therefore, we may conclude that (8) holds. �

Lemma 2.5. The bilinear form A is uniformly coercive in λ on the kernel V of B in Σ defined by

V =
{
τ ∈ Σ : B(τ , (v, α)) = 0,∀(v, α) ∈ M

}
.

Proof. τ = (τ, q) belongs to V if and only if

(div(τ − qδ), v)+ (as(τ ), θ)+ 〈(τ − qδ)n, α〉 = 0, ∀(v, α) ∈ M.

This identity implies that

div(τ − qδ) = 0, as(τ ) = 0, (19)

and

(τ − qδ)n = 0 on ΓN .

By Lemma 3.3 of [9], it follows that

‖tr (τ − qδ)‖ . ‖(τ − qδ)D
‖,
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where we recall that τ D
= τ − 1

2 tr (τ )δ denotes the deviatoric of τ . But in our case, we may write

(τ − qδ)D
= τ − qδ −

1
2
(tr (τ )− 2q)δ = τ D.

Consequently the above estimate becomes

‖tr τ − 2q‖ . ‖τ D
‖ . ‖τ‖.

By the triangle inequality we get

‖q‖ ≤
1
√

2
‖qδ‖ ≤ ‖τ − qδ‖ + ‖τ‖,

and by the above estimate there exists a positive constant C depending only on |Ω | such that

‖q‖ ≤ C‖τ‖. (20)

Since µ ∈ [µ1, µ2], we may write

A(τ , τ ) =
1

2µ
‖τ‖2 +

1
λ
‖q‖2

≥
1

2µ
‖τ‖2 ≥

1
2µ2
‖τ‖2

≥
1

4µ2
‖τ‖2 +

1
4µ2
‖τ‖2.

By using the estimate (20), we conclude that

A(τ , τ ) ≥
1

4µ2
‖τ‖2 +

1

4C2µ2
‖q‖2 ≥ C(µ2)(‖τ‖

2
+ ‖q‖2). (21)

Therefore the coerciveness of A in V holds uniformly in λ. �

Theorem 2.6. There exists a unique solution (σ , (u, ξ)) ∈ Σ × M of the mixed variational formulation (4) such that

‖(σ , (u, ξ))‖Σ×M .

(
1+

1
λ

)2

(‖ f ‖ + ‖g‖
(H−

1
2 (ΓN ))

2
).

Proof. By the two previous lemmas, the inf-sup condition and the coerciviness are satisfied, so a straightforward
application of Corollary I.4.1 of [19] yields the results. �

3. The discrete problem

Let (Th)h>0 be a regular family of triangulations of Ω made of triangles K of diameter hK . As usual, the letter h
will also denote h = max{hK , K ∈ Th} (the meaning of h is indicated by the context). We further suppose that the
points of ΓD ∩ ΓN are vertices of Th , for all h > 0.

For K ∈ Th , let us denote by bK the standard bubble function defined by bK (x) = λ1(x)λ2(x)λ3(x) where
λi , i = 1, 2, 3, are the barycentric coordinates on K associated with the vertices of K . The set of the edges of K will
be denoted by EK .

Let us now set

Σh = {(τh, qh) ∈ Σ : qh|K ∈ P1(K ) and τh|K ∈ (P1(K ))
2×2
⊕ (R curl bK )

2,∀K ∈ Th},

L2
h = {vh ∈ (L

2(Ω))2 : vh|K ∈ (P0(K ))
2,∀K ∈ Th},

Qh = {θh ∈ L2(Ω) : θh|K ∈ P1(K ),∀K ∈ Th}.
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Here, by τh|K ∈ (P1(K ))2×2
⊕ (Rcurl bK )

2 we mean that there exist polynomials p11, p12, p21, p22 of degree ≤ 1
and two real numbers a1 and a2 such that

τh|K =

p11 + a1
∂bK

∂x2
p12 − a1

∂bK

∂x1

p21 + a2
∂bK

∂x2
p22 − a2

∂bK

∂x1

 .
Let {I1, . . . , Im} be the partition of ΓN induced by the triangulation Th , i.e., each Ii = K ∩ Γ̄N for some triangle

K of Th and Γ̄N = ∪
m
j=1 I j . Due to our previous hypotheses on the triangulation Th , each Ii is contained in one side

of the polygonal line Γ .
Let us finally introduce the approximated space of each component of the Lagrange multiplier

L2
h,ΓN
= {αh ∈ L2(ΓN ) : αh|I j ∈ P1(I j ), j = 1, . . . ,m}.

The approximation space of M is then defined by

Mh = L2
h × Qh × (L

2
h,ΓN

)2.

Contrary to [7], we use discontinuous approximated Lagrange multipliers; hence the space Mh is equipped with
the L2-norm, namely

‖(vh, αh)‖M̃ := ‖vh‖ + ‖θh‖ + ‖αh‖ΓN ,

with vh = (vh, θh).
Another reason is that we want to use non quasi-uniform meshes, for which the applicability of the uniform inf-sup

condition with the term ‖αh‖(H1/2(ΓN ))
2 instead of ‖αh‖ΓN seems to be difficult to prove.

Accordingly the discrete problem associated with the (continuous) mixed problem (4) is: Find σ h = (σh, ph) ∈ Σh ,
and (uh = (uh, ωh), ξh) ∈ Mh such that{

A(σ h, τ h)+ B(τ h, (uh, ξh)) = 0 ∀τ h ∈ Σh,

B(σ h, (vh, αh)) = F(vh, αh) ∀(vh, αh) ∈ Mh .
(22)

To get appropriate error estimates, we need to show that the uniform discrete inf-sup condition holds, as well as
uniform coerciveness on the discrete kernel of B. For these purposes, we will use the B DM1 interpolation operator
Ih defined as follows (see [10,28,1]): for any δ ∈ (0, 1),

Ih : (H
δ(Ω))2×2

∩ (H(div;Ω))2 → Hh : τ → Ih(τ ),

where Ih(τ ) ∈ Hh is uniquely determined by the conditions∫
∂K

Ih(τ )n · p1ds =
∫
∂K
τn · p1ds,∀p1 ∈ (R1(∂K ))2,∀K ∈ Th,

where

R1(∂K ) = {ψ ∈ L2(∂K ) : ψ|E ∈ P1(E),∀E ∈ EK }

and

Hh = {τh ∈ (H(div;Ω))2 : τh|K ∈ B DM1(K )
2
= (P1(K ))

2×2,∀K ∈ Th}.

If Ph denotes the orthogonal projection from (L2(Ω))2 to L2
h , then we recall that the following diagram

commutes [10]:

(H δ(Ω))2×2
∩ (H(div;Ω))2

div
−→ (L2(Ω))2

Ih ↓ ↓ Ph

Hh
div
−→ L2

h
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Consequently

divIh(τ ) = Ph(divτ), ∀τ ∈ (H δ(Ω))2×2
∩ (H(div;Ω))2.

