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Mimivirus and other giant viruses are visible by light

microscopy and bona fide microbes that differ from other

viruses and from cells that have a ribosome. They can be

defined by: giant virion and genome sizes; their complexity,

with the presence of DNA and mRNAs and dozens or hundreds

of proteins in virions; the presence of translation-associated

components; a mobilome including (pro)virophages (and a

defence mechanism, named MIMIVIRE, against them) and

transpovirons; their monophyly; the presence of the most

archaic protein motifs they share with cellular organisms but

not other viruses; a broader host range than other viruses.

These features show that giant viruses are specific,

autonomous, biological entities that warrant the creation of a

new branch of microbes.
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The concept and definition of viruses during
the 19th and 20th centuries
For a long time, the concept of ‘virus’ was muddled

(Figure 1). The term ‘virus’ initially designated any

infectious agent [1��]. During the 19th century, Pasteur

and Roux considered the rabies agent as a microbe,

although it was invisible under a light microscope [2].

Between 1886 and 1898, the foundations of virology were

laid, with the discovery of causative agents of tobacco

mosaic and foot-and-mouth diseases, which were
Current Opinion in Microbiology 2016, 31:16–24 
ultrafilterable and invisible under light microscopy, in

contrast to microbes [3–5]. Accordingly, these agents were

named ultraviruses, or inframicrobes, and, eventually, vi-

ruses [1��]. During the 1910–1920s, viruses became in-

creasingly established as small entities that need living

cells to replicate; Rickettsia and Chlamydia, also intracellular

parasites, definitively turned out not being viruses [6,7].

During the 1930–1940s, the first electron micrographs of

virions were obtained [8] and the eclipse period of virus

replication was discovered [9]. Then, during the 1950s, the

virus concept was unravelled by A. Lwoff, based mainly on

negative criteria [1��]. Lwoff defined viruses as potentially

pathogenic strictly intracellular entities, which have either

DNA or RNA, multiply in the form of their genetic

material, are unable to grow and divide, and are devoid

of energy production enzymes. Hence, viruses were con-

sidered as simple cell parasites consisting of a nucleic acid

enclosed in a symmetric protein shell, the capsid [1��,7],

and were, further, also shown to lack ribosomes [10].

Mimivirus challenges the definition of viruses
During the last 12 years, six new or putative families of

giant viruses have been discovered through co-culture

isolation, by inoculating environmental and human sam-

ples on amoebas. Mimivirus was the pioneer of this viral

group [11��,12��]. Visibility under a light microscope and

the Gram positivity of this virus, isolated in 1992 from

cooling tower water, misled researchers into considering it

as a bacterium. It was eventually revealed in 2003 to

harbour a 0.5-mm-large icosahedral capsid and a 1.2-

megabase pair (Mbp)-large genome with �1.000 genes

[12��]. The discovery of Mimivirus led several groups to

search for other giant viruses using amoeba co-culture.

Subsequently, isolations of Marseillevirus [13], Pandor-
avirus spp. [14,15], Pithovirus sibericum [16], faustoviruses

[17] and Mollivirus sibericum [18] confirmed the fruitful-

ness of this culture strategy. All these viruses were

discovered in Marseille, France, by two different teams.

Moreover, the first virophage (a Mimivirus-infecting vi-

rus) was also identified in this city. Strikingly, these

viruses were isolated through strategies (co-culture on

Acanthamoeba polyphaga, or Vermamoeba vermiformis for

faustoviruses) implemented to grow microbes, and dis-

covered by bacteriologists [19].

These giant amoeba viruses were linked through phylo-

genomics to other double-stranded DNA viruses includ-

ing poxviruses, asfarviruses, asco-/irido-viruses, and

phycodnaviruses, which were formerly the largest viral
www.sciencedirect.com
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Figure 1
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Schematic of a brief history of virus naming and definition. The usage and significance of the term ‘virus’ changed over time. The definition of

what a virus is evolved in different steps according to new discoveries and technologies. Giant amoeba viruses share numerous features with

small intracellular microbes and stand apart from ‘traditional’ viruses, whose definition was mainly founded by Lwoff during the 1950s.
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representatives and were shown in 2001 to share a set of

41 core conserved genes and grouped under the name of

nucleocytoplasmic large DNA viruses (NCLDV)

