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Abstract

Let T be a complete local ring an@ a finite set of incomparable prime ideals Bf We find
necessary and sufficient conditions foto be the completion of an integral domain whose generic
formal fiber is semilocal with maximal ideals the element£otn addition, if the characteristic of
T is zero, we give necessary and sufficient conditions7fdo be the completion of an excellent
integral domain whose generic formal fiber is semilocal with maximal ideals the elements of
0 2004 Elsevier Inc. All rights reserved.

1. Introduction

If A is a local integral domain with maximal ideM, quotient fieldK, and M-adic
completioan, then Spe(*]f@A K) is called the generic formal fiber af. Note that there
is a one-to-one correspondence between ibments of the generic formal fiber df and
the prime ideals in the inverse image of the idé3l under the map Spe7é—> Spec.

In light of this correspondence, @ < Specﬁ andQ N A = (0), we will say thatQ is in
the generic formal fiber of.. Furthermore, if the ringT@A K is semilocal with maximal
idealsPi®4 K, P2®4 K, ..., P, ®4 K, then we will say that the generic formal fiber of
A is semilocal with maximal idealBy, P», ..., P,.

Because most of the standard integral domains we study have generic formal fibers that
are far from semilocal, at first glance one might guess that, except for trivial examples,
integral domains possessing a semilocal generic formal fiber do not exist. However, in [4],
it was shown that such rings do exist and perhaps even more surprisingly, in [5], it was
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shown that these integral domains can be constructed to be excellent. In this paper, we show
that these domains are more plentiful than one might suspect (both in the nonexcellent and
excellent case).

In Section 3, we characterize which compléocal rings are completions of integral
domains possessing a semilocal generic formal fiber. Specifically, supdesecomplete
local ring with maximal ideaM, andG C Specl” such thatG is nonempty and the number
of maximal elements of; is finite. We show that there exists a local domaisuch that
A =T and the generic formal fiber of is exactly the elements @f if and only if T is a
field andG = {(0)} or the following conditions hold:

(1) M ¢ G andG contains all the assatied prime ideals of .
(2) If Q e GandP € SpecTl with P C Q, thenP €G.
(3) If O € G, thenQ N prime subring ofl’ = (0).

It is easily seen that the above three conditions are necessary and so the bulk of the proof
is dedicated to showing that the conditions are sufficient. It is worth pointing out that the
three conditions in our theorem are relatively weak, and so in some sense most complete
local rings can be realized as the completidémo integral domain whose generic formal
fiber is semilocal where the maral ideals can be prescribed.

In Section 4 we tackle the analogous version of the above problem where we require
the additional condition tha#i be excellent. We are successful in characterizing the
complete local rings of charamistic zero that are completions of excellent integral
domains possessing a semilocal generic formal fiber. Specificallf; le¢ a complete
local ring containing the integers and the maximal ideal of". Let G € SpecT” such that
G is nonempty and the number of maximal element§ ad finite. We show there exists an
excellent local domair with A = T and such tha#t has generic formal fiber exactly the
elements of5 if and only if T is a field andG = {(0)} or the following conditions hold:

(1) M ¢ G andG contains all the assatied prime ideals of .
(2) If 0 € G andP € SpecT with P € Q, thenP € G.

(3) If O € G, thenQ N prime subring ofl’ = (0).

(4) T is equidimensional.

(5) Tp is aregular local ring for all maximal elementse G.

Showing that the above five conditions are necessary, although maybe not immediately

obvious, is relatively short. Our proof, then, will focus on proving that they are sufficient.
For both theorems, to show that the respective conditions are sufficient we construct

the desired integral domaia. Our construction is based on the techniques used in [3]

and is inspired by the construction of Heitmann in [1]. We start with the prime subring

of T, localized at the appropriate prime ide¥le then successively adjoin elementsof

to this ring in order to get our final result. Naturally, we must be careful which elements

we choose to adjoin. For example, we must avoid the zero divisdfs &6 thatA will be

an integral domain. We must also avoid nonzero elements of prime ideals that we wish to

be in the generic formal fiber of. We will adjoin enough elements @f to our domain

A so that if 7 is a finitely generated ideal of thenIT N A = I. Furthermore, we will be
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adjoining elements of" until we have obtained the property that for every idéaif T
such that/ € P for all P € G, our ring contains a nonzero element of every coset in the
ring 7/J. Thus our ring will satisfy the property that Jf is an ideal of7 whereJ € P
forall P € G, then the mapt — T/J is onto. In particular, this means that— 7/M? is
onto. This fact, along with the condition thal' N A = I for every finitely generated ideal

I of A will force the completion ofA to be T. Moreover, what is also interesting about
the condition thatA — T/J be onto is that it turns out i contains the integers then it
will force A to be excellent. By adjoiningonzero elements of each ideaiwhereJ € P

for all P € G while avoiding nonzero elements of the prime ideals contain€d iwwe also
ensure that the genic formal fiber ofA is exactly the elements @f.