In addition, the following approximation property holds (see Theorems 3.2 and 3.3 of [1])

‖τ − Ih(τ )‖ . hδ‖τ‖(H δ(Ω))2×2 + h‖divτ‖, ∀τ ∈ (H δ(Ω))2×2
∩ (H(div;Ω))2. (23)

To prove the uniform discrete inf-sup condition, we start with three preliminary lemmas. As in the continuous case,
in the proof of these three lemmas, we fix λ∗ > 0 and µ∗ > 0 independently of λ and µ.

Lemma 3.1. Let vh ∈ L2
h . Then there exists τ 1

h ∈ Hh such that divτ 1
h = vh in Ω , τ 1

h n = 0 on ΓN and

‖τ 1
h ‖(H(div;Ω))2 . ‖vh‖. (24)

Proof. Let w ∈ (H1(Ω))2 be the unique solution of the problemdiv(2µ∗ε(w)+ λ∗ divw δ) = vh in Ω ,
w = 0 on ΓD,

(2µ∗ε(w)+ λ∗ divw δ)n = 0 on ΓN .

By the elliptic regularity of the Lamé system (see for instance [22]), there exists δ0 ∈ (0, 1) such that w ∈
(H1+δ(Ω))2, for all δ ∈ (0, δ0) and satisfies

‖w‖(H1+δ(Ω))2 . ‖vh‖. (25)

We now fix δ ∈ (0, δ0), δ 6=
1
2 and set τ 1

= 2µ∗ε(w) + λ∗ divw δ. As divτ 1
= vh ∈ (L2(Ω))2, we deduce that

τ 1
∈ (H δ(Ω))2×2

∩ (H(div;Ω))2. Therefore, we may set τ 1
h = Ihτ

1, which then belongs to Hh .
By the above commuting diagram we further have

div(τ 1
h ) = Ph(divτ 1) = Ph(vh) = vh = divτ 1.

By the triangular inequality we have

‖Ih(τ
1)‖(H(div;Ω))2 ≤ ‖Ih(τ

1)− τ 1
‖(H(div;Ω))2 + ‖τ

1
‖(H(div;Ω))2 . (26)

Since div(Ih(τ
1)− τ 1) = 0, we can write

‖Ih(τ
1)− τ 1

‖(H(div;Ω))2 = ‖Ih(τ
1)− τ 1

‖ . hδ‖τ 1
‖(H δ(Ω))2×2 + h‖divτ 1

‖,

owing to (23). This estimate in (26) yields

‖Ih(τ
1)‖(H(div;Ω))2 . hδ‖τ 1

‖(H δ(Ω))2×2 + ‖τ
1
‖(H(div;Ω))2 . (27)

But, owing to (25), we have

‖τ 1
‖(H δ(Ω))2×2 . ‖w‖(H1+δ(Ω))2 . ‖vh‖. (28)

On the other hand, due to Korn’s inequality, we have

‖τ 1
‖(H(div;Ω))2 . ‖w‖H1(Ω)2 + ‖vh‖ . ‖vh‖. (29)

Therefore using (27)–(29), we get (24).
Besides, by the definition of Ih∫

E
Ih(τ

1)n · p1ds =
∫

E
τ 1n · p1ds, ∀p1 ∈ (P1(E))

2,∀E ∈ EK .

Taking E ⊂ ΓN and recalling that τ 1n = 0 in ΓN , we deduce that

τ 1
h n = Ih(τ

1)n = 0 on ΓN . �
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Lemma 3.2. Let αh ∈ (L2
h,ΓN

)2. Then there exists τ 2
h ∈ Hh such that divτ 2

h = 0 in Ω , τ 2
h n = αh on ΓN and

‖τ 2
h ‖(H(div;Ω))2 . ‖αh‖ΓN . (30)

Proof. Consider w ∈ (H1(Ω))2 the unique solution ofdiv(2µ∗ε(w)+ λ∗ divw δ) = 0 in Ω ,
w = 0 on ΓD,

(2µ∗ε(w)+ λ∗ divw δ)n = αh on ΓN .

As usual, we set τ 2
= 2µ∗ε(w) + λ∗ divw δ. Since αh ∈ (L2

h,ΓN
)2 ⊂ (L2(ΓN ))

2, by the elliptic regularity of the

Lamé system [22], there exists δ0 ∈ (0, 1) such that that w ∈ (H1+δ(Ω))2, for all δ ∈ (0, δ0) and satisfies

‖w‖(H1+δ(Ω))2 . ‖αh‖ΓN .

By the definition of τ 2, we get

‖τ 2
‖(H δ(Ω))2×2 . ‖w‖(H1+δ(Ω))2 . ‖αh‖ΓN . (31)

As divτ 2
= 0, we conclude that

‖τ 2
‖(H(div;Ω))2 = ‖τ

2
‖ . ‖w‖(H1+δ(Ω))2 . ‖αh‖ΓN . (32)

We can now take τ 2
h = Ih(τ

2). Then from the commuting diagram we have

divτ 2
h = divIh(τ

2) = Ph(divτ 2) = 0. (33)

Furthermore the definitions of Ih yield

τ 2
h n = αh on ΓN .

Therefore using (23), (32) and (33), we have:

‖τ 2
h ‖(H(div;Ω))2 = ‖τ

2
h ‖ ≤ ‖τ

2
h − τ

2
‖ + ‖τ 2

‖

. hδ‖τ 2
‖(H δ(Ω))2×2 + ‖τ

2
‖ . (1+ hδ)‖αh‖ΓN . �

Contrary to the continuous case, since as(τ 1
h+τ

2
h ) is not necessarily equal to zero (recall that as(τ 1) = as(τ 2) = 0,

but this is not automatically the case for their interpolant), the construction of τ 3
h is not independent of τ 1

h and τ 2
h .

Lemma 3.3. Let ((vh, θh), αh) ∈ Mh . Then there exists τ 3
h ∈ Hh such that divτ 3

h = 0 in Ω , τ 3
h n = 0 on ΓN ,

as(τ 3
h ) = θh − as(τ 1

h + τ
2
h ) and

‖τ 3
h ‖(H(div;Ω))2 . ‖vh‖ + ‖θh‖ + ‖αh‖ΓN . (34)

Proof. Let us set γh = θh − as(τ 1
h + τ

2
h ), where τ 1

h and τ 2
h have been previously determined. Let us further set

Xh = {vh ∈ H1(Ω) : vh|K ∈ P2(K )⊕ RbK }.

Let us fix a nonempty open connected subset Γ0 of ΓD such that Γ0 is included into one edge of Ω . Moreover by
an eventual change of variables, we may suppose that the outward normal vector along Γ0 is the vector (0,−1). Fix
further another nonempty open connected subset Γ00 such that Γ̄00 ⊂ Γ0. Fix a smooth function η defined on Ω̄ such
that 0 ≤ η ≤ 1 and such that η = 1 on an open neighborhood of Γ \ Γ0 and η = 0 on an open neighborhood of Γ00.

Let us consider ηh ∈ Xh as the P1 Lagrange interpolant of η, which then fulfils 0 ≤ ηh ≤ 1 and ηh = 1 on Γ \ Γ0
(note that ΓN ⊂ Γ \ Γ0 and consequently ηh = 1 on ΓN ).

