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a b s t r a c t

Large-scale penetration of electric vehicles (EVs) would significantly increase the load requirements of
buildings in highly urbanized cities. EVs exhibit higher degree of charging flexibility when compared to
other interruptible loads in buildings. Hence, EVs can be assigned lower priority and interrupted before
interrupting any other loads. Any temporary interruption will have minimum impact on EV owner's
satisfaction/comfort. However, it should be ensured that the EVs could be charged to the owner's
required state of charge (SOC) by the time of departure. The scheduling algorithms that are used to
manage the EV charging process ensure that the charging requirements are fulfilled even when there are
temporary interruptions. The capability of the scheduling algorithms to manage mismatches decreases
with the decrease in time available for charging. In this paper, the impact of demand response man-
agement (DRM) on the chargeability of the EVs while using different priority criteria is examined.
Subsequently, the proportion of interruption for each EV with different priority criteria and the need for
determining the chargeability of EVs before shedding them are studied. A scheduling driven algorithm is
proposed which can be used for determining the chargeability of EVs and can be used in combination
with DRM.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Deployment of Electric Vehicles (EVs) is considered as one of the
solutions for achieving cleaner and greener mobility in highly ur-
banized cities around the world. In the case of highly urbanized
cities, EVs are generally parked in multi-storey car parks and is
inevitable in commercial and office buildings. Hence, EV deploy-
ment will eventually increase the load demand of buildings from
which EVs are electrically charged. The detrimental impact of EV
penetration and uncoordinated charging on residential grid is
clearly highlighted in Ref. [1]. The analysis presented in Ref. [2] gives
an overview on the impact of EV penetration on investment as well
as increment in energy losses. Furthermore, there is high risk that
the total demandof building exceeding the limit imposedbyutilities
if the EV load demand added is not managed adequately [3,4].
However, if it can be ensured that the EVs can be charged to the
desired SOC at the time of departure, lower priority could be
assigned to EV load demand. This is owing to the fact that any
temporary interruption in EV charging will have insignificant effect
. Kumar).
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on satisfaction/comfort of the EV owner. Various dynamic charging
algorithms such as [5] are available for managing the EV charging in
parking lots. The capability of the dynamic charging algorithms
decreases correspondingly with the decrease in time available for
charging. Hence, ability of the dynamic charging algorithms to
manage the mismatches in final desired SOCs is restricted in many
cases. In Ref. [6], the authors have classified the customers and de-
mand response (DR) programs into various categories namely large/
small commercial and industrial, and residential. It is obvious that
the EV owners prefer to charge their EVs using overnight off-peak
power at cheaper prices. However, if EVs are used for auxiliary
storage functions, discharging and charging of EVs can happen at
commercial/office buildings as well [7,8]. Since there is a higher
probability of the total load demand exceeding demand limits
imposedbyutility in commercial/officebuildings,DRMfunctionality
is much higher in such buildings. In residential buildings, chances
that an EV load is shed using demand responsemanagement (DRM)
are minimal while using appropriate scheduling algorithms.
2. Related Work

EV charging algorithms presented in literature consider the
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomentclature

i EV ID
j time interval (j ¼ 1,2,3…48)
ai priority parameter based on state of charge(SOC)
SOCi SOC of ith EV
bi priority parameter based on slack time
Ndep;i departure interval of ith EV
Nreq;i actual number of time intervals (30 min) necessary to

reach the desired SOC level
tc;i overall number of time intervals (30 min) required for

charging ith EV on a given day
di priority parameter based on allotted time
Ncom;i actual number of time intervals for which the ith EV

was charging before the current interval
SOCinitial; i initial SOC of ith EV
SOCfinal previous day; i final SOC required for the ith EV on the

previous day
mi mean of the distance travelled by the ith EV
s2i variance of the distance travelled by the ith EV
Pn load demand for any given day

