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Abstract

Let T be a complete local ring andC a finite set of incomparable prime ideals ofT . We find
necessary and sufficient conditions forT to be the completion of an integral domain whose gen
formal fiber is semilocal with maximal ideals the elements ofC. In addition, if the characteristic o
T is zero, we give necessary and sufficient conditions forT to be the completion of an excelle
integral domain whose generic formal fiber is semilocal with maximal ideals the elements ofC.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

If A is a local integral domain with maximal idealM, quotient fieldK, andM-adic
completionÂ, then Spec(Â ⊗A K) is called the generic formal fiber ofA. Note that there
is a one-to-one correspondence between the elements of the generic formal fiber ofA and
the prime ideals in the inverse image of the ideal(0) under the map SpeĉA → SpecA.
In light of this correspondence, ifQ ∈ SpeĉA andQ ∩ A = (0), we will say thatQ is in
the generic formal fiber ofA. Furthermore, if the rinĝA ⊗A K is semilocal with maxima
idealsP1 ⊗A K,P2 ⊗A K, . . . ,Pn ⊗A K, then we will say that the generic formal fiber
A is semilocal with maximal idealsP1,P2, . . . ,Pn.

Because most of the standard integral domains we study have generic formal fibe
are far from semilocal, at first glance one might guess that, except for trivial exam
integral domains possessing a semilocal generic formal fiber do not exist. However,
it was shown that such rings do exist and perhaps even more surprisingly, in [5],
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shown that these integral domains can be constructed to be excellent. In this paper, w
that these domains are more plentiful than one might suspect (both in the nonexcell
excellent case).

In Section 3, we characterize which complete local rings are completions of integr
domains possessing a semilocal generic formal fiber. Specifically, supposeT is a complete
local ring with maximal idealM, andG ⊆ SpecT such thatG is nonempty and the numb
of maximal elements ofG is finite. We show that there exists a local domainA such that
Â = T and the generic formal fiber ofA is exactly the elements ofG if and only if T is a
field andG = {(0)} or the following conditions hold:

(1) M /∈ G andG contains all the associated prime ideals ofT .
(2) If Q ∈ G andP ∈ SpecT with P ⊆ Q, thenP ∈ G.
(3) If Q ∈ G, thenQ ∩ prime subring ofT = (0).

It is easily seen that the above three conditions are necessary and so the bulk of th
is dedicated to showing that the conditions are sufficient. It is worth pointing out tha
three conditions in our theorem are relatively weak, and so in some sense most co
local rings can be realized as the completion of an integral domain whose generic form
fiber is semilocal where the maximal ideals can be prescribed.

In Section 4 we tackle the analogous version of the above problem where we r
the additional condition thatA be excellent. We are successful in characterizing
complete local rings of characteristic zero that are completions of excellent integ
domains possessing a semilocal generic formal fiber. Specifically, letT be a complete
local ring containing the integers andM the maximal ideal ofT . Let G ⊆ SpecT such that
G is nonempty and the number of maximal elements ofG is finite. We show there exists a
excellent local domainA with Â = T and such thatA has generic formal fiber exactly th
elements ofG if and only if T is a field andG = {(0)} or the following conditions hold:

(1) M /∈ G andG contains all the associated prime ideals ofT .
(2) If Q ∈ G andP ∈ SpecT with P ⊆ Q, thenP ∈ G.
(3) If Q ∈ G, thenQ ∩ prime subring ofT = (0).
(4) T is equidimensional.
(5) TP is a regular local ring for all maximal elementsP ∈ G.

Showing that the above five conditions are necessary, although maybe not imme
obvious, is relatively short. Our proof, then, will focus on proving that they are suffici

For both theorems, to show that the respective conditions are sufficient we con
the desired integral domainA. Our construction is based on the techniques used in
and is inspired by the construction of Heitmann in [1]. We start with the prime sub
of T , localized at the appropriate prime ideal. We then successively adjoin elements oT

to this ring in order to get our final result. Naturally, we must be careful which elem
we choose to adjoin. For example, we must avoid the zero divisors ofT , so thatA will be
an integral domain. We must also avoid nonzero elements of prime ideals that we w
be in the generic formal fiber ofA. We will adjoin enough elements ofT to our domain
A so that ifI is a finitely generated ideal ofA thenIT ∩ A = I . Furthermore, we will be
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adjoining elements ofT until we have obtained the property that for every idealJ of T

such thatJ �⊆ P for all P ∈ G, our ring contains a nonzero element of every coset in
ring T/J . Thus our ring will satisfy the property that ifJ is an ideal ofT whereJ �⊆ P

for all P ∈ G, then the mapA → T/J is onto. In particular, this means thatA → T/M2 is
onto. This fact, along with the condition thatIT ∩ A = I for every finitely generated idea
I of A will force the completion ofA to beT . Moreover, what is also interesting abo
the condition thatA → T/J be onto is that it turns out ifT contains the integers then
will force A to be excellent. By adjoiningnonzero elements of each idealJ whereJ �⊆ P

for all P ∈ G while avoiding nonzero elements of the prime ideals contained inG, we also
ensure that the generic formal fiber ofA is exactly the elements ofG.