We now fix the vector

c =

(
0
e

)
∈ R2
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such that∫
Ω
(γh − c · ∇ηh)dx = 0. (35)

Indeed this condition is equivalent to∫
Ω
γhdx =

∫
Γ
ηhc · n ds. (36)

Using the properties of ηh , we have∫
Γ
ηhc · n ds =

∫
Γ\Γ0

ηhc · nds +
∫
Γ0

ηhc · nds

=

∫
Γ\Γ0

c · nds +
∫
Γ0

ηhc · nds.

Moreover the property
∫
Ω divc dx = 0 and the Green’s formula yield∫

Γ
c · nds = 0,

and therefore∫
Γ\Γ0

c · nds = −
∫
Γ0

c · nds.

These identities in (36) lead to the condition∫
Γ0

(ηh − 1)c · nds =
∫
Ω
γh dx .

By the choice of the normal vector along Γ0, we get the condition

e =

∫
Ω γhdx∫

Γ0
(1− ηh) ds

. (37)

Now as (35) means that γh − c · ∇ηh is of zero mean on Ω , by Corollary I.2.4 of [19], there exists r ∈ (H1
0 (Ω))

2

such that

div r = γh − c · ∇ηh,

‖r‖1,Ω . ‖γh − c · ∇ηh‖.

By the definition of e, this estimate becomes

‖r‖1,Ω . ‖γh‖.

Using the definition of γh and the estimates (24) and (30), we finally obtain

‖r‖1,Ω . ‖θh‖ + ‖vh‖ + ‖αh‖ΓN . (38)

We now look for ωh ∈ (Xh)
2 such that{

(divωh, qh) = (γh, qh), ∀qh ∈ Qh,

ωh = c on ΓN ,
(39)

with the above vector c.
For that purpose, using the fact that the discretization of the Stokes problem by the pair ((Xh)

2
∩ H1

0 (Ω)
2, Qh ∩

L2
0(Ω)) is stable (Section II.2.2 of [19]) and making use of Fortin’s lemma (Lemma II.1.1 of [19]), there exists

rh ∈ (Xh)
2
∩ H1

0 (Ω)
2 such that (with the vector function r above)∫

Ω
div(r − rh)qhdx = 0, ∀qh ∈ Qh,

‖rh‖1,Ω . ‖r‖1,Ω .
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The vector valued function ωh defined by

ωh = rh + ηhc

belongs to (Xh)
2 and satisfies, owing to the previous inequalities

‖ωh‖1,Ω . ‖rh‖1,Ω + |c| . ‖θh‖ + ‖vh‖ + ‖αh‖ΓN . (40)

Moreover for any qh ∈ Qh , one has∫
Ω

divωhqhdx =
∫
Ω
(divrh + c · ∇ηh)qhdx =

∫
Ω
γhqhdx .

Besides

ωh = rh + ηhc = 0+ c = c on ΓN ,

which shows that ωh satisfies (39).
Setting

τ 3
h =

(
curl ωh1
curl ωh2

)
,

by (39), we remark that it fulfils (34) due to (40) as well as

as(τ 3
h ) = divωh = γh,

τ 3
h n = 0 on ΓN . �

Theorem 3.4. There exists a β3 > 0 independent of h such that

sup
τ h∈Σh ,τ h 6=0

B(τ h, (vh, αh))

‖τ h‖Σ
≥ β3‖(vh, αh)‖M̃ , ∀(vh, αh) ∈ Mh .

Proof. With the notations from the three previous lemmas, we set

τ ∗h = τ
1
h + τ

2
h + τ

3
h ,

and τ ∗h = (τ
∗

h , 0) ∈ Σh , which satisfies

B(τ ∗h, (vh, αh)) = ‖vh‖
2
+ ‖θh‖

2
+ ‖αh‖

2
ΓN
. (41)

Indeed by the above properties of τ 1
h , τ

2
h , τ

3
h stated in the three previous lemmas, we have

divτ ∗h = vh,

as(τ ∗h ) = as(τ 1
h + τ

2
h )+ as(τ 3

h ) = θh,

τ ∗h n = (τ 1
h + τ

2
h + τ

3
h )n = τ

3
h n = αh on ΓN .

By the definition of B we obtain (41).
Finally the estimates (24), (30) and (34) lead to

‖τ ∗h‖Σ = ‖τ
∗

h ‖(H(div;Ω))2 ≤ ‖τ
1
h ‖(H(div;Ω))2 + ‖τ

2
h ‖(H(div;Ω))2 + ‖τ

3
h ‖(H(div;Ω))2

. ‖θh‖ + ‖vh‖ + ‖αh‖ΓN . (42)

The inf-sup condition follows from the identity (41) and the estimate (42). �

Lemma 3.5. The bilinear form A is coercive uniformly with respect to λ on

Vh =
{
τ h ∈ Σh : B(τ h, (vh, αh)) = 0,∀(vh, αh) ∈ Mh

}
.

In other words

A(τ h, τ h) & ‖τh‖
2
+ ‖qh‖

2, ∀τ h = (τh, qh) ∈ Vh .
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Proof. As in Theorem 2.6, taking (vh, αh) ∈ Mh in the form ((vh, 0), 0) with arbitrary vh ∈ L2
h , we see that τ h ∈ Vh

satisfies

(div(τh − qhδ), vh) = 0, ∀vh ∈ L2
h .

As div(τh − qhδ) is piecewise constant, we deduce that τh − qhδ satisfies div(τh − qhδ) = 0. The rest of the proof
now follows the proof of the continuous case (cf. Theorem 2.6). �

This lemma and Theorem 3.4 guarantee the existence and uniqueness of a solution to problem (22).

4. Some regularity results

Let us decompose Γ = ∪ne
j=1 Γ j , where each Γ j is an open segment. Denote furthermore by S j the common

vertex between Γ j and Γ j+1 (modulo ne) and by ω j the interior opening of Ω at S j . We will distinguish three kinds
of vertices, namely the set SDD of Dirichlet–Dirichlet vertices, in the sense that S j belongs to SDD if and only if Γ j
and Γ j+1 are included into ΓD; similarly S j belongs to the Neumann–Neumann set SN N if and only if Γ j and Γ j+1
are included into ΓN ; and finally S j belongs to the Dirichlet–Neumann set SDN if and only if either Γ j is included in
ΓD and Γ j+1 is included into ΓN , or the converse. Later on, we will denote by (r j , θ j ) the polar coordinates centred
at the vertex S j .

It is well known (see [21] or [20,12,22]) that the weak solution of problem (2) presents vertex singularities.
To describe them, we need to introduce the following notations: with each vertex S j , we associate the following
characteristic equation:

sin2(αω j ) =

(
λ+ µ

λ+ 3µ

)2

α2 sin2 ω j if S j ∈ SDD,

sin2(αω j ) = α
2 sin2 ω j if S j ∈ SN N ,

sin2(αω j ) =
(λ+ 2µ)2 − (λ+ µ)2α2 sin2 ω j

(λ+ µ)(λ+ 3µ)
if S j ∈ SDN .