All rings in this paper are to be assumed commutative with unity. If we say a ring is
local, we mean it is a Noetherian ring with one maximal ideal. The term quasi-local will
be reserved for a ring with one maximal ideal that need not be Noetherian. We will use
to denote the cardinality of the real numbers. Finally, when we say(that/) is a local
ring, we mean thal is a local ring with maximal ideal/.

2. Theconstruction

We now begin the construction of our integral domainThe following proposition
is [2, Proposition 1]. It will be used to show that the ridgwe construct has the desired
completion.

Proposition 2.1. If (A, M N A) is a quasi-local subring of a complete local rin@, M),
the mapA — T/M?isontoandIT N A = [ for every finitely generated idealof A, then
A is Noetherian and the natural homomorphigm- T is an isomorphism.

Although Lemma 2.2 is well-known, we will use it repeatedly. So, we state it here
without proof.

Lemma 2.2. LetT be an integral domain andl a nonzero ideal of". Then|I| = |T|.

Lemma 2.3. Let (T, M) be a complete local ring of dimension at least one. Péebe a
nonmaximal prime ideal df . Then|T/P|=|T| > c.

Proof. Clearly, T/ P is reduced. Furthermore, sindeis complete and diff > 1, T/ P
is complete and digT’/P) > 1, as P is nhonmaximal. Sincd/P is reduced, complete
and dim{(T/P) > 1, we have|T/P| > c. But clearly [T/P| < |T|, so |T| > c. Now,
define a mapf: T — [[72, T/M' by f(t) = (t + M,t + M2t + M3,...). It is easy
to see thatf is injective and sd7T'| = supc, |T/M|}. Now, |T/P| < |T| and|T/P| >
supc, |T/M|}=|T|,so|T/P|=|T| as desired. O

Armed with the previous two lemmas, we can now prove the following critical lemma.
It will be used to adjoin elements to a specific subring7oko that the resulting ring
maintains certain properties of the original subring.
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Lemma 2.4. Let (T, M) be a complete local ring such thdtmT > 1, C a finite set of
nonmaximal prime ideals df such that no ideal irC is contained in another ideal af,
and D a subset off such that|D| < |T|. LetI be an ideal ofl such thatl ¢ P for all
PeC.Thenl Z| J{r+ P |re D, PecC}.

Proof. Let C = {P1, P>, ..., P,}. From the Prime Avoidance Theorem, we know that
I Ui P;. Letx €I, x ¢ | J;_4 Pi. Define a family of maps/; : {P;} x D — T. Let
(P,r)e{P}xD.Ifr+ P; ¢ (x + P)(T/P), definef; (P;,r) = 0. Otherwise, it must
be the case that+ P, = (x + P;)(s; + P;) for somes; € T, so choose one such and
define f; (P;, r) = s;. One should note thaf; is not unique. The element can be any
element of the coset + P and for our proof, it does not matter which one is chosen. Now
let S; = Imagef;. Note that we then have the inequality| < |D| < |T|=|T/F;|.

First, suppose = 1. Then|S1| < |D| < |T| =|T/P1|. So, there existse T such that
t+ Py #s+ Py foralls € S1. Now, if xt € {r + P1|r € D}, thenxt + Py =r + P for
somer € D. But thenr + P; € (x + P1)(T/P1), SOr + P1 = (x + P1)(s + P1) for some
s € S1. So, we have

(x+P)t+P)=r+Pr=(x+ P)(s+ Pp),

which implies thatr + Py = s + P1, a contradiction. It follows that the lemma holds if
n=1.
If n > 1, we claim that