All rings in this paper are to be assumed commutative with unity. If we say a ri
local, we mean it is a Noetherian ring with one maximal ideal. The term quasi-loca
be reserved for a ring with one maximal ideal that need not be Noetherian. We willc

to denote the cardinality of the real numbers. Finally, when we say that(T ,M) is a local
ring, we mean thatT is a local ring with maximal idealM.

2. The construction

We now begin the construction of our integral domainA. The following proposition
is [2, Proposition 1]. It will be used to show that the ringA we construct has the desire
completion.

Proposition 2.1. If (A,M ∩ A) is a quasi-local subring of a complete local ring(T ,M),
the mapA → T/M2 is onto andIT ∩A = I for every finitely generated idealI of A, then
A is Noetherian and the natural homomorphism̂A → T is an isomorphism.

Although Lemma 2.2 is well-known, we will use it repeatedly. So, we state it
without proof.

Lemma 2.2. LetT be an integral domain andI a nonzero ideal ofT . Then|I | = |T |.

Lemma 2.3. Let (T ,M) be a complete local ring of dimension at least one. LetP be a
nonmaximal prime ideal ofT . Then|T/P | = |T | � c.

Proof. Clearly,T/P is reduced. Furthermore, sinceT is complete and dimT � 1, T/P

is complete and dim(T /P ) � 1, asP is nonmaximal. SinceT/P is reduced, complet
and dim(T /P ) � 1, we have|T/P | � c. But clearly |T/P | � |T |, so |T | � c. Now,
define a mapf :T → ∏∞

i=1 T/Mi by f (t) = (t + M, t + M2, t + M3, . . .). It is easy
to see thatf is injective and so|T | = sup{c, |T/M|}. Now, |T/P | � |T | and |T/P | �
sup{c, |T/M|} = |T |, so|T/P | = |T | as desired. �

Armed with the previous two lemmas, we can now prove the following critical lem
It will be used to adjoin elements to a specific subring ofT so that the resulting ring
maintains certain properties of the original subring.
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Lemma 2.4. Let (T ,M) be a complete local ring such thatdimT � 1, C a finite set of
nonmaximal prime ideals ofT such that no ideal inC is contained in another ideal ofC,
andD a subset ofT such that|D| < |T |. Let I be an ideal ofT such thatI �⊆ P for all
P ∈ C. ThenI �⊆ ⋃{r + P | r ∈ D, P ∈ C}.

Proof. Let C = {P1,P2, . . . ,Pn}. From the Prime Avoidance Theorem, we know t
I �⊆ ⋃n

i=1 Pi . Let x ∈ I , x /∈ ⋃n
i=1 Pi . Define a family of mapsfi : {Pi} × D → T . Let

(Pi, r) ∈ {Pi} × D. If r + Pi /∈ (x + Pi)(T /Pi), definefi(Pi, r) = 0. Otherwise, it mus
be the case thatr + Pi = (x + Pi)(si + Pi) for somesi ∈ T , so choose one suchsi and
definefi(Pi, r) = si . One should note thatfi is not unique. The elementsi can be any
element of the cosetsi +P and for our proof, it does not matter which one is chosen. N
let Si = Imagefi . Note that we then have the inequality|Si | � |D| < |T | = |T/Pi |.

First, supposen = 1. Then|S1| � |D| < |T | = |T/P1|. So, there existst ∈ T such that
t + P1 �= s + P1 for all s ∈ S1. Now, if xt ∈ ⋃{r + P1 | r ∈ D}, thenxt + P1 = r + P1 for
somer ∈ D. But thenr + P1 ∈ (x + P1)(T /P1), sor + P1 = (x + P1)(s + P1) for some
s ∈ S1. So, we have

(x + P1)(t + P1) = r + P1 = (x + P1)(s + P1),

which implies thatt + P1 = s + P1, a contradiction. It follows that the lemma holds
n = 1.

If n > 1, we claim that

|T/Pi | =
∣∣∣∣
Pi + ⋂n

j=1,j �=i Pj

Pi

∣∣∣∣.

Notice that sinceT/Pi is an integral domain, this is true by Lemma 2.2 if we can sim
show that(Pi + ⋂n

j=1,j �=i Pj )/Pi is not the zero ideal ofT/Pi . Suppose that this were n
true. Then it must be the case that

⋂n
j=1,j �=i Pj ⊆ Pi . We know, however, that since noPi

is contained in any other ideal inC this cannot happen. Hence(Pi + ⋂n
j=1,j �=i Pj )/Pi is

not the zero ideal ofT/Pi , and it follows that

|D| <

∣∣∣∣
Pi + ⋂n

j=1,j �=i Pj

Pi

∣∣∣∣.