(43)

Denote by Λ j the set of complex roots of this equation. We denote by ν(α) the multiplicity of α ∈ Λ j ; it is well known
that it is either 1 or 2.

The next result was shown in [21]:

Theorem 4.1. Assume that the characteristic equation (43) has no root on the vertical line Rα = 1 (except α = 1
in the N N-case), that f ∈ (L2(Ω))2 and that g ∈ (H

1
2 (ΓN ))

2. Then the weak solution u of problem (2) admits the
following decomposition

u = u R +

ne∑
j=1

∑
α∈Λ j :Rα∈]0,1[

rαj

ν(α)−1∑
k=0

c j,α,k(ln r j )
kϕ j,α,k(θ j ), (44)

where u R belonging to (H2(Ω))2 is the regular part of u, c j,α,k ∈ C is a so-called coefficient of singularity and ϕ j,α,k
is a smooth function (explicitly known, cf. [21]). Moreover the following estimate holds

‖u R‖2,Ω +

ne∑
j=1

∑
α∈Λ j :Rα∈]0,1[

ν(α)−1∑
k=0

|c j,α,k | . ‖ f ‖ + ‖g‖
(H

1
2 (ΓN ))

2
. (45)

The above decomposition allows us to show that u belongs to appropriated weighted Sobolev spaces that we next
define.

Definition 4.2. For any scalar function φ ∈ C0(Ω) such that φ(x) > 0 ∀x ∈ Ω \ {S1, . . . , Sne }, and any m, k ∈ N,
we define

Hm,k
φ (Ω) = {v ∈ Hm(Ω) : φDβv ∈ L2(Ω),∀β ∈ N2

: m < |β| ≤ m + k}.



248 L. Boulaajine et al. / Journal of Computational and Applied Mathematics 221 (2008) 234–260

Hm,k
φ (Ω) is a Hilbert space with the norm

‖v‖m,k;φ,Ω =

(
‖v‖2m,Ω +

∑
m<|β|≤m+k

‖φDβv‖2

) 1
2

.

We also define the semi-norm:

|v|m,k;φ,Ω =

( ∑
|β|=m+k

‖φDβv‖2

) 1
2

.

For all j ∈ {1, 2, . . . , ne}, we now fix a non-negative real number α j < 1 such that

α j > 1−Rα, ∀α ∈ Λ j : Rα ∈ ]0, 1[.

Corollary 4.3. Let the assumptions of Theorem 4.1 be satisfied. Let us fix φ ∈ C0(Ω) to be as in Definition 4.2
and such that φ = r

α j
j in a neighborhood of the vertex S j for every j = 1, 2, . . . , ne. Then u ∈ (H1,1

φ (Ω))2 and

consequently σ = 2µε(µ) ∈ (H0,1
φ (Ω))2×2, p = −λdivu ∈ H0,1

φ (Ω) and ω = 1
2 curl u ∈ H0,1

φ (Ω). Moreover one
has

‖u‖1,1;φ,Ω . ‖ f ‖ + ‖g‖
(H

1
2 (ΓN ))

2
. (46)

Proof. It suffices to check that each singular function rαj (ln r j )
kϕ j,α,k(θ j ) belongs to (H1,1

φ (Ω))2, and to use the
estimate (45). �

For further purposes, we need to give a meaning to the traces of functions in H0,1
φ (Ω); namely we show the

Lemma 4.4. Let φ be a function like in Corollary 4.3. If w ∈ H0,1
φ (Ω), then for all triangles K ∈ Th , it holds that

w|E ∈ L1(E), ∀E ∈ EK .

Proof. By Lemma 2.5 of [13], there exists a p > 1 such that the next continuous embedding holds

H0,1
φ (Ω) ↪→ W 1,p(Ω).

A standard trace theorem yields

w|E ∈ W 1−1/p,p(E),

and the conclusion follows. �

5. Error estimates

In this section, we take advantage of the previous results and some interpolation error estimates to obtain
convergence results.

We first introduce a kind of Fortin operator (compare with Proposition 4.4 of [16]):

Proposition 5.1. Let φ be a function like in Corollary 4.3. Then there exists an operator

Πh : Σ ∩ [(H0,1
φ (Ω))2×2

× H0,1
φ (Ω)] −→ Σh

τ = (τ, q) −→ Πhτ = (τh, qh)

such that

B(τ −Πhτ , (vh, αh)) = 0, ∀(vh, αh) ∈ Mh . (47)
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Proof. Let us fix (τ, q) ∈ Σ ∩ (H0,1
φ (Ω))2×2

× H0,1
φ (Ω). We first take qh = P1

h q, where P1
h is the L2-orthogonal

projection from L2(Ω) onto Qh . We secondly define τ ∗h such that for all K ∈ Th : τ
∗

h|K ∈ (P1(K ))2×2 and is uniquely
determined by the condition:∫

∂K
[(τ ∗h|K − qhδ)− (τ − qδ)]n · p1 ds = 0, ∀p1 ∈ (R1(∂K ))2. (48)

We can observe that the term on the left-hand side of (48) is meaningful, since (τ − qδ)|K ∈ (H
0,1
φ (K ))2×2, and by

Lemma 4.4, (τ − qδ)|E ∈ (L1(E))2 for all edges E of K .
Let us set γ = as(τ − τ ∗h ). Since γ is not necessarily of zero mean (contrary to the one in the proof of Proposition

4.4 of [16]), as in Theorem 3.4, we fix the vector

c =

(
0
e

)
∈ R2

such that∫
Ω
(γ − c · ∇ηh)dx = 0, (49)

or equivalently

e =

∫
Ω γ dx∫

Γ0
(1− ηh) ds

.

Now as γ − c · ∇ηh is of zero mean in Ω , by Corollary I.2.4 of [19], there exists r ∈ (H1
0 (Ω))

2 such that

divr = γ − c · ∇ηh,

with the estimate

‖r‖1,Ω . ‖γ ‖ ≤ ‖τ − τ ∗h ‖,

using the above expression of e.
As before, using the fact that the discretization of the Stokes problem by the pair ((Xh)

2
∩ H1

0 (Ω)
2, Qh) is stable

and making use of Fortin’s lemma, there exists rh ∈ (Xh)
2
∩ H1

0 (Ω)
2 such that (with the vector function r above)∫

Ω
div(r − rh)qhdx = 0, ∀qh ∈ Qh,

‖rh‖1,Ω . ‖r‖1,Ω .

The function ωh defined by

ωh = rh + ηhc

belongs to (Xh)
2 and satisfies, owing to the properties of r :

‖ωh‖1,Ω . ‖rh‖1,Ω + |c| . ‖γ ‖ . ‖τ − τ ∗h ‖. (50)

Moreover for any qh ∈ Qh , one has∫
Ω

divωhqhdx =
∫
Ω
(divrh + c · ∇ηh)qhdx =

∫
Ω
γ qhdx . (51)

Besides, we clearly have

ωh = rh + ηhc = 0+ c = c on ΓN . (52)

We finally set Πh(τ, q) = (τh, qh), where

τh = τ
∗

h +

[
curl ωh1
curl ωh2

]
.