P+ ﬂ;%:l,j;ei Pj

T/Pi| =
IT/ P P

Notice that sinceél’/ P; is an integral domain, this is true by Lemma 2.2 if we can simply
show that(P; + ﬂ;?zl’j# P;j)/ P; is not the zero ideal df / P;. Suppose that this were not
true. Then it must be the case tlﬁagzl’j# P; C P;. We know, however, that since i

is contained _in any other ideal i@ this cannot happen. Hen¢®; + ﬂ;?zl’j# Pj)/P; is

not the zero ideal of'/ P;, and it follows that

P+ (i1 i Pi

|D| <
Pi

Thus there exists a € ﬂ’}zl)#i Pj such that; + P; #s; + P; for all 5; € S; and for all
i=1,...,n. We claim that

n
xY ti¢g| Jr+PlreD. Pec)

j=1

To see this, suppose that

n
xY tie| Jr+P|reD, Pec).
j=1
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Thenx Z’}zl tj+ P, =r + P; for someP; € C, r € D. But this means thatt; + P; =
r + P;, implying that(x + P;))(t; + P;) =r + P; and thus- + P; € (x + P;)(T/P;). But
then

x+P)G+P)=r+P=x+P)si+P)
for somes; € S;. Thust; + P; =s; + P; for somes; € S;, a contradiction. O

Definition. Let (T, M) be a complete local ring and a set of prime ideals df . Suppose
that(R, RN M) is a quasi-local subring &f such thatR| < |T| andRN P = (0) for every
P € C. Then we callr a smallC-avoiding subring of" and will denote it bySCAsubring.

SCAsubrings will be essential in our proof. R is an SCAsubring of T, then note
that if we choose our saf such that the associated prime idealsToire contained in
prime ideals inC, then the conditiolr N P = (0) for all P € C implies thatR N Q = (0)
for every QO € AssT, and thusR contains no zero divisors df—certainly a condition
that any domain we might wish to construct must enjoy. Furthermore, this condition will
ensure that the prime ideals Gfare in the generic formal fiber of our final domainlt is
worth noting too that the conditigR| < |7'| implies that|R| < |7/ P| for all nonmaximal
prime idealsP of T from Lemma 2.3. This cardinality condition will allow us to adjoin
an element taR so that the resulting ring will not contain zero divisorsofor nonzero
elements of the prime ideals @.

Recall that one property that we woulke our constructed ring, call it, to possess,
is that if J is an ideal of7 with J € P for all P € C, then the mapA — T/J is onto.
Lemma 2.5 allows us to adjoin an element of a coseX af, which eventually will force
our ring A to satisfy this property. The proof of Lemma 2.5 closely parallels the proof of
[6, Lemma 3] and [3, Lemma 3].

Lemma2.5. Let(T, M) be a complete local ring of dimension at least one.C &k a finite
set of nonmaximal prime ideals Bfsuch that no ideal i is contained in any other ideal
in C. LetJ be an ideal off such that/ € P forall P € C. LetR be an SCA-subring df
andu + J € T/J. Then there exists an infinite SCA-subriigf 7 suchthatRC SC T
andu + J is in the image of the map — 7 /J. Moreover, ifu € J, thenS N J # (0).

Proof. Let P € C. Let D(py be a full set of coset representatives of the cosetsP
that make(u + t) + P algebraic overR. Note that agR| < |T| and|T| > ¢, we have
|IDpyl < IT|. Let D = {Jpee D(py, and note thaiD| < |T|. Now use Lemma 2.4
with 7 = J to find anx € J such thatx ¢ | J{r + P | r € D, P € C}. We claim that
S = R[u + x1(Ru+x1nm) is the desiredCAsubring. It is easy to see thif| < |T']. Now
suppose thaf € R[u +x]N P for someP € C. Then

f=ru+x)"+---+ru+x)+reP,

wherer; € R. But we choser such that(u + x) + P is transcendental ovek. Therefore
ri € RNP = (0)foreveryi =1,2,...,nanditfollows thatf =0.SoSN P = (0) and we
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have thatS is anSCAsubring. Note further that if € J, thenu +x € J. Since(u +x) + P
is transcendental oveR, it must be the case that-x # 0. It follows thatSNJ # (0). O

The following lemma will help us ensure thaAT' N A = I for every finitely generated
ideal I of A. Recall that this is a necessary condition in order to be able to use Proposi-
tion 2.1. The proof of Lemma 2.6 resembles that of [5, Lemma 6], as well as that of [3,
Lemma 4].