Pi load demand for jth interval
pj mean from load demands

s2j variance from load demands

N number of samples generated
pkj kth iid
s2j variance of generated samples
plimit
n power limits representing all intervals

plimit
j power limit of jth interval

PN(EVi) overall probability that ith EV is not charged to its
desired SOC

NðEViÞ number of events during which the ith EV did not reach
its desired SOC

N(S) total number of charging events/days
IðEViÞ number of events during which the charging of ith EV

will be stopped charging if DRM is invoked
I(S) total number of interruptions.
xi;j charging command parameter
pb;ij maximum power at which the ith EV can be charged
Cdn chargeability matrix for ‘n’ EVs
cdi chargeability value for ith EV
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individual EVs parked in a residential building either as interrupt-
ible load (time coordinated charging) or as flexible load (power
coordinated charging). The authors in Ref. [9] classify the residen-
tial loads as manageable and non-manageable, and EVs can be
considered as manageable loads as their charging process is
adjustable. Furthermore, the priority value assigned to the EV is
pooled along with the priority of other residential loads [10e12].
However, in case of highly urbanized cities such as Singapore, most
of the EVs will be charged together (in groups) in parking lots. Such
a charging pattern is highly suitable for using EVs in DRM as flexible
loads and offers a wide range for load demand control.

In Ref. [13], investigation for DRM using various charging
methods in a car park environment was carried out. Statistical data
was used to obtain arrival times and durations for which the EVs
are parked. The charging of individual EVs is assumed to be
controlled by the car park operator. With the above conditions, the
effect of DRM on the total charging cost of the systemwas analyzed.
In Ref. [14], a methodology for managing quasi-time EV charging
was presented. The authors considered the participation of EV
aggregators in electricity markets as well as the technical re-
strictions of the electricity grid components. In Ref. [10], a DR
strategy was proposed to minimize the impact of EV charging on a
distribution circuit of a smart distribution network. Severity indices
were used for executing the demand response of EVs. In Ref. [15], a
newmodel of DRM for the future integration of EVs and renewable
distributed generators into a smart grid network was proposed. In
Ref. [16], a DR strategy to increase the potential for adding new load
with minimal infrastructure investments was proposed. It also
served as a load-shaping tool for improving the usage of the dis-
tribution transformer. The consumers' preferences, load priorities,
and privacy were also taken into account.

In Ref. [17], two DR programs were presented, namely the trip
reduce DR and trip shifting DR. The DR models were activated
whenever the energy price reaches the cutoff value set by users. In
Ref. [18], the authors investigated dynamic DR for intelligent EV
charging. A detailed hybrid model was proposed to handle prob-
lems that cannot be properly handled by traditional tools. In
Ref. [11], a distributed framework for DR and user adaptation in
smart grid networks was proposed. The authors applied the
concept of congestion pricing developed for internet traffic control
to regulate the user demand and balance the load of a network. The
authors of [19] demonstrated the applicability of a novel ‘pool
market mechanism’ for re-schedulable demands such as EVs hav-
ing flexible charging capability. In Ref. [3], a novel scheduling
driven DRM utilizing time coordinated scheduling was proposed.
Group of EVs were combined to form a load demand which is both
flexible and interruptible. The degree of fairness obtained using the
above method is better owing to the fact that the EV with highest
probability to charge before departure is shed first while invoking
the DRM for EV load demand. The DRM was implemented as a part
of the Building Energy Management System.

In Ref. [20], the authors carried out an analysis on the influence
of various priority parameters on the chargeability of EVs and
fairness accorded to all EV users. In this paper, the impact of
interruption due to DRM on the chargeability of the EVs is exam-
ined for various priority criteria. Subsequently, the proportion of
interruption for each EV (when various priority criteria are
employed for DRM) and the need for determining the chargeability
of EVs before shedding them are studied. A novel scheduling driven
algorithm is also proposed for determining the chargeability of EVs
before shedding them using DRM. The major contributions of the
paper are the analyses on the impact of DRM on chargeability and
the proposed novel scheduling driven chargeability algorithm for
determining the suitability of the EVs for DRM in any given
interval.
3. Impact of DRM on EV chargeability

In commercial/office buildings when the DRM is invoked,
various priority criteria as proposed in Refs. [3,7,20e25] can be used
to determine which EV's charging has to be interrupted for man-
aging the load demand. All the above priority criteria can be
consolidated into state of charge (SOC) of the EV battery [22e24],
slack time available [22,24,25] and time allotted [3,7] for charging,
and can be represented by Equations (1)e(3) given below,

ai ¼ 1�
�
SOCi
100

�
(1)
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bi ¼ 1�
 
Ndep;i � Nreq;i

tc;i

!
(2)

di ¼ 1�
 
Ncom;i

tc;i

!
(3)

where i represents the EV number. ai is the priority parameter
based on battery SOC. SOCi is the SOC of ith EV. bi is the parameter
based on slack time. Ndep,i is the number of intervals (30 min)
available for charging ith EV. Nreq,i is the actual number of time in-
tervals (30 min) necessary to reach the desired SOC level for the ith

EV. di is the priority parameter based on time allotted to ith EV for
charging. Ncom,i is the actual number of time intervals for which the
ith EV was charging before the current interval. tc,i is the overall
number of time intervals (30 min) required for charging the ith EV
on a given day.