Thus there exists ati ∈ ⋂n
j=1,j �=i Pj such thatti + Pi �= si + Pi for all si ∈ Si and for all

i = 1, . . . , n. We claim that

x

n∑
j=1

tj /∈
⋃

{r + Pi | r ∈ D, Pi ∈ C}.

To see this, suppose that

x

n∑
tj ∈

⋃
{r + Pi | r ∈ D, Pi ∈ C}.
j=1
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j=1 tj + Pi = r + Pi for somePi ∈ C, r ∈ D. But this means thatxti + Pi =
r + Pi , implying that(x + Pi)(ti + Pi) = r + Pi and thusr + Pi ∈ (x + Pi)(T /Pi). But
then

(x + Pi)(ti + Pi) = r + Pi = (x + Pi)(si + Pi)

for somesi ∈ Si . Thusti + Pi = si + Pi for somesi ∈ Si , a contradiction. �
Definition. Let (T ,M) be a complete local ring andC a set of prime ideals ofT . Suppose
that(R,R∩M) is a quasi-local subring ofT such that|R| < |T | andR∩P = (0) for every
P ∈ C. Then we callR a smallC-avoiding subring ofT and will denote it bySCA-subring.

SCA-subrings will be essential in our proof. IfR is an SCA-subring ofT , then note
that if we choose our setC such that the associated prime ideals ofT are contained in
prime ideals inC, then the conditionR ∩ P = (0) for all P ∈ C implies thatR ∩ Q = (0)

for everyQ ∈ AssT , and thusR contains no zero divisors ofT —certainly a condition
that any domain we might wish to construct must enjoy. Furthermore, this condition
ensure that the prime ideals ofC are in the generic formal fiber of our final domainA. It is
worth noting too that the condition|R| < |T | implies that|R| < |T/P | for all nonmaximal
prime idealsP of T from Lemma 2.3. This cardinality condition will allow us to adjo
an element toR so that the resulting ring will not contain zero divisors ofT or nonzero
elements of the prime ideals inC.

Recall that one property that we wouldlike our constructed ring, call itA, to possess
is that if J is an ideal ofT with J �⊆ P for all P ∈ C, then the mapA → T/J is onto.
Lemma 2.5 allows us to adjoin an element of a coset ofT/J , which eventually will force
our ringA to satisfy this property. The proof of Lemma 2.5 closely parallels the pro
[6, Lemma 3] and [3, Lemma 3].

Lemma 2.5. Let(T ,M) be a complete local ring of dimension at least one. LetC be a finite
set of nonmaximal prime ideals ofT such that no ideal inC is contained in any other idea
in C. LetJ be an ideal ofT such thatJ �⊆ P for all P ∈ C. LetR be an SCA-subring ofT
andu + J ∈ T/J . Then there exists an infinite SCA-subringS of T such thatR ⊆ S ⊆ T

andu + J is in the image of the mapS → T/J . Moreover, ifu ∈ J , thenS ∩ J �= (0).

Proof. Let P ∈ C. Let D(P) be a full set of coset representatives of the cosetst + P

that make(u + t) + P algebraic overR. Note that as|R| < |T | and |T | � c, we have
|D(P)| < |T |. Let D = ⋃

P∈C D(P), and note that|D| < |T |. Now use Lemma 2.4
with I = J to find anx ∈ J such thatx /∈ ⋃{r + P | r ∈ D, P ∈ C}. We claim that
S = R[u + x](R[u+x]∩M) is the desiredSCA-subring. It is easy to see that|S| < |T |. Now
suppose thatf ∈ R[u + x] ∩ P for someP ∈ C. Then

f = rn(u + x)n + · · · + r1(u + x) + r0 ∈ P,

whereri ∈ R. But we chosex such that(u + x) + P is transcendental overR. Therefore
ri ∈ R ∩P = (0) for everyi = 1,2, . . . , n and it follows thatf = 0. SoS ∩P = (0) and we
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have thatS is anSCA-subring. Note further that ifu ∈ J , thenu+x ∈ J . Since(u+x)+P

is transcendental overR, it must be the case thatu+x �= 0. It follows thatS ∩J �= (0). �
The following lemma will help us ensure thatIT ∩ A = I for every finitely generate

ideal I of A. Recall that this is a necessary condition in order to be able to use Pro
tion 2.1. The proof of Lemma 2.6 resembles that of [5, Lemma 6], as well as that
Lemma 4].

Lemma 2.6. Let (T ,M) be a complete local ring of dimension at least one. LetC be a
finite set of nonmaximal prime ideals ofT such that ifQ ∈ AssT thenQ ⊆ P for some
P ∈ C and no ideal inC is contained in any other ideal inC, and letR be an SCA-subring
of T . Suppose thatI is a finitely generated ideal ofR andc ∈ IT ∩ R. Then there exist
an SCA-subringS of T such thatR ⊆ S ⊆ T andc ∈ IS.