Lemma 2.6. Let (T, M) be a complete local ring of dimension at least one. Cebe a
finite set of nonmaximal prime ideals Bfsuch that ifQ € AssT thenQ C P for some
P € C and noideal inC is contained in any other ideal i@, and letR be an SCA-subring
of T. Suppose that is a finitely generated ideal @ andc € IT N R. Then there exists
an SCA-subring of T suchthatR € S C T andc e IS.

Proof. We will induct on the number of generators bfSupposd =aR. Now if a =0,
thenc = 0 and thusS = R is the desire®CAsubring ofT. Thus consider the case where
a # 0. In this case¢ = au for someu € T. We claim thatS = R[u](r[.jnm) IS the desired
SCAsubring. To see this, first note thit| < |7'|. Now let f € R[u] N P whereP € C.
Thenf =r,u™ +--- 4+ riu + ro € P. Multiplying through bya", we get

af=ry(au)" +---+ ria" Yau) + roa”
and it follows that
a"f=rpc" + - +r1a" e +roa" € PN R = (0).

Now, a € R, RN P = (0) for every P € C, and all associated prime ideals Df are
contained in an element @f. It follows thata is not a zero divisor irf". It must be the
case then thaf = 0, giving us thatS is anSCAsubring of . Thus we have proven the
base case, whehis principal.

Now let I be an ideal ofR that is generated by > 1 elements, and suppose that the
lemma holds true for all ideals @t generated by: — 1 elements. Lel = (y1, ..., ym)R.
Thenc = y1t1 + yat2 + - - + ymtn fOr somety, 1o, ..., t,, € T. By adding 0, note that we
then have the equality

c=yif1+ yiyat — yiyat +y2t2+ -+ Ymim
= y1(t1 + y2t) + y2(t2 — y1t) + y3t3+ - - + YmIm

foranyr e T. Let x; =11 + yot andx2 =t — y1t where we will choose the element
later. Now letP € C. If (11 + yot) + P = (11 + y2t’) + P, then it must be the case
that yo(r — ') € P. Butyp € R, RN P = (0) andy2 # 0, so we have — ¢’ € P. Thus

t + P =1+ P. The contrapositive of this result indicates that if P # ¢ + P, then
(f1 + yot) + P # (11 + y2t’) + P. Let D(py be a full set of coset representatives of
the cosets + P that makex; + P algebraic overR. Let D = |Jp - D(p). Note that
|D| < |T|. Now we can use Lemma 2.4 with= T to find an element € T such that
x1+ P is transcendental ove® for every P € C. It can be easily shown (as in the proof of
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Lemma 2.5) thaR’ = R[x1](r[xy)nar) 1S anSCAsubring ofT. Now letJ = (y2, ..., ym) R’
andc* = ¢ — y1x1. It is then the case that* € JT N R’, so we can use our induction
assumption to draw the conclusion that there existS&#asubringS of T such that
R CSCT andc* € JS. Thusc* = yps2 + - -+ + yus,, for somesy,s2,...,s, € S. It
follows thatc = y1x1+ y2s2+- - -+ yusm € 1S, and thuss is the desire@CAsubring. O

Definition. Let 2 be a well-ordered set ande 2. We definey (o) =sugf € 2 | B < a}.

Lemma 2.7 allows us to put many of our dedienditions together. We note here that
the proof of Lemma 2.7 is based on the proof of [5, Lemma 12].

Lemma 2.7. Let (T, M) be a complete local ring of dimension at least one. Ldie an
ideal of T with J £ P for all P € C, whereC is a finite set of nonmaximal ideals Bf
such that ifQ € AssT thenQ C P for someP € C and no ideal inC is contained in any
other ideal inC, and letu + J € T/J. Suppose is an SCA-subring. Then there exists an
SCA-subrings of T such that

(1) RCSCT.

(2) fu e J, thenS N J # (0).

(3) u+ Jisin the image of the map— T/J.

(4) For every finitely generated idedlof S, we havel T NS = 1.

Proof. We first apply Lemma 2.5 to find an infinitSCAsubring R" of T such that
RC R CT,u+ Jisinthe image of the mag’ — T/J, and ifu € J thenR' N J # (0).
We will construct the desirefl such thatR’” € § C T which will ensure that the first three
conditions of the lemma hold true. Now let

2 ={(,¢) | I'is afinitely generated ideal & andc € IT N R'}.