Either individual priority criterion or group of priority criteria is
employed to determine the interruption of EVs' charging. The im-
pacts of such interruptions are evaluated by determining the
chargeability of the EVs to the desired SOC after DRM is invoked.
Furthermore, the percentage of interruptions for each EV is also
analyzed. Using different combination of priority criteria will have
different types of impact on EVs having different battery capacities
and travel distances. The building load demand based on stochastic
simulations [26] and EV load demands based on [7] are used to
carry out the analysis for an EV systemwith 15 EVs. The EV system
is designed such that 3 EVs have 7 kWh battery capacity (EV1, EV2,
EV3), 3 EVs have 24 kWh battery capacity (EV13, EV14, EV15), and 9
EVs have 16 kWh battery. Singapore's data on the number personal
vehicles and population [27], and penetration level of 33% are
considered to obtain the number of EVs for the EV system.

To analyze the influence of various priority criteria/parameters
it is inevitable to consider different EV models (different battery
capacities). It is crucial to setup a system consisting of EVs with
different battery capacities and different energy requirement/day
for a detailed analysis. The battery capacity of each EV is selected
based on the typical distance travelled/day and EVmodels available
in market with corresponding travel range/charge. Furthermore,
such a configuration consisting of different EV models is more
realistic. The battery capacities of EV model such as Renault Twizy,
Nissan Leaf, Smart ED, Mitsubishi i MiEV, and Renault Kangoo Z.E.,
etc. are used for this study.

The initial SOC (SOCinitial; i) for the ith EV is calculated based on
distance travelled by personal vehicles in Singapore [27] and is
given by,

SOCinitial; i ¼ SOCfinal previous day; i

�
�
random

�
mi; s

2
i

�
*energy required=km

��
2

battery capacityi
(4)

where mi is the mean and s2i is the variance of distance travelled by
the ith EV respectively on a given day. A normal distribution is
considered for the distance travelled by EVs based on the analysis
provided in Refs. [13,28]. SOCfinal previous day; i is the final SOC
required for the ith EV on the previous day. The final SOC on any day
is considered to be 100%. This is to account for the plausible pref-
erence of EV users to charge using low price off-peak power. In this
study, typical energy required (per km) of different types of EVs is
also used with the other factors for calculating the initial SOC and
final SOC. The factor '20 in (4) is to account for the fact that the EVs
would have travelled only half of their daily travel distance when
they reach the commercial/office buildings. The arrival time is
assumed to be distributed over 08:30 h and the departure time of
EVs is assumed to be distributed over 17:30 h (normal distribution
and 30 min is considered as standard deviation [13,28]). The initial
SOC is calculated using the final SOC of previous day (as obtained
from the simulations), the distance travelled by the EVs on the
corresponding day (obtained from stochastic samples), and energy
required/km. The final desired SOC (SOCfinal; i) when vehicles
depart from the commercial/office buildings is applicable only in
cases where the EVs are used as Smart Energy Storage (SES). The
SOCfinal; i is considered to be same as SOCinitial; i, which means the
EVs has to be charged at least to SOCinitial; i before leaving (even
though some energy has been used in its function as SES). This is to
avoid possible range anxiety of EV users.

The total load demand of Singapore during the years
2005e2009 is collected from Ref. [29]. The data collected is
modified (scaled down) to the level that can represent a commer-
cial/office building. The Stochastic samples are generated based on
the above information.

pn ¼ ðp1; p2; p3; :::; p48Þ (5)

where pn represents the load demand of all intervals and pj is the
load demand of jth interval (j ¼ 1, 2, 3, …, 48). The information is
categorized into monthly, week days and weekends for generating
independent and identically distributed (iid) random samples that
represents the probability density function (PDF) of load demand
used [30].

pjz
1
N

XN
k¼1

pkj (6)

s2j zs2j (7)

For j¼ 1, 2, 3,…, 48,pj is the mean obtained from the data and s2j
is the variance obtained from the data, N is the number of samples
generated, pkj is the kth iid and s2j is the variance of generated
samples.