Proof. We will induct on the number of generators ofI . SupposeI = aR. Now if a = 0,
thenc = 0 and thusS = R is the desiredSCA-subring ofT . Thus consider the case whe
a �= 0. In this case,c = au for someu ∈ T . We claim thatS = R[u](R[u]∩M) is the desired
SCA-subring. To see this, first note that|S| < |T |. Now let f ∈ R[u] ∩ P whereP ∈ C.
Thenf = rnu

n + · · · + r1u + r0 ∈ P . Multiplying through byan, we get

anf = rn(au)n + · · · + r1a
n−1(au) + r0a

n

and it follows that

anf = rnc
n + · · · + r1a

n−1c + r0a
n ∈ P ∩ R = (0).

Now, a ∈ R, R ∩ P = (0) for every P ∈ C, and all associated prime ideals ofT are
contained in an element ofC. It follows thata is not a zero divisor inT . It must be the
case then thatf = 0, giving us thatS is anSCA-subring ofT . Thus we have proven th
base case, whenI is principal.

Now let I be an ideal ofR that is generated bym > 1 elements, and suppose that
lemma holds true for all ideals ofR generated bym − 1 elements. LetI = (y1, . . . , ym)R.
Thenc = y1t1 + y2t2 + · · · + ymtm for somet1, t2, . . . , tm ∈ T . By adding 0, note that w
then have the equality

c = y1t1 + y1y2t − y1y2t + y2t2 + · · · + ymtm

= y1(t1 + y2t) + y2(t2 − y1t) + y3t3 + · · · + ymtm

for any t ∈ T . Let x1 = t1 + y2t andx2 = t2 − y1t where we will choose the elementt

later. Now letP ∈ C. If (t1 + y2t) + P = (t1 + y2t
′) + P , then it must be the cas

that y2(t − t ′) ∈ P . But y2 ∈ R, R ∩ P = (0) andy2 �= 0, so we havet − t ′ ∈ P . Thus
t + P = t ′ + P . The contrapositive of this result indicates that ift + P �= t ′ + P , then
(t1 + y2t) + P �= (t1 + y2t

′) + P . Let D(P) be a full set of coset representatives
the cosetst + P that makex1 + P algebraic overR. Let D = ⋃

P∈C D(P). Note that
|D| < |T |. Now we can use Lemma 2.4 withI = T to find an elementt ∈ T such that
x1 + P is transcendental overR for everyP ∈ C. It can be easily shown (as in the proof
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Lemma 2.5) thatR′ = R[x1](R[x1]∩M) is anSCA-subring ofT . Now letJ = (y2, . . . , ym)R′
and c∗ = c − y1x1. It is then the case thatc∗ ∈ JT ∩ R′, so we can use our inductio
assumption to draw the conclusion that there exists anSCA-subringS of T such that
R′ ⊆ S ⊆ T and c∗ ∈ JS. Thusc∗ = y2s2 + · · · + ymsm for somes1, s2, . . . , sm ∈ S. It
follows thatc = y1x1+y2s2+· · ·+ymsm ∈ IS, and thusS is the desiredSCA-subring. �
Definition. LetΩ be a well-ordered set andα ∈ Ω . We defineγ (α) = sup{β ∈ Ω | β < α}.

Lemma 2.7 allows us to put many of our desired conditions together. We note here th
the proof of Lemma 2.7 is based on the proof of [5, Lemma 12].

Lemma 2.7. Let (T ,M) be a complete local ring of dimension at least one. LetJ be an
ideal of T with J �⊆ P for all P ∈ C, whereC is a finite set of nonmaximal ideals ofT

such that ifQ ∈ AssT thenQ ⊆ P for someP ∈ C and no ideal inC is contained in any
other ideal inC, and letu + J ∈ T/J . SupposeR is an SCA-subring. Then there exists
SCA-subringS of T such that

(1) R ⊆ S ⊆ T .
(2) If u ∈ J , thenS ∩ J �= (0).
(3) u + J is in the image of the mapS → T/J .
(4) For every finitely generated idealI of S, we haveIT ∩ S = I .

Proof. We first apply Lemma 2.5 to find an infiniteSCA-subringR′ of T such that
R ⊆ R′ ⊆ T , u + J is in the image of the mapR′ → T/J , and ifu ∈ J thenR′ ∩ J �= (0).
We will construct the desiredS such thatR′ ⊆ S ⊆ T which will ensure that the first thre
conditions of the lemma hold true. Now let

Ω = {
(I, c)