Letting I = R/, we can see thdt2| > |R’|. But then sinceR’ is infinite, the number of
finitely generated ideals aR’ is |R’|, and therefordR’| > |£2|, giving us the equality
|R'| = |£2|. Moreover, asR’ is anSCAsubring ofT', we have 2| = |R’| < |T|. Well order
£2 so that it does not have a maximal elememd et O denote its first element. We will
now inductively define a family oSCAsubrings ofT, one for each element a®. Let
Ro =R’ and leta € £2. Assume thairg has been defined for afl < «. If y(¢) <« and
y(a) = (I, ¢), then defineR, to be theSCAsubring obtained from Lemma 2.6. In this
manner,R, will have the properties thakR, ) C Ry S T, andc € IR,. If y(a) = «,
define Ry = Uy, Rp. Note that in both cases, is an SCAsubring of 7. Now let
R1 = U,eo Ra- We know that|$2| < |T| and |R,| < |T| for everya € £2, and thus
|R1| < |T| as well. Moreover, aR, N P = (0) for every P € C and everyx € §2, we
haveR; N P = (0) for every P € C. It follows that R1 is an SCAsubring. Furthermore,
notice that if/ is a finitely generated ideal dtp andc € IT N Ro, then(Z, ¢) = y («) for
somea € 2 with y(a) < «. It follows from the construction thate IR, € IR1. Thus
IT N Rg C I R1 for every! afinitely generated ideal atp.
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Following this same pattern, build éCAsubringRz of T such thatRy C R C T
andIT N R1 C IR, for every finitely generated idedl of R1. Continue to form a chain
Ro € R1 C R> C --- of SCAsubrings ofT" such that/ T N R,, C I R, 41 for every finitely
generated idedl of R,,.

We now claim thatS = (72, R; is the desiredSCAsubring. To see this, first note
that S is indeed anSCAsubring, and thaik € S C T. Now setl = (y1, y2, ..., yx)S
and letc € IT N S. Then there exists aW € N such thatc, y1,..., yx € Ry. Thus
ce€(1, .- YW)TNRN € (y1,..., yk)Ry+1 € IS. From this it follows that T N S =1,
so the fourth condition of the lemma holdso

We now construct a domai# that has the desired completion, as well as other interest-
ing properties.

Lemma 2.8. Let (T, M) be a complete local ring of dimension at least one, &hd set
of nonmaximal prime ideals @ whereG contains the associated prime idealsfofind
such that the set of maximal elementfcall it C, is finite. Moreover, suppose that if
q € Specr withg C P for someP e G theng € G. Also suppose that for each prime ideal
P € G, P contains no nonzero integers Bf Then there exists a local domadnsuch that

Q) A=T.

(2) If pis anonzero prime ideal of, thenT ®4 k(p) = k(p) wherek(p) =A,/pA,.

(3) The generic formal fiber o is exactly the elements 6f (and so has maximal ideals
the elements af).

(4) If I isanonzeroideal oft, thenA/I is complete.

We note here that although the second amarth conditions of this lemma may not
seem relevant, they will prove useful later when, under certain circumstances, we show
that A can be forced to be excellent.

Proof. The proofis quite similar to [3, Lemma 8]. Define
2={u+JeT/J|Jisanideal off with J £ P for everyP € G}.

We claim that|§2| < |T|. SinceT is infinite and Noetherian{J is an ideal ofT" with
J & P forall P € G}| <|T|. Now, if J is an ideal ofT’, then|T/J| < |T]|. It follows that
121 <|T].

Well order §2 so that each element has fewer th&n predecessors. Let O denote the
first element ofs2. Define Ry, to be the prime subring df and letRo simply denoter;,
localized atR, N M. Note thatRg is anSCAsubring.

Now recursively define a family @CAsubrings as follows, starting witRo. Letx € £2
and assume thats has already been defined for gli< A. Theny (1) = u + J for some
ideal J of T with J € P for all P € G and thus allP € C. If y(A) < A, use Lemma 2.7
to obtain anSCAsubringR;, such thatR, ) S R, ST, u + J € Imag&R;, — T/J) and
for every finitely generated idedlof R, the propertyl T N R, = I holds. Moreover, this
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gives us thatR, N J #£ (0). If y(1) = A, definer, = Uﬂ<A Rg. Then we haveR, is an
SCAsubring for allx € £2. We claim thatd = J, ., Ry Is the desired domain.