[12��,20��,21�]. Then maximum-likelihood reconstruc-

tion of the evolution of these viruses mapped a set of

�50 genes on their putative ancestor [22��]. In 2012, it

was proposed to classify giant amoeba viruses and

NCLDV families in a new viral order, Megavirales, as

these viruses have a common origin and virion architec-

ture and share major biological characteristics, such as

replication within viral factories [23��]. The term ‘Girus’

was also coined to designate these megaviruses, to un-

derline their intermediate status between small parasitic

prokaryotes and standard viruses [24]. Successive isola-

tions of new Megavirales representatives continued to

challenge previously established viral hallmark features

and definitions. Simultaneously, the discovery of new

giant viruses highlighted their diversity and ubiquity

on earth and, for some, their presence in humans and,

consistently, megaviruses related sequences were

detected in environmental and human metagenomes

[25,26]. The remarkable features of giant amoeba viruses

challenged the virus paradigm and fuelled debates on the

evolution, origin and the definition of viruses

[12��,27��,28��]. In particular, their gene repertoire was

greater than those of small bacteria and included homo-

logs to cellular informational genes [12��,29��].

Why are giant viruses different from
‘traditional’ viruses?
Giant viruses display unique phenotypic and genotypic

features that differentiate them from ‘traditional’ viruses

and bring them close to some microbes, as these char-

acteristics are considered as the hallmarks of cellular

organisms (Figure 2).

Virion and genome size

Viruses have long been strictly understood as small infec-

tious agents which are not visible under a light micro-

scope and which can pass through 0.2 mm-pore filters

[28��]. In contrast, Megavirales virions are �0.2–1.5 mm

in size, P. sibericum being the largest currently [16,18].

This led Mimivirus and pandoravirus virions to be con-

sidered for a long time as a Gram-positive bacterium and

parasitic endosymbionts, respectively [11��,15,19]. In ad-

dition, megaviruses display giant genomes at the scale of

virions, from 105 (for an iridovirus) to 2474 kilo (k) bp (for

P. salinus), whose size overlaps that of several cellular

genomes [23��]. Particularly, giant virions that infect

phagocytic protists have a diameter �200 nm and gen-

omes >340 kbp that are predicted to encode for >400

proteins. It is notable that, when plotting the size of viral

genomes available in the NCBI GenBank database, the

curve comprises breaks around 350, 450, 600 and

1200 kbp (Supplementary Figure S1). The first break

at 350 kbp indicates that there is a discontinuity in the

genome size between ‘traditional’ viruses and giant
Current Opinion in Microbiology 2016, 31:16–24 
amoeba viruses. The other breaks may suggest that the

diversity of giant amoeba viruses is greater that currently

apprehended.

Complexity

Giant viruses are more complex than ‘traditional’ viruses

in terms of their nucleic acid and protein content. Thus,

in contrast with most other viruses, megaviruses harbour

both DNA and RNA, which includes messenger RNAs

and transfer RNAs [23��,30]. In addition, proteomics

identified dozens or hundreds of proteins inside giant

virions, some of which are involved in transcription and

translation, and a substantial proportion of which are

hypothetical proteins [14,16–18,30]. These messenger

RNAs and proteins may facilitate the first steps in the

replicative cycle and make giant viruses far less depen-

dent on their host for replication than other viruses.

Presence of components of translation

The discovery of Mimivirus revealed the presence of

translation factors including a peptide chain release factor

eRF1, a GTP-binding elongation factor eF-Tu, two

translation initiation factors, SUI1 and 4E, and four

aminoacyl-tRNA synthetases, some of which were shown

to be functional and expressed [12��,31]. Previously, only

a gene encoding a translation elongation factor had been

identified in phycodnaviruses [23��]. In addition, six

transfer RNAs were detected [12��]. Genes encoding

translation proteins and tRNA were then identified in

the other giant amoeba viruses, with the exception of P.
sibericum [16]. This is a very specific feature of these

viruses, previously only observed in some phycodna-

viruses, and some bacteriophages and herpesviruses for

tRNA [12��].

Mobilome

Several group I and II introns were detected in conserved

genes from giant viruses, whereas they are unusual in

viruses [32]. Moreover, some megaviruses were revealed

as having been themselves infected by other viruses, as

are bacteria, archaea and eukaryotes [33��,34]. These

virophages were shown to integrate into the mimivirus

genomes as pro-virophages [35��]. In addition, transpo-

virons, a new class of transposable elements, were dis-

covered in mimiviruses; they depend on these giant

viruses for their replication and spread, and are analogous

to virus-associated plasmids present in bacteria and ar-

chaea [35��]. Taken together, self-splicing introns, (pro)-

virophages and transpovirons comprise a mobilome in

mimiviruses. In addition, DNA transposable elements

were detected in the P. salinus genome. Furthermore,

amoeba mimiviruses were recently shown to harbour a

defence system, named MIMIVIRE, which enables them

to fight against infection by their virophages and is similar

to CRISPR-mediated mechanisms of immunity against

viruses deciphered during the past decade in bacteria and

archaea [36��].
www.sciencedirect.com
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Figure 2
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Main features specific to giant viruses compared to other viruses. The major differences between giant viruses and other viruses involve virion and

genome sizes, complexity, presence of translation components, existence of a mobilome, monophyly, archaic origin and a broad host spectrum.
Monophyly