250 L. Boulaajine et al. / Journal of Computational and Applied Mathematics 221 (2008) 234–260

Clearly Πh(τ, q) belongs to Σh and satisfies

div(τh − qhδ) = div(τ ∗h − qhδ),

as(τh) = as(τ ∗h )+ divωh,

τhn = τ ∗h n on ΓN .

From these properties we get

B(τ −Πhτ , (vh, αh)) = (div(τ − τ ∗h − (q − qh)δ), vh)+ (as(τ − τ ∗h )− divωh, θh)

+〈(τ − τ ∗h − (q − qh)δ)n, αh〉ΓN .

But Green’s formula and the definition of τ ∗h yield

(div(τ − τ ∗h − (q − qh)δ), vh) =
∑

K∈Th

∫
K

div(τ − τ ∗h − (q − qh)δ) · vh dx

=

∑
K∈Th

∫
∂K
(τ − τ ∗h − (q − qh)δ)n · vh dx = 0.

On the other hand, by (51), we have

(as(τ − τ ∗h )− divωh, θh) = (γ − divωh, θh) = 0.

Finally we may write

〈(τ − qδ − τ ∗h + qhδ)n, αh〉ΓN =

∫
ΓN

(τ − qδ − τ ∗h + qhδ)nαhds

=

∑
K∈Th :∂K∩ΓN 6=∅

∑
E∈EK∩Γ̄N

∫
E
((τ − τ ∗h )− (q − qh)δ)n · αh ds = 0,

this last identity coming from (48) and the fact that αh is in (P1(E))2, for any E ∈ EK ∩ Γ̄N .
The above identities lead to the conclusion. �

Corollary 5.2. Under the assumptions of the previous proposition, we have

‖τ −Πhτ‖ . ‖(τ − qδ)− (τ ∗h − qhδ)‖ + ‖q − qh‖, (53)

where τ ∗h is defined by (48) and qh = P1
h q.

Proof. By the construction of Πh and (50), we may write, keeping the notations from the proof of Proposition 5.1,

‖τ −Πhτ‖ ≤ ‖τ − τh‖ + ‖q − qh‖

≤ ‖τ − τ ∗h ‖ + ‖ωh‖1,Ω + ‖q − qh‖

. ‖τ − τ ∗h ‖ + ‖q − qh‖,

by the estimate (50). The conclusion follows from the triangular inequality. �

We now need to define local weighted Sobolev spaces:

Definition 5.3. Let K be an arbitrary triangle in the plane and A a vertex of K . For m = 0 or 1 and β ∈ [0, 1[, we
will denote

Hm,1;β
A (K ) = {ψ ∈ Hm(K ); |x − A|βDαψ ∈ L2(K ) ∀α ∈ N2

: |α| = m + 1},

equipped with the norm

‖ψ‖m,1;β,K = (‖ψ‖
2
m,K + |ψ |

2
m,1;β,K )

1
2
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and semi-norm

|ψ |m,1;β,K =

( ∑
|α|=m+1

‖|x − A|βDαψ‖2K

) 1
2

.

By Lemma 4.4, the trace of an element of H0,1;β
A (K ) with β ∈ [0, 1[ is well-defined and is in L1(∂K ). Thus, given

v ∈ [H0,1;β
A (K )]2, its Brezzi–Douglas–Marini interpolant ρK v ∈ B DM1(K ) = (P1(K ))2 [10, p. 125] is well defined

by the relations:∫
∂K
ρK v · np1ds =

∫
∂K
v · np1 ds, ∀p1 ∈ R1(∂K ).

Using the so-called Piola transformation and Bramble–Hilbert arguments, Farhloul and Paquet have shown in
Proposition 4.12 from [16] the next result:

Lemma 5.4. Let (Th)h>0 be a regular family of triangulations of Ω . For any β ∈ [0, 1[, and every K ∈ Th , it holds
that

‖v − ρK v‖K . h1−β
K |v|0,1;β,K , ∀v ∈ (H

0,1;β
A (K ))2.

Direct consequences of this lemma are the next global interpolation error estimates under appropriate refinement
conditions on the regular family of triangulations (Th)h>0 (see Theorem 4.13 and its Corollary in [16]):

Theorem 5.5. Let (Th)h>0 be a regular family of triangulations of Ω . We suppose that (Th)h>0 satisfies the two
following refinement rules:

1. If K is a triangle of Th admitting S j as a vertex, then

hK . h
1

1−α j , (54)

where α j has been defined in Section 4.
2. if K is a triangle of Th admitting no S j ( j = 1, . . . , ne) as a vertex, then

hK . h inf
x∈K

φ(x), (55)

where φ is a function like in Corollary 4.3.

Then for every vector field v ∈ (H0,1
φ (Ω))2, it Holds that

‖v − ρhv‖ . h|v|0,1;φ,Ω , (56)

where ρhv denotes the B DM1 interpolant of v, i.e., for all K ∈ Th , (ρhv)|K = ρK v.
Similarly for every q ∈ H0,1

φ (Ω), it holds that

‖q − P1
h q‖ . h|q|0,1;φ,Ω , (57)

where we recall that P1
h denotes the L2-orthogonal projection on Qh .

Corollary 5.6. Let (Th)h>0 be a regular family of triangulations of Ω satisfying the refinement conditions (54) and
(55). Then for every τ = (τ, q) ∈ (H0,1

φ (Ω))2×2
× H0,1

φ (Ω)

‖τ −Πhτ‖ . h(|τ |0,1;φ,Ω + |q|0,1;φ,Ω ). (58)

Proof. We simply notice that the definition of τ ∗h in Proposition 5.1 means that each line of τ ∗h − qhδ is the B DM1-
interpolant of the corresponding line of τ − qδ. By the estimate (56) we then obtain

‖τ − qδ − (τ ∗h − qhδ)‖ . h|τ − qδ|0,1;φ,Ω . h(|τ |0,1;φ,Ω + |q|0,1;φ,Ω ).

This estimate and (57) in (53) lead to the conclusion. �
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Remark 5.7. Regular families of meshes satisfying the refinement conditions (54) and (55) are easily built; see for
instance [26].

We end up with a local interpolation error estimate on the partition of ΓN .

Lemma 5.8. Let (Th)h>0 be a regular family of triangulations of Ω satisfying the refinement conditions (54) and
(55). For v ∈ H1,1

φ (Ω) ∩ H1
0,ΓD

(Ω), denote by Lhv its P1-Lagrange interpolant, in the sense that Lhv is the unique

continuous function in L2
h,ΓN

such that Lhv(x) = v(x), for all nodal points x ∈ Γ̄N (which is meaningful). Then for

all triangle K ∈ Th having an edge E included into Γ̄N , it holds that

‖v − Lhv‖E . h1/2
K h|v|1,1;φ,K . (59)

In particular, we clearly have

‖v − Lhv‖ΓN . h|v|1,1;φ,Ω . (60)

Proof. By Corollary 2.6 of [13], for any β ∈ [0, 1[, the space H1,1;β
A (K ) is continuously embedded into C(K ) and

compactly embedded into H1(K ). The first property implies that Lhv is meaningful. Standard scaling arguments and
the two embeddings further lead to the estimate

‖v − Lhv‖E . h
3
2−β

K |v|1,1;β,K .