Maximum power that can be supplied during each interval is
taken as constraint in this paper. Though various parameters [26]
can be used as constraints, all the parameters are directly linked
to the maximum power that can be supplied.

plimit
n ¼

�
plimit
1 ; plimit

2 ; plimit
3 ; :::; plimit

48

�
(8)

where plimit
n is the power limits representing all intervals and plimit

j
corresponds to power limit of jth interval (j ¼ 1, 2, 3, …, 48). The
utility imposed demand limit/contracted capacity [31] is one such
power limit and it is used in this paper. In this paper, a contracted
capacity of 300 kW is considered for the building and the average
power over the charging period is taken as power limit. Such a
power limit is chosen to avoid any possible surge in the total load
demand [7,32].

The simulations are carried out for a case where 20% SOC
reduction has occurred for all EVs at 12:00 h. The scale of SOC
reduction (20%) has an impact on the probability of EVs charging to
their desired SOC. However, the scale of SOC reduction has no
impact on the proportion at which the EVs fail to charge to their
desired SOC. In Table 1, the following three scenarios are compared
for different priority criteria.

1 The probability of a particular EV not charging to the desired
SOC with one interruption from DRM at 14:30 h,



Table 1
Impact of DRM on probability of not charging to desired SOC while using different priority criteria.

Alt þ Slt þ SOC Alt Alt þ Slt Slt SOC Slt þ SOC

PN1 PN2 PN3 PN1 PN2 PN3 PN1 PN2 PN3 PN1 PN2 PN3 PN1 PN2 PN3 PN1 PN2 PN3

EV1 0.004 0.006 0.010 0.007 0.010 0.014 0.005 0.007 0.010 0.008 0.011 0.014 0.003 0.005 0.007 0.007 0.009 0.013
EV2 0.004 0.006 0.009 0.006 0.009 0.011 0.005 0.007 0.010 0.008 0.011 0.014 0.003 0.005 0.007 0.007 0.009 0.013
EV3 0.004 0.006 0.009 0.004 0.006 0.008 0.005 0.007 0.010 0.008 0.010 0.014 0.003 0.005 0.007 0.007 0.009 0.013
EV4 0.004 0.008 0.013 0.005 0.008 0.011 0.004 0.008 0.012 0.002 0.004 0.008 0.009 0.011 0.016 0.003 0.006 0.010
EV5 0.003 0.006 0.011 0.002 0.004 0.007 0.003 0.005 0.010 0.002 0.004 0.007 0.004 0.006 0.010 0.002 0.005 0.008
EV6 0.003 0.004 0.008 0.000 0.000 0.004 0.003 0.005 0.008 0.002 0.004 0.008 0.010 0.014 0.019 0.003 0.005 0.008
EV7 0.003 0.005 0.008 0.000 0.000 0.003 0.003 0.004 0.008 0.002 0.004 0.008 0.009 0.014 0.018 0.002 0.005 0.008
EV8 0.003 0.005 0.008 0.000 0.000 0.003 0.003 0.005 0.008 0.003 0.005 0.008 0.009 0.013 0.018 0.002 0.004 0.008
EV9 0.003 0.005 0.009 0.000 0.002 0.004 0.003 0.005 0.009 0.002 0.004 0.007 0.005 0.007 0.010 0.002 0.005 0.009
EV10 0.003 0.006 0.010 0.002 0.003 0.007 0.003 0.005 0.009 0.002 0.004 0.007 0.005 0.007 0.011 0.002 0.005 0.008
EV11 0.003 0.006 0.010 0.009 0.011 0.016 0.003 0.006 0.010 0.002 0.004 0.007 0.005 0.007 0.011 0.003 0.004 0.009
EV12 0.003 0.006 0.009 0.012 0.016 0.020 0.003 0.005 0.010 0.002 0.004 0.007 0.005 0.007 0.011 0.002 0.005 0.008
EV13 0.017 0.022 0.029 0.020 0.024 0.029 0.014 0.019 0.027 0.002 0.004 0.008 0.007 0.010 0.015 0.006 0.009 0.015
EV14 0.017 0.022 0.028 0.023 0.029 0.035 0.015 0.020 0.028 0.002 0.005 0.009 0.019 0.025 0.031 0.006 0.009 0.014
EV15 0.017 0.022 0.029 0.024 0.029 0.036 0.015 0.021 0.028 0.002 0.005 0.009 0.019 0.025 0.030 0.006 0.009 0.015
MDM 0.011 0.013 0.016 0.016 0.018 0.022 0.009 0.012 0.015 0.005 0.005 0.005 0.011 0.014 0.016 0.003 0.003 0.004