A major issue of controversy was whether or not these

giant viruses comprise a new (i.e. fourth) branch in the

tree of life, alongside Bacteria, Archeaa and Eukarya
[12��,27��,29��,37]. From the onset, at the time of the

Mimivirus analysis, it was put forward that it branched out

near the origin of the Eukarya in a phylogeny based on

seven conserved proteins [12��]. This observation was

then strengthened by phylogenies of universal informa-

tional genes, including DNA-dependent RNA polymer-

ase (RNAP) and DNA polymerase, which showed that

Megavirales forms a strong monophylogenetic group apart

from Bacteria, Archaea and Eukaryotes [29��,37]. These
www.sciencedirect.com 
genes, particularly RNAP subunits 1/2, represent valu-

able markers to classify new Megavirales members and

uncharacterised microbes [37]. The fourth branch encom-

passing giant viruses was not considered as an additional

domain, as domains were defined by C. Woese based on

ribosomal genes that are lacking in giant viruses. In

addition to unique features exhibited by giant viruses,

this led to this new branch of life being designated as a

fourth TRUC, an acronym for Things Resisting Uncom-

pleted Classification [38��]. The fourth branch of life

hypothesis was criticised and considered artefactual by

some teams, on the assumption that it relied on lateral

gene transfers or convergent evolution [39,40]. It was also
Current Opinion in Microbiology 2016, 31:16–24
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contested by E. Koonin and his team, whose interpreta-

tion of their phylogenomic analyses is that universal

genes were gained by giant viruses from their eukaryotic

hosts [41]. The view of J.M. Claverie and his team is more

tempered and cautious [14,31]. In contrast, data from
Figure 3
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other teams argue for the existence of a fourth branch

of life [42,43]. Thus, Wu et al. found some sequences in

environmental metagenomes that existed in phylogeny

reconstructions between the Bacteria, Archaea, and

Eukarya branches, and may come from unknown viruses
“Megavirales”

Current Opinion in Microbiology

ee. From [44], with permission. This tree of proteomes describes the

ses and were distinguished by the abundance of 442 protein fold

. It shows that megaviruses are, among viruses, those that most
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Figure 4
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[42]. In addition, Nasir and Caetano-Anolles showed,

based on protein fold superfamilies (FSF), that giant

viruses represent a distinct supergroup alongside Archaea,

Bacteria and Eukarya [43,44��]. The same four branch

topologies as obtained through phylogenies were gener-

ated through phyletic analyses of clusters of orthologous

groups of proteins (COG) [29��,45]. In addition, such

COG-based analyses show that megaviruses stand apart

from other viruses (Supplementary Figure S2).

Archaic origin

Phylogenetic and phyletic analyses of informational

genes and the study of FSF indicate that Megavirales
members are, in evolutionary terms, very ancient in

comparison with other viruses, and even with cells.

The reconstructed Megavirales common ancestor was

suspected to have an early origin, concomitant with

eukaryogenesis [22��,46]. In addition, Nasir and Cae-

tano-Anolles showed, based on protein FSF, that giant

viruses coexisted with cellular ancestors, and phylogeny

based on proteome trees showed that megaviruses are

among the viruses that most deeply branched with cellu-

lar organisms (Figure 3) [43,44��]. In addition, FSF dis-

tribution among cellular organisms and viruses showed

that giant viruses overlapped with many cellular organ-

isms with parasitic and symbiotic lifestyles, such as Myco-
plasma and Proteobacteria. The ten FSF identified as the

most ancient in evolutionary terms (Nasir and Caetano-

Anolles, personal data) were detected in megaviruses; in

particular, the distribution among cellular organisms and

viruses of the three most ancient FSF (namely, P-loop

containing nucleoside triphosphate hydrolases, Ribonu-

clease H-like and DNA/RNA polymerases) and of anoth-

er ancient FSF, a protein kinase-like, which are all found

in >98% of megaviruses (Nasir and Caetano-Anolles,

personal data), clearly showed that megaviruses are more

similar to cells than to other viruses (Figure 4a).