For a triangle K having some S j as a vertex, we apply this estimate with β = α j and by the first refinement rule (54),
we arrive at the estimate (59). For a triangle K having no vertex S j as vertex, we apply the above estimate with β = 0
and by the second refinement rule (55), we still arrive at the estimate (59). �

Theorem 5.9. Let (Th)h>0 be a regular family of triangulations of Ω satisfying the refinement conditions (54) and
(55). Let ((σ, p), ((u, ω), ξ)) be the unique solution of problem (4) and let ((σh, ph), ((uh, ωh), ξh)) be the unique

solution of problem (22). We suppose that f ∈ (L2(Ω))2, g ∈ (H
1
2 (ΓN ))

2 and that the characteristic equation (43)
(cf. Theorem 4.1) has no root on the vertical line R(α) = 1 for each j = 1, 2, . . . , ne (except α = 1 if S j ∈ SN N ).
Then the following error estimates hold:

‖σ − σ h‖ .

(
1+

1
λ

)
h (‖ f ‖ + ‖g‖

(H
1
2 (ΓN ))

2
), (61)

‖u − uh‖ + ‖ω − ωh‖ + ‖ξ − ξh‖ΓN .

(
1+

1
λ

)2

h (‖ f ‖ + ‖g‖
(H

1
2 (ΓN ))

2
). (62)

Proof. From (4) and (22) we have

A(σ − σ h, τ h)+ B(τ h, (u − uh, ξ − ξh)) = 0, ∀τ h ∈ Σh, (63)

B(σ − σ h, (vh, αh)) = 0, ∀(vh, αh) ∈ Mh . (64)

We recall that, in these relations,

σ = (σ, p), u = (u, ω), σ h = (σh, ph), uh = (uh, ωh).

Let us set Πhσ = (σ
∗

h , p∗h). Taking τ h = Πhσ − σ h in (63), we have

A(σ − σ h,Πhσ − σ h)+ (div(σ ∗h − σh − (p
∗

h − ph)δ), u − uh)+ (as(σ ∗h − σh), ω − ωh)

+〈(σ ∗h − σh − (p
∗

h − ph)δ)n, ξ − ξh〉ΓN = 0.

Introducing (P0
h u, P1

hω, Lhξ) in this last equation, where P0
h is the standard L2-orthogonal projection on L2

h , we get

A(σ − σ h,Πhσ − σ h)+ (div(σ ∗h − σh − (p
∗

h − ph)δ), u − P0
h u)

+ (div(σ ∗h − σh − (p
∗

h − ph)δ), P0
h u − uh)+ (as(σ ∗h − σh), ω − P1

hω)
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+ (as(σ ∗h − σh), P1
hω − ωh)+ 〈(σ

∗

h − σh − (p
∗

h − ph)δ)n, ξ − Lhξ〉ΓN

+〈(σ ∗h − σh − (p
∗

h − ph)δ)n, Lhξ − ξh〉ΓN = 0. (65)

Since div(σ ∗h − σh − (p∗h − ph)δ) is a constant vector on each triangle K , and from the definition of P0
h u, we deduce

that

(div(σ ∗h − σh − (p
∗

h − ph)δ), u − P0
h u) = 0.

From (47) and (64), we have

(div(σ ∗h − σh − (p
∗

h − ph)δ), P0
h u − uh)+ (as((σ ∗h − σh), P1

hω − ωh))

+〈(σ ∗h − σh − (p
∗

h − ph)δ)n, Lhξ − ξh〉ΓN = 0.

By these two identities, (65) becomes

A(σ − σ h,Πhσ − σ h)+ (as(σ ∗h − σh), ω − P1
hω)+ 〈(σ

∗

h − σh − (p
∗

h − ph)δ)n, ξ − Lhξ〉ΓN = 0,

which yields

A(σ − σ h,Πhσ − σ h) = (as(σh − σ
∗

h ), ω − P1
hω)+ 〈(σh − σ

∗

h − (ph − p∗h)δ)n, ξ − Lhξ〉ΓN . (66)

Since

A(σ − σ h,Πhσ − σ h) = A(σ − σ h − (Πhσ − σ h),Πhσ − σ h)+ A(Πhσ − σ h,Πhσ − σ h)

= A(σ −Πhσ ,Πhσ − σ h)+ A(Πhσ − σ h,Πhσ − σ h),

by the identity (66) we obtain

A(Πhσ − σ h,Πhσ − σ h) = A(Πhσ − σ ,Πhσ − σ h)+ (as(σh − σ
∗

h ), ω − P1
hω)

+〈(σh − σ
∗

h − (ph − p∗h)δ)n, ξ − Lhξ〉ΓN

=
1

2µ
(σ ∗h − σ, σ

∗

h − σh)+
1
λ
(p∗h − p, p∗h − ph)+ (as(σh − σ

∗

h ), ω − P1
hω)

+〈(σh − σ
∗

h − (ph − p∗h)δ)n, ξ − Lhξ〉ΓN . (67)

Owing to (47) and (64), we see that Πhσ − σ h belongs to Vh and by Lemma 3.5, we get

‖Πhσ − σ h‖
2 . A(Πhσ − σ h,Πhσ − σ h). (68)

We will now estimate the four terms of the right-hand side of (67). From the Cauchy–Schwarz’s inequality, we have

|(σ ∗h − σ, σ
∗

h − σh)| ≤ ‖σ
∗

h − σ‖ ‖σ
∗

h − σh‖ ≤ ‖Πhσ − σ h‖ ‖Πhσ − σ‖,

|(p∗h − p, p∗h − ph)| ≤ ‖p∗h − p‖ ‖p∗h − ph‖ ≤ ‖Πhσ − σ h‖ ‖Πhσ − σ‖,

|(as(σh − σ
∗

h ), ω − P1
hω)| ≤ ‖σh − σ

∗

h ‖‖ω − P1
hω‖ ≤ ‖Πhσ − σ h‖‖ω − P1

hω‖.

Using the interpolation error estimates (57) and (58), we obtain

|(σ ∗h − σ, σ
∗

h − σh)| . h‖Πhσ − σ h‖ (|u|1,1;φ,Ω + |p|0,1;φ,Ω ), (69)

|(p∗h − p, p∗h − ph)| . h‖Πhσ − σ h‖ (|u|1,1;φ,Ω + |p|0,1;φ,Ω ), (70)

|(as(σh − σ
∗

h ), ω − P1
hω)| . h‖Πhσ − σ h‖ |u|1,1;φ,Ω . (71)

Similarly, we estimate

|〈(σh − σ
∗

h − (ph − p∗h)δ)n, ξ − Lhξ〉ΓN |≤

∑
K∈Th

∂K∩Γ̄N 6=∅

∑
E⊂∂K∩Γ̄N

‖(σh − σ
∗

h − (ph − p∗h)δ)n‖E‖ξ − Lhξ‖E .