∣∣ I is a finitely generated ideal ofR′ andc ∈ IT ∩ R′}.
Letting I = R′, we can see that|Ω | � |R′|. But then sinceR′ is infinite, the number o
finitely generated ideals ofR′ is |R′|, and therefore|R′| � |Ω |, giving us the equality
|R′| = |Ω |. Moreover, asR′ is anSCA-subring ofT , we have|Ω | = |R′| < |T |. Well order
Ω so that it does not have a maximal element and let 0 denote its first element. We w
now inductively define a family ofSCA-subrings ofT , one for each element ofΩ . Let
R0 = R′ and letα ∈ Ω . Assume thatRβ has been defined for allβ < α. If γ (α) < α and
γ (α) = (I, c), then defineRα to be theSCA-subring obtained from Lemma 2.6. In th
manner,Rα will have the properties thatRγ (α) ⊆ Rα ⊆ T , andc ∈ IRα . If γ (α) = α,
defineRα = ⋃

β<α Rβ . Note that in both cases,Rα is an SCA-subring ofT . Now let
R1 = ⋃

α∈Ω Rα . We know that|Ω | < |T | and |Rα| < |T | for every α ∈ Ω , and thus
|R1| < |T | as well. Moreover, asRα ∩ P = (0) for everyP ∈ C and everyα ∈ Ω , we
haveR1 ∩ P = (0) for everyP ∈ C. It follows thatR1 is anSCA-subring. Furthermore
notice that ifI is a finitely generated ideal ofR0 andc ∈ IT ∩ R0, then(I, c) = γ (α) for
someα ∈ Ω with γ (α) < α. It follows from the construction thatc ∈ IRα ⊆ IR1. Thus
IT ∩ R0 ⊆ IR1 for everyI a finitely generated ideal ofR0.
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Following this same pattern, build anSCA-subringR2 of T such thatR1 ⊆ R2 ⊆ T

andIT ∩ R1 ⊆ IR2 for every finitely generated idealI of R1. Continue to form a chain
R0 ⊆ R1 ⊆ R2 ⊆ · · · of SCA-subrings ofT such thatIT ∩ Rn ⊆ IRn+1 for every finitely
generated idealI of Rn.

We now claim thatS = ⋃∞
i=1 Ri is the desiredSCA-subring. To see this, first not

that S is indeed anSCA-subring, and thatR ⊆ S ⊆ T . Now setI = (y1, y2, . . . , yk)S

and let c ∈ IT ∩ S. Then there exists anN ∈ N such thatc, y1, . . . , yk ∈ RN . Thus
c ∈ (y1, . . . , yk)T ∩ RN ⊆ (y1, . . . , yk)RN+1 ⊆ IS. From this it follows thatIT ∩ S = I ,
so the fourth condition of the lemma holds.�

We now construct a domainA that has the desired completion, as well as other inte
ing properties.

Lemma 2.8. Let (T ,M) be a complete local ring of dimension at least one, andG a set
of nonmaximal prime ideals ofT whereG contains the associated prime ideals ofT and
such that the set of maximal elements ofG, call it C, is finite. Moreover, suppose that
q ∈ SpecT with q ⊆ P for someP ∈ G thenq ∈ G. Also suppose that for each prime ide
P ∈ G, P contains no nonzero integers ofT . Then there exists a local domainA such that

(1) Â = T .
(2) If p is a nonzero prime ideal ofA, thenT ⊗A k(p) ∼= k(p) wherek(p) = Ap/pAp .
(3) The generic formal fiber ofA is exactly the elements ofG (and so has maximal idea

the elements ofC).
(4) If I is a nonzero ideal ofA, thenA/I is complete.

We note here that although the second and fourth conditions of this lemma may n
seem relevant, they will prove useful later when, under certain circumstances, we
thatA can be forced to be excellent.

Proof. The proof is quite similar to [3, Lemma 8]. Define

Ω = {u + J ∈ T/J | J is an ideal ofT with J �⊆ P for everyP ∈ G}.

We claim that|Ω | � |T |. SinceT is infinite and Noetherian,|{J is an ideal ofT with
J �⊆ P for all P ∈ G}| � |T |. Now, if J is an ideal ofT , then|T/J | � |T |. It follows that
|Ω | � |T |.

Well orderΩ so that each element has fewer than|Ω | predecessors. Let 0 denote t
first element ofΩ . DefineR′

0 to be the prime subring ofT and letR0 simply denoteR′
0

localized atR′
0 ∩ M. Note thatR0 is anSCA-subring.

Now recursively define a family ofSCA-subrings as follows, starting withR0. Letλ ∈ Ω

and assume thatRβ has already been defined for allβ < λ. Thenγ (λ) = u + J for some
idealJ of T with J �⊆ P for all P ∈ G and thus allP ∈ C. If γ (λ) < λ, use Lemma 2.7
to obtain anSCA-subringRλ such thatRγ (λ) ⊆ Rλ ⊆ T , u + J ∈ Image(Rλ → T/J ) and
for every finitely generated idealI of Rλ the propertyIT ∩ Rλ = I holds. Moreover, this
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gives us thatRλ ∩ J �= (0). If γ (λ) = λ, defineRλ = ⋃
β<λ Rβ . Then we haveRλ is an

SCA-subring for allλ ∈ Ω . We claim thatA = ⋃
λ∈Ω Rλ is the desired domain.