Broad host spectrum

Compared to viruses from other orders or families, mega-

viruses infect a broad range of cellular hosts that belong to

phylogenetically highly distant groups including inverte-

brates, mammals, amoebozoa, green algae, and chromal-

veolates [22��,47,48]. Mimiviruses, marseilleviruses and

faustoviruses have been isolated or detected from differ-

ent protists, insects, and mammals, including humans

[26,48,49]. In addition, giant viruses that infect amoeba
(Figure 4 Legend) Hierarchical clustering based on (a) the distribution of fo

most ancient in evolution (namely, P-loop containing nucleoside triphosphat

another ancient FSF, protein kinase-like, and (b) the presence (1)/absence (

set of the ‘traditional’ virus families described by the International Committe

virustaxonomy.asp). Hierarchical clustering was performed using the Pearso

representation was built using FigTree (http://tree.bio.ed.ac.uk/software/figt

representatives are indicated with a red font. In (a), Megavirales is apart from

namely Eukarya, Bacteria and Archeae. In (b), families of giant amoeba virus

viruses.
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enter their host through phagocytosis, and Mimivirus was

further shown to enter macrophages via a phagocytosis-

like mechanism, thus acting like a bacteria

[11��,13�,14,16–19,50]. This differs from entry mecha-

nisms in ‘traditional’ viruses that involve specific inter-

actions with cell receptors [50].

Other notable features

Other notable features of giant viruses include the pres-

ence of gene promoters in mimiviruses [51] and the

presence of unique genes among viruses that are involved

in DNA repair, protein folding, nucleotide synthesis,

amino acid, lipid or polysaccharide metabolisms and

protein modifications [12��,13�,14,16–18]. In addition,

histone-like proteins are present in marseilleviruses

[52]. Moreover, substantial proportions of ORFans are

detected in the genome of giant viruses, ranging between

40 and 95% for those infecting amoeba; this suggests that

giant viral genomes embed a large panel of unknown

functions [14,16–18,53]. In addition, several phylogenies

showed complex evolutionary histories, with genes being

involved in horizontal transfers with other viruses and

cellular organisms, and Megavirales genomes were de-

scribed as mosaics [12��,13�,47]. The considerable level

of mosaicism in giant amoeba viruses was linked to their

sympatric lifestyle inside amoebas, where several micro-

organisms can multiply and exchange sequences [54].

Finally, the replicative cycle of Megavirales representa-

tives mainly occurs in viral factories, which are the site of a

massive production of virions and another particularity of

these viruses [23��].

A different way to classify viruses than using the Linnean

dichotomic system [7], replication strategy [55] or phy-

logeny [56] and that relies on Adansonian classification,

which equally weights every feature [57], can be consid-

ered. Analyses by hierarchical clustering based on the

presence/absence patterns of 23 phenotypic and genetic

features for the 103 described viral families (http://www.

ictvonline.org/virustaxonomy.asp) (Figure 4b; Supple-

mentary Table S1), showed that giant viruses of phago-

cytic protists and phycodnaviruses comprise a separate

group, apart from other smaller megaviruses and ‘tradi-

tional’ viruses. Thus, two subgroups can be delineated

within Megavirales, one consisting of amoebal viruses and

phycodnaviruses.
ur protein fold superfamilies (FSF) including the three identified as the

e hydrolases, Ribonuclease H-like, and DNA/RNA polymerases) and

0) patterns of genotypic and phenotypic features for a representative

e on Taxonomy of Viruses (ICTV) (http://www.ictvonline.org/

n correlation method and Mev Software (http://www.tm4.org/) and

ree/) and MEGA6 (www.megasoftware.net) softwares. Megavirales

 other viral groups and the closest to groups of cellular organisms,

es are apart from other Megavirales families and families of ‘traditional’
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Conclusion: Megavirales representatives are
genuine microbes
The largest Megavirales representatives changed the virus

paradigm as they do not fulfil several of the criteria that

were established from the very onset of virology to define

viruses and that fit almost all other viruses [1��,7,27��].
There is indeed a huge gap between them and ‘tradition-

al’ viruses, and placing Mimivirus into the same basket

than ‘traditional’ viruses as human immunodeficiency

virus does not make scientific sense. Hence, taking into

account Megavirales, there is no unifying view of the virus

world, but a quantum discontinuity. Moreover, phyloge-

netic and phyletic analyses evidence that giant viruses

comprise a fourth branch of life. This assumption is also

bolstered by the complexity and gene content of these

giant viruses and their high prevalence in the environ-

ment, which makes them difficult to ignore in biological

terms. Furthermore, one critical issue is whether or not

the largest Megavirales representatives are viruses, and the

data summarised here show that they are, conspicuously,

microbes and not of the same nature as ‘traditional’

viruses; they are TRUC. Taken together, these features

make these giant viruses different, autonomous, biologi-

cal entities.
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