Now using a standard inverse inequality and the estimate (59), we get

|〈(σh − σ
∗

h − (ph − p∗h)δ)n, ξ − Lhξ〉ΓN | . h
∑
K∈Th

∂K∩Γ̄N 6=∅

∑
E∈EK∩Γ̄N

‖σh − σ
∗

h − (ph − p∗h)δ‖K |u|1,1;φ,K .
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By the discrete Cauchy–Schwarz’s inequality, we obtain

|〈(σh − σ
∗

h − (ph − p∗h)δ)n, ξ − Lhξ〉ΓN | . h|u|1,1;φ,Ω‖σh − σ
∗

h − (ph − p∗h)δ‖

. h|u|1,1;φ,Ω‖Πhσ − σ h‖. (72)

Then the identity (67) and the estimates (69)–(72) in the estimate (68) lead to

‖Πhσ − σ h‖ .

(
1+

1
λ

)
h (|u|1,1;φ,Ω + |p|0,1;φ,Ω ).

Therefore, (61) follows from this estimate, (58) and the triangle inequality.
To prove (62), first observe that the uniform discrete inf-sup condition (see Theorem 3.4) yields

‖P0
h u − uh‖ + ‖P

1
hω − ωh‖ + ‖Lhξ − ξh‖ΓN . sup

τ h∈Σh\{0}

B(τ h, ((P
0
h u, P1

hω), Lhξ)− (uh, ξh))

‖τ h‖Σ
. (73)

Now owing to the Eq. (63) and the properties of P0
h , we have

B(τ h, ((P
0
h u, P1

hω), Lhξ)− (uh, ξh)) = A(σ h − σ , τ h)+ (as(τh), P1
hω − ω)

+〈(τh − qhδ)n, Lhξ − ξ〉ΓN , ∀τ h ∈ Σh . (74)

Applying the Cauchy–Schwarz inequality and the estimate (57) and (61) (rather its proof), we may write

|A(σ h − σ , τ h)| .

(
1+

1
λ

)2

h(|u|1,1;φ,Ω + |p|0,1;φ,Ω )‖τ h‖Σ , (75)

|(as(τh), P1
hω − ω)| . h |u|1,1;φ,Ω ‖τ h‖Σ . (76)

Moreover by the arguments used to obtain (72), we have∣∣〈(τh − qhδ)n, Lhξ − ξ〉ΓN

∣∣ . h|u|1,1;φ,Ω‖τ h‖Σ . (77)

The estimates (75)–(77) and the identity (74) lead to

|B(τ h, ((P
0
h u, P1

hw), Lhξ)− (uh, ξh))| .

(
1+

1
λ

)2

h (|u|1,1;φ,Ω + |p|0,1;φ,Ω ) ‖τ h‖Σ .

This estimate and (73) show that

‖P0
h u − uh‖ + ‖P

1
hω − ωh‖ + ‖Lhξ − ξh‖ΓN .

(
1+

1
λ

)2

h (|u|1,1;φ,Ω + |p|0,1;φ,Ω ). (78)

Moreover by standard scaling arguments, it holds that

‖u − P0
h u‖ . h|u|1,Ω . (79)

Therefore, (62) follows from the estimates (57), (60), (79), (78) and the triangle inequality. �

Remark 5.10. It follows from the second equation of (22) that div(σh − phδ) = −Ph f , and therefore

div(σ − pδ)− div(σh − phδ) = −( f − Ph f ).

Hence if we suppose that f belongs to H1(Ω)2, then the error between div(σ − pδ) and div(σh − phδ) is of order h,
i.e.,

‖div(σ − pδ)− div(σh − phδ)‖ . h.
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6. Numerical experiments

For the implementation of the mixed problem (22), a so-called “hybrid formulation” [10,17,25] should be used. In
this hybrid form, the continuity of the normal trace (σh − phδ)n across the inter-element edges of the triangulation
is relaxed by using a Lagrange multiplier λh . The Lagrange multiplier λh is an approximation of the trace of the
displacement field on the edges of the triangulation. This technique enables us to eliminate the approximations of σ ,
u, and ω at the element level, and leads to a linear system that involves only the Lagrange multiplier λh and ph as
degrees of freedom.

We first introduce the enlarged space Σ̃h (with respect to Σh) by suppressing the requirement for its elements to
have continuous normal components at the interfaces of the triangulation Th

Σ̃h := {τh ∈ (L
2(Ω))2×2

: τh|K ∈ (P1(K ))
2×2
⊕ (R curl bK )

2,∀K ∈ Th}

× {qh ∈ L2(Ω) : qh|K ∈ P1(K ),∀K ∈ Th},

and the space of Lagrangian multipliers:

Λh := {µh ∈ ∪e∈Eh (L
2(e))2 : µh|e ∈ [P1(e)]

2,∀e ∈ Eh and µh|e = 0,∀e ⊂ ΓD},

where Eh is the set of all edges of the triangulation Th .
The hybrid formulation of the discrete problem (22) is the following one: Find (̃σh, p̃h, λh) ∈ Σ̃h × Λh and

(̃uh, ω̃h) ∈ L2
h × Qh such that

1
2µ
(̃σh, τh) +

1
λ
( p̃h, qh)+

∑
K∈Th

∫
K

div(τh − qhδ) · ũh dx

+(as (τh), ω̃h)−
∑

K∈Th

∫
∂K
λh(τh − qhδ)nK ds = 0, ∀(τh, qh) ∈ Σ̃h,∑

K∈Th

∫
K

div(̃σh − p̃hδ) · vh dx + (as (̃σh), θh)+ ( f, vh) = 0, ∀(vh, θh) ∈ L2
h × Qh,∑

K∈Th

∫
∂K
µh · (̃σh − p̃hδ)nK ds =

∫
∂K∩ΓN

µh · g ds, ∀µh ∈ Λh .

(80)

It is easily proved that σ̃h = σh , p̃h = ph , ũh = uh , λh|ΓN = −ξh and ω̃h = ωh where ((σh, ph), ((uh, ωh), ξh)) is
the solution of the non-hybridized mixed formulation (22). Taking advantage of the fact that Σ̃h is a product space,
we can decouple the first equation of the system (80) and obtain

1
2µ

∫
K
σK : τK dx + |K |div τK · uK −

∫
∂K
λ∂K · τK nK ds

+

∫
K

as (τK )ωK dx = 0, ∀τK ∈ [P1(T )]
2×2
⊕ [R curl bT ]

2,

1
λ

∫
K

pK qK dx − |K |∇qK · uK +

∫
∂K
(λ∂K · nK )qK ds = 0, ∀qK ∈ P1(K ),∫

K
as (σK )θK dx = 0, ∀θK ∈ P1(K ),

|K |div σK · vK − |K |∇ pK · vK = −

∫
K

f · vK dx, ∀vK ∈ P0(K )
2,∫

a
((σK a

1
− pK a

1
δ)nK a

1
+ (σK a

2
− pK a

2
δ)nK a

2
) · µa ds =

∫
a
µa · g ds,

∀µa ∈ [P1(a)]
2 if a ∈ Eh \ ΓD,

where σK = σh|K , pK = ph|K , λ∂K |e = λh|e for all e ∈ Eh ∩ ∂K .
On each element, we consider the corresponding linear and bilinear forms:
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• AK (σK , τK ) :=
1

2µ

∫
K σK : τK dx ,

• BK (pK , vK ) := |K |∇ pK · vK ,

• CK (σK , vK ) := |K |div σK · vK ,

• HK (σK , θK ) :=
∫

K as (σK )θK dx,

• PK (pK , qK ) :=
1
λ

∫
K pK qK dx,

• FK (vK ) :=
∫

K fK · vK dx .