We will first show that the generic formal fiber ring ofA has the desired properties. A
eachRλ is anSCA-subring, we haveRλ ∩ P = (0) for eachP ∈ C and thus eachP ∈ G.
ThereforeA∩P = (0) for eachP ∈ G as well. Moreover, ifJ is an ideal ofT with J �⊆ P

for all P ∈ G, then 0+ J ∈ Ω . Therefore,γ (λ) = 0 + J for someλ ∈ Ω with γ (λ) < λ.
By construction,Rλ ∩ J �= (0). It follows thatJ ∩ A �= (0). Hence the generic formal fiber
of A is exactly the elements ofG, and has maximal ideals the elements ofC.

Now we show that the completion ofA is T . To do this, we will use Proposition 2.1
Note that as each prime idealP ∈ G is nonmaximal inT , we have thatM2 is not contained
in anyP ∈ G. Thus by the construction, the mapA → T/M2 is surjective. Now letI be a
finitely generated ideal ofA with I = (y1, . . . , yk). Let c ∈ IT ∩A. Then{c, y1, . . . , yk} ⊆
Rλ for someλ ∈ Ω with γ (λ) < λ. Again by the construction,(y1, . . . , yk)T ∩ Rλ =
(y1, . . . , yk)Rλ. As c ∈ (y1, . . . , yk)T ∩ Rλ, we have thatc ∈ (y1, . . . , yk)Rλ ⊆ I . Hence
IT ∩ A = I as desired, and it follows thatA is Noetherian and its completion isT .

To show the fourth condition is fairly simple. Suppose thatI is a nonzero ideal ofA, and
letJ = IT . If J ⊆ P for someP ∈ G, thenI ⊆ J ∩A ⊆ P ∩A = (0), a contradiction. Thu
J �⊆ P for everyP ∈ G. It follows by construction that the mapA → T/J is surjective.
Now sinceA ∩ J = A ∩ IT = I , the mapA/I → T/J is an isomorphism, makingA/I

complete.
Finally, we prove the second condition. Letp be a nonzero prime ideal ofA. ThenA/p

is complete, so we have

T ⊗A k(p) ∼= (T /pT )A−p
∼= (A/p)A−p

∼= Ap/pAp = k(p),

as desired. �

3. The main theorem and corollaries

For the next proof, we will in fact only need two of the previous lemma’s four res
namely the first one and the third one. We are finally ready to arrive at our main theo

Theorem 3.1. Let (T ,M) be a complete local ring, andG ⊆ SpecT such thatG is
nonempty and the number of maximal elements ofG is finite. Then there exists a loc
domainA such thatÂ = T and the generic formal fiber ofA is exactly the elements ofG

if and only ifT is a field andG = {(0)} or the following conditions hold:

(1) M /∈ G andG contains all the associated prime ideals ofT .
(2) If Q ∈ G andP ∈ SpecT with P ⊆ Q, thenP ∈ G.
(3) If Q ∈ G, thenQ ∩ prime subring ofT = (0).

Proof. First, the forward direction. Suppose thatT is not a field, and that there exists
local domainA such thatÂ = T and the generic formal fiber ofA is exactlyG. Suppose
thatM ∈ G. But then from our assumptionsM ∩ A = (0), which implies that the maxima
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ideal ofA is (0) and thus the maximal ideal ofT is zero as well, which implies thatT is
a field, a contradiction. ThusM /∈ G. Moreover, ifG does not contain all of the associat
prime ideals ofT , then, as the generic formal fiber ofA is exactlyG, there must be a
associated prime idealP of T such thatP ∩A �= (0), a contradiction. ThereforeG contains
all of the associated prime ideals ofT .

That the second requirement holds true is clear, as if one idealQ is in the generic
formal fiber ofA, thenQ ∩ A = (0) and thus ifP ⊆ Q thenP ∩ A = (0) andP is also in
the generic formal fiber ofA and thus is contained inG, as desired.

In order to see that the intersection of eachP ∈ G with the prime subring ofT is (0),
note thatP ∩ A = (0) for eachP ∈ G. SinceT is the completion of an integral domainA,
the unity element ofT must be inA. Hence the prime subring ofT is also inA, andP

contains no nonzero integers ofT for all P ∈ G.
On the other hand, suppose thatT is a field. Then the only prime ideal ofT is (0), and

consequentlyG = {(0)}. Thus, since as a fieldT is a completion of itself,A = T and the
generic formal fiber ofA is {(0)} = G as desired, so we are done.