We will first show that the gneric formal fiber ring ofA has the desired properties. As
eachRr; is anSCAsubring, we haveR, N P = (0) for eachP € C and thus eacl? € G.
ThereforeA N P = (0) for eachP € G as well. Moreover, if/ is an ideal off’ with J £ P
forall P € G, then O+ J € 2. Thereforey (1) =0+ J for somex € 2 with y (L) < A.
By constructionR; N J # (0). It follows thatJ N A # (0). Hence the genarformal fiber
of A is exactly the elements @f, and has maximal ideals the elementgof

Now we show that the completion ¢f is 7. To do this, we will use Proposition 2.1.
Note that as each prime ideBle G is nonmaximal irf", we have that/? is not contained
inany P € G. Thus by the construction, the map— T/M? is surjective. Now letfl be a
finitely generated ideal of with I = (y1, ..., yx). Letc e ITNA. Then{c, y1,..., v} C
R, for somei € £2 with y(1) < A. Again by the construction(yi, ..., yx)T N R, =
V1, .. VR, Asc e (y1,..., )T N R;, we have that € (y1,..., yx)R), € I. Hence
IT N A =1 as desired, and it follows that is Noetherian and its completionTs

To show the fourth condition is fairly simple. Suppose that a nonzero ideal of, and
letJ =IT.If J C PforsomeP € G,then] C JNA C PNA = (0),acontradiction. Thus
J & P for every P € G. It follows by construction that the map — 7/J is surjective.
Now sinceANJ =ANIT =1, the mapA/I — T/J is an isomorphism, making /1
complete.

Finally, we prove the second condition. Ligbe a nonzero prime ideal df. ThenA/p
is complete, so we have

T ®ak(p) = (T/pT)z=5 = (A/p)i=p = Ap/pAp =k(p).

as desired. O

3. Themain theorem and corollaries

For the next proof, we will in fact only need two of the previous lemma’s four results,
namely the first one and the third one. We are finally ready to arrive at our main theorem.

Theorem 3.1. Let (T, M) be a complete local ring, and € Specl’ such thatG is
nonempty and the number of maximal element§ a$ finite. Then there exists a local
domainA such thatA = T and the generic formal fiber of is exactly the elements 6f

if and only if T is a field andG = {(0)} or the following conditions hold

(1) M ¢ G andG contains all the associated prime ideals7of
(2) If 0 e Gand P € SpecT with P € Q, thenP € G.
(3) If 0 € G, thenQ N prime subring ofl’ = (0).

Proof. First, the forward direction. Suppose tHatis not a field, and that there exists a
local domainA such thatA = T and the generic formal fiber of is exactlyG. Suppose
thatM € G. But then from our assumptiordg N A = (0), which implies that the maximal
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ideal of A is (0) and thus the maximal ideal @f is zero as well, which implies that is

a field, a contradiction. Thu¥ ¢ G. Moreover, ifG does not contain all of the associated
prime ideals ofT’, then, as the generic formal fiber dfis exactlyG, there must be an
associated prime ide#l of T such thatP N A # (0), a contradiction. Therefor@ contains
all of the associated prime ideals Bf

That the second requirement holds true is clear, as if one i@eil in the generic
formal fiber of A, thenQ N A = (0) and thus if? € Q thenP N A = (0) and P is also in
the generic formal fiber of and thus is contained i¥, as desired.

In order to see that the intersection of ealke G with the prime subring of" is (0),
note thatP N A = (0) for eachP € G. SinceT is the completion of an integral domai
the unity element off must be inA. Hence the prime subring df is also inA, and P
contains no nonzero integersBffor all P € G.

On the other hand, suppose tiats a field. Then the only prime ideal @f is (0), and
consequently; = {(0)}. Thus, since as a field is a completion of itselfA = T and the
generic formal fiber of is {(0)} = G as desired, so we are done.

Now we prove the backwards direction.Tifis a field, thenA = T works. So suppose
thatT is not a field and that all the above conditions hold. The first condition gives us that
dimT > 1. Now, use Lemma 2.8 to construct the desired domaino

Example 1. Let T = C[[x, y, zI, C = {(x, y), (z)}, and G be those prime ideal® of T
such thatP C (x, y) or P C (z). Is there alocal domaia such thatA = T and the generic
formal fiber of A is exactly the elements @ and has maximal ideals the element£Gf
Clearly T is local, with maximal idealM = (x, y, z), andC is finite. Thus we may
use Theorem 3.1. Certainlf ¢ G. Moreover,T is a domain, so it has no zero divisors,
and hence no associatpdme ideals other thart0), which is in G. The way in which
we definedG makes it evident that the second condition of the theorem holds. The third
condition is also easy to see since the prime subringj &f Z and all integers are units.
ThusT satisfies the three conditions of Theorem 3.1, and hence there exists a dbmain
such thatd = C[lx, y, z] and the generic formal fiber of is exactly the elements a¥
with maximal idealqx, y) and(z) as desired.