Notes:
1. Slt e Slack time.
2. Alt e Allotted time.
3. PN1 e Probability of an EV not charging to its desired SOC (interruption at 14:30 h).
4. PN2 e Probability of an EV not charging to its desired SOC (interruptions at 14:30 h and 15:30 h).
5. PN3 e Probability of an EV not charged to its desired SOC (interruptions at 14:30 h, 15:30 h and 16:30 h).
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2 The probability of a particular EV not charging to the desired
SOC with two interruptions via one at 14:30 h and the second at
15:30 h, and

3 The probability of a particular EV not charging to the desired
SOC with three interruptions one at 14:30 h, the second at
15:30 h and third at 16:30 h.

The probability of an EV not charging to its desired SOC is given
by,

PNðEViÞ ¼
NðEViÞ
NðSÞ (9)

where PN(EVi) is the overall probability that ith EV is not charged to
its desired SOC, NðEViÞ is the number of events during which the ith

EV did not reach its desired SOC and N(S) is the total number of
charging events/days. Time coordinated charging is used as dy-
namic charging algorithm. It is to be noted that the authors used
coordinated charging algorithms from their earlier work [20].
However, the analysis can be applied to any type of DRM and co-
ordinated charging algorithm. The difference between the analysis
presented in Ref. [20] and this work is the considered interruptions
at different time in the charging events (14:30 h, 15:30 h and
16:30 h).

It can be observed from Table 1 that when SOC is used as one of
the priority criteria (3 out of 6 cases), the probability of not charging
to desired SOC with interruptions from DRM is lower for EVs with
lower battery capacity and energy requirement (i.e., EV1, EV2 and
EV3). This is because, an equal priority value for ai will be obtained
from (1) for all the EVs having same SOC even if their battery ca-
pacities are different. E.g., a 7 kWh and a 24 kWh will have equal
priority value for ai as given by (1). Hence, both the EVs will be
treated in same manner. However, the EV with 7 kWh battery ca-
pacity will be charged faster compared to the EV with 24 kWh
battery capacity and results in lower probability of not charging to
desired SOC. When allotted time is used as one of the priority
criteria (3 out of 6 cases) a phenomenon similar to SOC is observed.
From (3) it is evident that EVs with higher allotted time will have
lesser value for di. The increase in SOC of a 24 kWh battery with the
same amount of allotted timewill be lower than the increase in SOC
of a 7 kWh battery. However, it is to be noted that the results are
similar but not same; the degree of preference given to different
EVs is different. When slack time (total 3 out of 6 cases) is used as
the priority criterion, an opposite effect compared to SOC/allotted
time is observed. The probability of an EV not charged to the
desired SOC reduces with increase in battery capacity (i.e., EV13,
EV14 and EV15). Since higher battery capacity results in lower slack
time and hence higher priority value from bi.

It is to be noted that the combination of SOC and allotted time is
not examined due to the obvious fact that both of them have a
similar effect and hence using them together will not provide re-
sults that are fair to all EVs. It can also be observed that, the
probability that an EV is not charged to the desired SOC increases
with the number of interruptions. From the values of maximum
deviation from mean (MDM), it is obvious that using slack time as
priority criteria results in minimum variations in the probability of
not charging to desired SOC for all EVs (while using single crite-
rion). This is because the SOC of all EVs have to be increased by
same amount i.e., 20%. The best performance is obtained when SOC
and slack time are used together and can be seen fromMDM values
(0.003). It can also be observed that using allotted time results in
higher scale of preference to vehicles with lower battery capacity.

The percentage of interruptions for different EVs while using
different combination of priority criteria is illustrated in Table 2.
The percentage of interruptions for an EV is given by,

% of interruptions for ith EV ¼ IðEViÞ
IðSÞ *100 (10)

whereIðEViÞ is the number of events during which the charging of
ith EV will be stopped (if DRM is invoked). I(S) is the total number of
interruptions.