Now we prove the backwards direction. IfT is a field, thenA = T works. So suppos
thatT is not a field and that all the above conditions hold. The first condition gives u
dimT � 1. Now, use Lemma 2.8 to construct the desired domainA. �
Example 1. Let T = C[[x, y, z]], C = {(x, y), (z)}, andG be those prime idealsP of T

such thatP ⊆ (x, y) or P ⊆ (z). Is there a local domainA such that̂A = T and the generic
formal fiber ofA is exactly the elements ofG and has maximal ideals the elements ofC?

Clearly T is local, with maximal idealM = (x, y, z), andC is finite. Thus we may
use Theorem 3.1. CertainlyM /∈ G. Moreover,T is a domain, so it has no zero diviso
and hence no associatedprime ideals other than(0), which is in G. The way in which
we definedG makes it evident that the second condition of the theorem holds. The
condition is also easy to see since the prime subring ofT is Z and all integers are units
ThusT satisfies the three conditions of Theorem 3.1, and hence there exists a domA

such thatÂ = C[[x, y, z]] and the generic formal fiber ofA is exactly the elements ofG
with maximal ideals(x, y) and(z) as desired.

We now state the local version of Theorem 3.1 in the following corollary.

Corollary 3.2. Let (T ,M) be a complete local ring andP a prime ideal ofT . Then there
exists a local integral domainA such that̂A = T and the generic formal fiber ofA is local
with maximal idealP if and only if eitherT is a field andP = (0) or the following two
conditions hold:

(1) P �= M andP contains all the associated prime ideals ofT .
(2) P ∩ prime subring ofT = (0).

Proof. That the forward direction holds true is obvious from Theorem 3.1, lettingG =
{Q ∈ SpecT | Q ⊆ P }.

To see the backwards direction in the case whereT is not a field (if T is a field,
thenA = T works), P is a nonmaximal ideal ofT containing all theassociated prime
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ideals ofT , andP ∩ prime subring ofT = (0). Now simply let the setG = {Q ∈ SpecT |
Q ⊆ P }. It follows from Theorem 3.1 that there exists a domainA such thatÂ = T and
the generic formal fiber ofA is local with maximal idealP . �
Example 2. Let T = C[[x, y, z]]/(xy). Does there exist a local integral domainA such that
Â = T and the generic formal fiber ofA is local with maximal ideal(x, y)?

Let P = (x, y). It is easy to see thatP satisfies the two conditions of Corollary 3.2. S
there exists a local domainA such thatÂ = C[[x, y, z]]/(xy) and the generic formal fibe
of A is local with maximal ideal(x, y).

4. The excellent case

We now consider under what conditions the ringA can be made excellent. Usin
the same building blocks as the previous theorem, we are able to come up
characterization in the characteristic zero case of those complete local rings that are
completion of a local excellent domain possessing a specific generic formal fiber.

Theorem 4.1. Let (T ,M) be a complete local ring containing the integers. LetG ⊆ SpecT
such thatG is nonempty and the number of maximal elements ofG is finite. Then there
exists an excellent local domainA with Â = T and such thatA has generic formal fibe
exactlyG if and only ifT is a field andG = {(0)} or the following conditions hold:

(1) M /∈ G andG contains all the associated prime ideals ofT .
(2) If Q ∈ G andP ∈ SpecT with P ⊆ Q, thenP ∈ G.
(3) If Q ∈ G, thenQ ∩ prime subring ofT = (0).
(4) T is equidimensional.
(5) TP is a regular local ring for all maximal elementsP ∈ G.

Proof. Assume thatT is the completion of an excellent domainA having generic forma
fiber exactlyG with maximal ideals the maximal elements ofG. If dim T = 0 thenT is a
field andG = {(0)}. Thus consider the case where dimT � 1.

As A is excellent, it is universally catenary. Hence,A is formally catenary and it follows
thatA/(0) ∼= A is formally equidimensional. Thus the completion,T , is equidimensional

The first three conditions can be shown by the exact same arguments as th
conditions in Theorem 3.1.

To see that the fifth condition holds, note that the maximal ideals ofT ⊗A k(0) are
the maximal elements ofG. Let P be one of these maximal elements. ThenT ⊗A k(0)

localized atP is isomorphic toTP . SinceA is excellent,T ⊗A k(0) is regular, implying
thatTP is a regular local ring for every maximal element ofG as desired.

Conversely, first suppose thatT is a field andG = {(0)}. Then A = T works. So,
suppose thatT is not a field and that all of the five conditions hold true for some comp
local ring T and some nonempty setG of prime ideals ofT such that the number o
maximal elements ofG is finite. We want to show that there exists an excellent dom
A possessing generic formal fiber exactlyG. Note that conditions(1) and(5) imply that
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T is reduced by the following argument. Suppose that these two conditions are true, b
that T is not reduced. Then there exists a nonzerox ∈ T such thatxn = 0 in T . Now
consider the ideal(0 : x) of T . Now, (0 : x) ⊆ Q1 ∪ Q2 ∪ · · · ∪ Qn, where theQi are the
associated prime ideals ofT . But then by the Prime Avoidance Theorem,(0 : x) ⊆ Qi for
somei. Moreover, asG contains the associated prime ideals ofT , Qi ⊆ P for someP

a maximal element ofG. Consider the regular local ringTP , and note that regular loca
rings are domains. Nowxn/1 = 0/1 in TP . Thus, asTP is a domain,x/1= 0/1 in TP . But
then there exists an elements /∈ P such thatsx = 0. This implies thats ∈ (0 : x), however,
which indicates thats ∈ P , a contradiction. Therefore,T must be reduced as desired.