The corresponding linear and bilinear forms on the collection of internal edges and edges contained in ΓN are of
the form

• EK ,a(σK , µa) :=
∫

a(σK nK ) · µads,
• G K ,a(pK , µa) :=

∫
a pK nK · µads,

• Te(µe) :=
∫

e g · µeds.

With these notations, the system (80) takes the following local form:
AKσ K

+ (C K )>uK
− (E K ,a)>λa

− (E K ,b)>λb
− (E K ,c)>λc

+ (H K )>ωK
= 0,

P K pK
− (BK )>uK

+ (G K ,a)>λa
+ (G K ,b)>λb

+ (G K ,c)>λc
= 0,

H Kσ K
= 0,

E K1,eσ K1 + E K2,eσ K2 − G K1,e pK1 − G K2,e pK2 = T e,

C Kσ K
− BK pK

= −F K ,

where AK , BK , C K , E K ,e,G K ,e, H K , and P K denote local stiffness matrices corresponding to the
previously defined bilinear forms explicitly computed using appropriate basis functions, see the appendix of [8].
σ K , pK , uK , ωK and λe denote vectors of the components of σK , pK , uK , ωK and λe written in these basis
functions. Still denoting by σ, p, u, ω and λ the vectors of the degrees of freedom of the unknowns σ, p, u, ω and
λ, the global algebraic system generated by this last system has the following form:

Aσ + C>u − E>λ+ H>ω = 0,
Pp − B>u + G>λ = 0,
Hσ = 0,
Eσ − Gp = T,
Cσ − Bp = −F.

(81)

In the system (81), we start by eliminating σ , then u and finally ω. These eliminations are made element by element.
After this procedure, we obtain the following system:{

3λ+ B> p = F1,

Bλ− Cp = F2,
(82)

where the matrices Λ, B and C depend on the previous ones, Λ being invertible.
The system of algebraic equations (82) is then solved by the use of the following extension of the Augmented

Lagrangian algorithm (see [30]):{
3λm + B> pm = F1,

Bλm − (C+ εI)pm = F2 − εpm−1,

where ε > 0 is a fixed parameter and I is simply the identity matrix. The convergence of this scheme is O(εm), for
m = 1, 2, . . .. The positive parameter ε does not have to be chosen too small, so that the condition number of the
system is not too large and a few iterations can reduce the error due to penalization. The implementation issue is as
follows:

1. Start with any p0 and fix a tolerance Tol > 0.
2. pm−1 being given we calculate λm by

(3+ B>(C+ εI)−1B)λm = F1 + B>(C+ εI)−1(F2 − εpm−1),
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Fig. 1. The L-shaped domain.

3. Calculate pm by

pm = (C+ εI)−1(εpm−1 + Bλm − F2),

4. if ‖pm − pm−1‖/‖pm‖ < T ol, stop. Else, pm−1 ← pm , and we come back to step 2.

We now present some numerical results on a test problem in the L-shaped domain Ω = ] − 1, 1[2\([0, 1[×]−1, 0])
as shown in Fig. 1, where ΓD is the part of the boundary included into the x-axis or the y-axis. Using polar coordinates
(r, θ), 0 ≤ θ ≤ ω := 3π

2 , centered at the reentrant corner (see Fig. 1), we take as exact solution, the singular
function [20]

u(r, θ) = rα
(
φ1,α(θ)

φ2,α(θ)

)
,

where

φ1,α(θ) = C1(ρ + τ){cos(α − 2)θ − cos(αθ)} + C2{(ρ + τ) sin(α − 2)θ + (ρ − 3τ) sin(αθ)},

φ2,α(θ) = C1{−(ρ + τ) sin(α − 2)θ + (3ρ − τ) sin(αθ)} + C2(ρ + τ){cos(α − 2)θ − cos(αθ)}.

The parameters are

C1 = (ρ + τ) sin(α − 2)ω − (3τ − ρ) sin(αω),

C2 = (ρ + τ){cos(αω)− cos(α − 2)ω},

ρ =
λ+ µ

µ
(α − 1)− 2, τ =

λ+ µ

µ
(α + 1)+ 2,

where α is the smallest strictly positive solution of the transcendental equation (43)(i) for ω = 3π
2 . The right-hand

side f and the surface force density g are fixed accordingly.
With the aim of corroborating the robustness of our mixed method, we fix the Lamé coefficient µ = 1000 and take

increasing values of the Lamé coefficient λ as shown below:

λ α

1.E+ 008 0.544485935531526
1.E+ 010 0.544483758810418
1.E+ 012 0.544483737042583
1.E+ 014 0.544483736824905

We use two kinds of meshes. The first one (uniform) is obtained by dividing the intervals [0, 1] and [−1, 0] into
n subintervals of length 1

n , and then each square is divided into triangles (see Fig. 2 where we have chosen n = 10).
The second kind of mesh (refined) is obtained from the first one by refinement near (0, 0) according to Raugel’s
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Fig. 2. The uniform mesh for n = 10.

Fig. 3. The refined mesh for n = 10 and β = 1.8.

Fig. 4. Error for uniform meshes.

procedure [26]. Namely, Ω is divided into six big triangles; on the three which do not contain (0, 0), a uniform mesh
is used; each big triangle containing (0, 0) is divided according to the ratios ( i

n )
β , 1 ≤ i ≤ n, where β ≥ 1

(1−α)
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Fig. 5. Error for refined meshes.

along the sides which end at (0, 0), and finally each of these strips is divided uniformly (see Fig. 3 where we have
chosen n = 10 and β = 1.8). We then represent the variations of the errors ‖ph − p‖0,Ω , ‖σh − σ‖0,Ω , ‖uh − u‖0,Ω ,
‖ωh − ω‖0,Ω and ‖ξ − ξh‖ΓN , with respect to the mesh size h for the four values of λ, in Figs. 4 and 5. A double
logarithmic scale was used such that the slope of the curves yields the order of convergence O(h) for refined meshes

(see Fig. 5) according to our theoretical results, and O(h
2
3 ) for uniform meshes (see Fig. 4) due to the singular

behaviuor of the solution. In these figures, since the curves are nearly confounded, we can deduce a strong stability
with respect to the variations of the Lamé coefficient λ as expected. We further note a slightly better convergence of
the error on the Lagrange multiplier (probably due to the use of the L2-norm instead of the H s-norm, with s < 1/2).
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