It can be observed from Table 2 that, when allotted time is used
as priority criterion, charging of EV3, EV4, EV5 and EV6 encounter
more than 70% of interruptions (when DRM is invoked at 14:30 h).
This is due to the fact that incase of allotted time the EVs are
charged sequentially based on their IDs as all the EVs have equal
priority to start with. Hence, there is very high probability that EV1
and EV2 are already charged by 14:30 h and the other vehicles have
not yet started charging. This can also be verified with increase in



Table 2
Percentage of interruptions while using different priority criteria.

Alt þ Slt þ SOC Alt Alt þ Slt Slt SOC Slt þ SOC

I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3

EV1 0.0 1.5 3.3 1.2 0.7 0.6 0.0 1.3 2.8 0.0 0.0 0.0 3.1 5.0 6.4 0.0 0.1 1.0
EV2 0.0 1.6 3.2 4.8 2.4 2.0 0.0 1.3 2.7 0.0 0.0 0.0 2.8 4.9 6.4 0.0 0.1 1.1
EV3 0.0 1.6 3.2 9.6 4.8 3.7 0.0 1.4 2.8 0.0 0.0 0.0 2.8 4.9 6.3 0.0 0.1 1.0
EV4 10.6 10.0 8.9 26.0 16.7 11.8 11.3 10.3 9.3 9.9 10.5 10.5 2.4 4.5 6.0 11.4 11.0 9.8
EV5 10.0 9.8 9.2 26.8 20.2 15.7 9.7 9.8 9.3 8.5 8.1 8.1 9.8 9.1 9.0 8.6 9.3 9.2
EV6 9.9 9.7 9.5 10.9 13.7 12.9 9.1 9.6 9.4 7.6 7.1 5.5 5.9 5.2 3.9 6.9 8.4 8.7
EV7 10.0 9.8 9.6 3.2 9.9 10.1 9.2 9.3 9.4 7.4 6.6 6.2 6.4 5.6 4.6 7.2 8.4 8.9
EV8 9.9 9.7 9.6 1.6 6.9 10.3 9.3 9.4 9.4 7.5 6.7 5.1 6.9 6.2 4.9 7.2 8.6 8.7
EV9 10.0 9.8 9.3 4.5 7.7 9.8 10.2 9.9 9.4 8.3 8.4 7.6 9.6 8.9 9.0 9.8 9.5 9.3
EV10 9.9 9.8 9.2 5.4 5.9 7.6 10.3 9.8 9.4 8.4 8.5 7.1 9.2 8.7 8.7 8.8 9.1 9.3
EV11 10.0 9.9 9.4 4.1 4.8 5.8 9.8 9.8 9.4 8.8 8.5 7.7 8.9 8.3 8.5 9.0 9.4 9.2
EV12 10.0 9.8 9.5 1.5 2.2 3.5 10.2 9.8 9.5 8.4 8.5 7.9 8.5 8.2 8.4 8.5 9.3 9.4
EV13 2.8 1.9 1.9 0.3 1.4 2.0 3.0 2.3 2.0 7.8 9.3 11.9 11.3 10.4 9.8 7.1 5.3 4.6
EV14 3.4 2.6 2.0 0.0 1.3 2.1 3.8 2.8 2.5 7.8 8.7 11.0 6.1 5.2 4.0 7.8 5.7 4.9
EV15 3.3 2.6 2.1 0.0 1.4 2.0 4.1 3.3 2.6 7.7 9.0 11.5 6.5 5.2 4.0 7.6 5.8 4.9
MDM 6.7 5.2 4.8 20.1 13.5 9.0 6.7 5.4 4.7 6.5 6.7 6.7 4.6 3.7 3.1 6.7 6.6 5.7

Notes:
1. Slt e Slack time.
2. Alt e Allotted time.
3. I1 e Percentage of interruption for each EV (interruption at 14:30 h).
4. I2 e Percentage of interruption for each EV (interruptions at 14:30 h and 15:30 h).
5. I3 e Percentage of interruption for each EV (interruptions at 14:30 h, 15:30 h and 16:30 h).
6. MDM e maximum deviation from mean
7. 0.0 e Represents very low value
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percentage of interruptions for EV7-EV15 and decrease in per-
centage of interruptions for EV1-EV6 with two more interruptions
at 15:30 h and 16:30 h. Even though EV13-EV15 have low per-
centage of interruptions, the probability of them charging to the
desired SOC is significantly affected and can be observed from
Table 1. This also due to the sequential charging based on the EV
IDs. From MDM values, it is obvious that allotted time results in
worst performance in terms of percentage interruptions.