We now state the local version of Theorem 3.1 in the following corollary.

Corollary 3.2. Let (T, M) be a complete local ring an& a prime ideal ofT. Then there
exists a local integral domaiA such thatd = T and the generic formal fiber of is local

with maximal idealP if and only if eitherT is a field andP = (0) or the following two
conditions hold

(1) P # M and P contains all the associated prime idealstof
(2) P n prime subring ofl’ = (0).

Proof. That the forward direction holds true is obvious from Theorem 3.1, letiing
{Q e Specl' | Q € P}.

To see the backwards direction in the case wteris not a field (if 7 is a field,
then A = T works), P is a nhonmaximal ideal of’ containing all theassociated prime
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ideals of7’, and P N prime subring off" = (0). Now simply let the seG = {Q € SpecT |
Q C Pj}. It follows from Theorem 3.1 that there exists a domairsuch thatA = 7 and
the generic formal fiber oAl is local with maximal ideaP. O

Example2. Let T = C[lx, v, z]/(xy). Does there exist a local integral domairsuch that
A =T and the generic formal fiber of is local with maximal idea(x, y)?

Let P = (x, y). Itis easy to see that satisfies the two conditions of Corollary 3.2. So,
there exists a local domaif such thatA = Clx, y, zI/(xy) and the generic formal fiber
of A is local with maximal idealx, y).

4. The excellent case

We now consider under what conditions the ringcan be made excellent. Using
the same building blocks as the previous theorem, we are able to come up with a
characterization in the chacteristic zero case of those complete local rings that are the
completion of a local excellent domain possessing a specific generic formal fiber.

Theorem 4.1. Let (T, M) be a complete local ring containing the integers. Get SpecT
such thatG is nonempty and the number of maximal elementS o finite. Then there
exists an excellent local domaifiwith A = 7 and such thatd has generic formal fiber
exactlyG if and only if T is a field andG = {(0)} or the following conditions hotd

(1) M ¢ G andG contains all the associated prime idealsTof
(2) If Q € G and P € SpecTl with P € Q, thenP € G.

(3) If Q € G, thenQ N prime subring ofl" = (0).

(4) T is equidimensional.

(5) Tp is aregular local ring for all maximal element® € G.

Proof. Assume that’ is the completion of an excellent domainhaving generic formal
fiber exactlyG with maximal ideals the maximal elements@f If dim 7' = 0 thenT is a
field andG = {(0)}. Thus consider the case where dine 1.

As A is excellent, it is universally catenary. Hengeis formally catenary and it follows
thatA/(0) = A is formally equidimensional. Thus the completidh,is equidimensional.

The first three conditions can be shown by the exact same arguments as the three
conditions in Theorem 3.1.

To see that the fifth condition holds, note that the maximal ideal &f4 k(0) are
the maximal elements afr. Let P be one of these maximal elements. THe® 4 k(0)
localized atP is isomorphic toTp. SinceA is excellent,l ® 4 k(0) is regular, implying
thatTp is a regular local ring for every maximal element®fas desired.

Conversely, first suppose that is a field andG = {(0)}. Then A = T works. So,
suppose thar is not a field and that all of the five conditions hold true for some complete
local ring T and some nonempty sét of prime ideals of7' such that the number of
maximal elements of; is finite. We want to show that there exists an excellent domain
A possessing generic formal fiber exaafly Note that conditiongl) and (5) imply that
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T is reduced by the following argument. Suppdbat these two conditions are true, but
that T is not reduced. Then there exists a nonzere T such thatx” = 0 in 7. Now
consider the ideal0: x) of T. Now, (0:x) € 01U Q> U---U Q,, where theQ; are the
associated prime ideals @f. But then by the Prime Avoidance Theoreff; x) € Q; for
somei. Moreover, agG contains the associated prime idealslofQ; € P for someP
a maximal element o&;. Consider the regular local rinffp, and note that regular local
rings are domains. Now" /1= 0/1in Tp. Thus, asp is adomainy/1=0/1in Tp. But
then there exists an elemen¢ P such thatx = 0. This implies that € (0: x), however,
which indicates that € P, a contradiction. Therefor&, must be reduced as desired.
Now if dim7 = 0 thenT is a field and we are in the first case. Suppose, on the other
hand, that dinT" > 1. Then use Lemma 2.8 to construct the dom&inVe claim thatA
is excellent with generic formal fiber exactty. From the construction of, A has the
desired generic formal fiber. To see thiats excellent, suppose thatis a nonzero prime
ideal of A. Then from Lemma 2.8 we have ® 4 k(p) = k(p). Now let L be a finite field
extension ok (p). Then