Now if dimT = 0 thenT is a field and we are in the first case. Suppose, on the o
hand, that dimT � 1. Then use Lemma 2.8 to construct the domainA. We claim thatA
is excellent with generic formal fiber exactlyG. From the construction ofA, A has the
desired generic formal fiber. To see thatA is excellent, suppose thatp is a nonzero prime
ideal ofA. Then from Lemma 2.8 we haveT ⊗A k(p) ∼= k(p). Now letL be a finite field
extension ofk(p). Then

T ⊗A L ∼= T ⊗A k(p) ⊗k(p) L ∼= k(p) ⊗k(p) L ∼= L.

Thus the fiber overp is geometrically regular. NowTP is regular by assumption for eve
maximal elementP of G. It follows that T ⊗A k((0)) is regular. Now sinceT contains
the integers, so doesA. It follows that k((0)) is a field of characteristic zero, and hen
that T ⊗A L is regular for every finite field extensionL of k((0)). Thus all of the forma
fibers ofA are geometrically regular. SinceA is formally equidimensional, it is universal
catenary, and thusA is excellent. HenceA is the desired domain.�

Notice that this proof fails if the characteristic ofT is p > 0, as theA we construct may
not have a geometrically regular generic formal fiber. It is worth noting, though, th
the other fibers are geometrically regular and so the only obstruction toA being excellent
is that the generic formal fiber may not be geometrically regular.

We now state the local version of Theorem 4.1. Arguably more elegant than the pr
theorem, this more specific theorem has fewer conditions, and thus may prove to b
practical.

Corollary 4.2. Let (T ,M) be a complete local ring containing the integers andP a prime
ideal of T . ThenT is the completion of a local excellent domainA possessing a loca
generic formal fiber with maximal idealP if and only if T is a field andP = (0) or the
following three conditions hold:

(1) P contains the associated prime ideals ofT .
(2) P is a nonmaximal prime ideal ofT such thatP contains no nonzero integers ofT .
(3) TP is a regular local ring.

Proof. The forward direction of this proof follows immediately from Theorem 4.1.
Conversely, ifT is a field andP = (0), thenA = T works.
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So supposeP is a nonmaximal prime ideal ofT containing all theassociated prime
ideals ofT such thatP ∩ prime subring ofT = (0), andTP is a regular local ring. I
interesting to note that these conditions alone imply thatT is an integral domain by th
following argument. Suppose thatxy = 0 in T for somex, y ∈ T , x, y �= 0. But then
both x and y are zerodivisors ofT , so x, y ∈ P . But now sinceTP is a domain, then
eitherx/1 = 0/1 or y/1 = 0/1. WLOG, assume thatx/1 = 0/1. This implies that there i
somes /∈ P such thatsx = 0 in T . But thens is a zero divisor orT , and hences ∈ P ,
a contradiction. Therefore,T contains no nonzero zero divisors andT is an integral
domain. Observe thatT being an integral domain implies thatT is both reduced an
equidimensional.

Now if dimT = 0, then sinceT is reduced,M must be an associated prime ideal ofT ,
and moreover it is the only associated prime ideal ofT . HenceT is a field and we are in
the first case.

If dim T � 1, let G = {Q ∈ SpecT | Q ⊆ P }, and use Lemma 2.8 to construct t
domainA. It is trivial to verify that the five conditions of Theorem 4.1 hold. Theorem
tells us thatA is then excellent with generic formal fiber exactlyG. But the maximal idea
of G is P by definition, soA is excellent with local generic formal with maximal idealP

as desired. �
Example 3. Consider the complete local ringT = C[[x, y, z]]/(xy) andG = {Q ∈ SpecT |
Q ⊆ (x) or Q ⊆ (y, z)} a set of prime ideals ofT with maximal elements(x) and(y, z). It
is not difficult to check thatT andG satisfy the conditions of Theorem 4.1 and soT is the
completion of an excellent local domainA with generic formal fiber exactlyG.

Note here thatT in the above example is not a domain, and thus we should not be
to find a prime idealP of T such that there exists an excellent domainA that completes
to T with local generic formal fiber with maximal idealP . (Recall that in the proof o
Corollary 4.2, we showed that such aT is necessarily an integral domain.) Indeed, we ca
observe that this is true by seeing that any ideal we might choose will either not co
AssT = {(x), (y)}, or if it does thenTP will not be a regular local ring.
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