Although using SOC as the priority criteria results in a lower
percentage of interruptions for EV1-EV4, it provides the fairest
percentage of interruptions for all EVs with increase in number of
interruptions. This can also be observed from the MDM values.
When slack time is used as priority criterion, a fair distribution in
percentage of interruptions is observed for EV4-EV15 and EV1-EV3
seems to be least affected. However, if the results are correlated
with Table 1, it can be inferred that increase in probability of failure
for EV1-EV3 is due to the fact that, the charging of EV1-EV3 will be
pushed to end of charging period with more number of
interruptions.
Pseudo-code

1. Initialize the SOC of all EVs to be interrupted with the current value for the startin
2. Run the scheduling simulation using stochastic load samples (Section 3)
a) If j < 48,
Calculate the priority values using different priority parameters
Else Goto Step (e)

b) Substitute xi;j ¼ 1, c i

c) If
Pn

i¼1xi;j*p
b;i
j � plimit

j � pj update the priority values and other values, j ¼ j þ 1,

d) Else xi;j ¼ 0 for EV having next minimum value in the priority values

Repeat until
Pn

i¼1xi;j*p
b;i
j � plimit

j � pj , update priority values and

other values, j ¼ j þ 1, Goto Step (a)
e) End

3. Estimate the final SOC at departure intervals of each EV
4. Compare the estimated final SOC of ith EV with the desired final SOC
5. If the estimated final SOC is less than the desired final SOC then cdi ¼ 0
6. Else if the estimated final SOC is less than the desired final SOC then cdi ¼ 1

Note: The ith EV will charge during jth interval if xi;j ¼ 1 and vice versa and the maximu
It can also be observed from Table 2 that the percentage of in-
terruptions increased for EV1-EV3 with number of interruptions
and vice versa for EV13-EV15 (while using different combination of
priority criteria). However, it can be seen from theMDM values that
with increase in number of interruptions the percentage of in-
terruptions is fairly distributed (while using multiple priority
criteria). Furthermore, using multiple priority criteria provides a
higher flexibility for dynamic charging algorithms [20].
4. Determining the chargeability of EVS

From the analysis on the probability of an EV not charging to
desired SOC and percentage of interruptions with different com-
bination of priority criteria it is evident that,

1 the priority criteria used,
2 time at which DRM is invoked, and
3 the number of times DRM is invoked
g of next interval.

Goto Step (a)

m power at which the ith EV can be charged during the jth is given by pb;ij .



Table 3
Chargeability matrix for a typical day.

SOC þ Slt þ Alt Alt Slt þ Alt Slt SOC SOC þ Slt

14:30 15:30 16:30 14:30 15:30 16:30 14:30 15:30 16:30 14:30 15:30 16:30 14:30 15:30 16:30 14:30 15:30 16:30

EV1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0
EV2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0
EV3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
EV4 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
EV5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EV6 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
EV7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
EV8 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1
EV9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EV10 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0
EV11 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EV12 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0
EV13 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1
EV14 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1
EV15 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1

Notes:
1. Slt e Slack time.
2. Alt e Allotted time.

Table 4
Impact of DRM on probability of not charging to desired SOC and percentage of
interruptions and while using all priority criteria together.

Probability of not charging to
desired SOC with chargeability
algorithm

Percentage of
interruptions with
chargeability algorithm

PN1 PN2 PN3 I1 I2 I3

EV1 0.002 0.002 0.002 0.0 1.5 2.6
EV2 0.002 0.002 0.002 0.0 1.5 2.6
EV3 0.002 0.003 0.003 0.0 1.5 2.5
EV4 0.002 0.002 0.002 10.5 10.3 9.6
EV5 0.002 0.002 0.002 10.4 10.1 9.6
EV6 0.001 0.002 0.002 10.7 9.9 9.6
EV7 0.001 0.002 0.002 10.4 10.0 9.6
EV8 0.001 0.001 0.002 10.4 9.8 9.6
EV9 0.001 0.001 0.003 10.4 10.0 9.7
EV10 0.002 0.003 0.003 10.7 10.0 9.4
EV11 0.001 0.002 0.002 10.5 10.1 9.4
EV12 0.002 0.002 0.002 10.5 10.0 9.6
EV13 0.009 0.011 0.011 1.8 1.8 2.1
EV14 0.009 0.010 0.012 1.8 1.7 2.0
EV15 0.009 0.011 0.011 1.8 1.7 1.9
MDM 0.006 0.007 0.008 6.7 5.2 4.8