T@ALZET ®ak(p) Quipy L=Zk(p) k(py LZL.

Thus the fiber ovep is geometrically regular. Nowp is regular by assumption for every
maximal elementP of G. It follows thatT ®4 k(0)) is regular. Now sincel’ contains
the integers, so does. It follows thatk(0) is a field of characteristic zero, and hence
thatT ®4 L is regular for every finite field extensian of £(0). Thus all of the formal
fibers of A are geometrically regular. Sineeis formally equidimensional, it is universally
catenary, and thud is excellent. Hencdl is the desired domain.O

Notice that this proof fails if the characteristic Bfis p > 0, as thed we construct may
not have a geometrically regular generic formal fiber. It is worth noting, though, that all
the other fibers are geometrically regular and so the only obstructiarbieing excellent
is that the generic fonal fiber may not be geometrically regular.

We now state the local version of Theorem 4.1. Arguably more elegant than the previous
theorem, this more specific theorem has fewer conditions, and thus may prove to be more
practical.

Corollary 4.2. Let (T, M) be a complete local ring containing the integers ahé prime
ideal of T. ThenT is the completion of a local excellent domainpossessing a local
generic formal fiber with maximal idedt if and only if T is a field andP = (0) or the
following three conditions hotd

(1) P contains the associated prime idealsTof
(2) P is a nonmaximal prime ideal df such thatP contains no nonzero integers Bf
(3) Tp is aregular local ring.

Proof. The forward direction of this proof follows immediately from Theorem 4.1.
Conversely, ifT is a field andP = (0), thenA = T works.
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So supposeP is a nonmaximal prime ideal df containing all theassociated prime
ideals of T such thatP N prime subring ofT’ = (0), and Tp is a regular local ring. It
interesting to note that these conditions alone imply thas an integral domain by the
following argument. Suppose thaty = 0 in T for somex,y € T, x,y # 0. But then
both x and y are zerodivisors off’, sox,y € P. But now sinceTp is a domain, then
eitherx/1=0/1ory/1=0/1. WLOG, assume that/1 = 0/1. This implies that there is
somes ¢ P such thatsx = 0 in 7. But thens is a zero divisor ofT', and hence € P,

a contradiction. Thereforel' contains no nonzero zero divisors afidis an integral
domain. Observe thaf being an integral domain implies thdt is both reduced and
equidimensional.

Now if dim T = 0, then sincel’ is reduced M must be an associated prime ideallgf
and moreover it is the only associated prime idedroHenceT is a field and we are in
the first case.

Ifdim7T > 1, letG = {Q € SpecT' | Q C P}, and use Lemma 2.8 to construct the
domainA. Itis trivial to verify that the five conditions of Theorem 4.1 hold. Theorem 4.1
tells us thata is then excellent with generic formal fiber exacfly But the maximal ideal
of G is P by definition, soA is excellent with local generic formal with maximal ide@l
as desired. O

Example 3. Consider the complete local rifg= C[x, y, z]/(xy) andG = {Q € SpecT |
Q0 C(x)orQ C(y,z)} asetof prime ideals df with maximal elementgx) and(y, z). It
is not difficult to check tha?” andG satisfy the conditions of Theorem 4.1 and®&ds the
completion of an excellent local domainwith generic formal fiber exactlg.

Note here that" in the above example is not a domain, and thus we should not be able
to find a prime idealP of T such that there exists an excellent domaithat completes
to T with local generic formal fiber with maximal ided. (Recall that in the proof of
Corollary 4.2, we showed that sucias necessarily an integrdomain.) Indeed, we can
observe that this is true by seeing that any ideal we might choose will either not contain
AssT = {(x), (y)}, orif it does therip will not be a regular local ring.
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