Notes:
1. PN1 e Probability of an EV not charging to its desired SOC (interruption at 14:30
h).
2. PN2 e Probability of an EV not charging to its desired SOC (interruptions at 14:30
h and 15:30 h).
3. PN3 e Probability of an EV not charging to its desired SOC (interruptions at 14:30
h, 15:30 h and 16:30 h).
4. I1 e Percentage of interruption for each EV (interruption at 14:30 h).
5. I2e Percentage of interruption for each EV (interruptions at 14:30 h and 15:30 h).
6. I3 e Percentage of interruption for each EV (interruptions at 14:30 h, 15:30 h and
16:30 h).
7. MDM e Maximum deviation from mean.
8. 0.0 e Represents very low value.
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have an impact on the EV charging. Hence, it is obvious that
determining chargeability of the EVs before interruption from DRM
is inevitable. A novel scheduling driven algorithm is proposed for
estimating the chargeability of the EVs before considering them as
an interruptible load. The scheduling driven approach eliminates
the dependency of accuracy on the time of interruption. Hence, the
probability of not charging to the desired SOC depends only on the
accuracy of scheduling algorithm used. However, the preference
given by different priority criteria to different types of EVs will not
be affected. The algorithm used in Ref. [20] is subset of the algo-
rithm proposed in this study. The estimated SOC at the time of
departure is determined using algorithm in Ref. [20] to determine
the chargeability of the EVs in the event of interruption. The
pseudo-code of the proposed algorithm is given below.

The chargeability matrix is given by,

Cdn ¼

2
664
cd1
cd2
«

cdn

3
775 (11)

where cdi ¼ 1 if the ith EV can be charged to the desired SOC before
the departure interval (even if its charging is interrupted in the
current interval) and cdi ¼ 0 if the EV cannot be charged to the
desired SOC. When DRM is invoked as in Refs. [3], the interruption
signals can be sent to the charging stations after passing them
through an AND gate along with chargeability signal. The charge-
ability matrix is shown in Table 3 for a typical day for at 14:30 h,
15:30 h and 16:30 h respectively (same simulation parameters as in
Section 3). It can be observed that, the chargeability of the EVs
depends largely on the priority criteria used, the time of interrup-
tion and number of interruptions. Notably, the samples (as it is
stochastic) differ from one case to other although the simulation
setup for all the cases is same. Hence, the chargeability matrix
cannot be correlated with each other.

In Table 4, the probability of an EV not charged to the desired
SOC and percentage of interruptions are presented for the case
when chargeability algorithm is included with DRM (for the case
when all three criteria are used). It can be inferred from Table 4
that, even though the chargeability algorithm has the capability
to reduce the probability of an EV not charging to the desired SOC,
the percentage of interruptions remained the same (but the num-
ber of interruptions reduced). This is because the reduction in
number of interruptions is proportional to preference given to
different types of EV (by a particular set of priority criteria). It is to
be noted that after using the chargeability algorithm for DRM, the
probability of an EV not charging to the desired SOC is negligible
and depends only the accuracy of dynamic charging algorithm and
load models.

5. Conclusion

In this paper, an analysis on the impact of DRM on the
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chargeability of EVs was carried out using stochastic simulations.
The chargeability was analyzed for cases with different priority
criteria and for different number of interruptions from DRM. It was
observed that each priority criterion had a unique impact on the
probability of not charging to the desired SOC as well as the per-
centage of interruptions. It was also observed that the time of
interruption and number of interruptions also had a significant
impact. Hence, it was inferred that a scheduling based chargeability
algorithm is required for overcoming these disadvantages. A
scheduling driven algorithm for determining the chargeability was
proposed. The proposed algorithm was employed with DRM and
the chargeability was examined. It was observed that the proposed
algorithm reduced the probability of not charging to the desired
SOC to negligible values and had little influence on the percentage
of interruptions. Hence, the impact of priority criteria was not
changed with the implementation of the algorithm. However, the
chargeability was improved and hence the algorithm can result in
increased customer satisfaction/comfort. The proposed charge-
ability algorithm is versatile and could be used along with any DRM
program to improve its performance and robustness.
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