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SUMMARY

Adipose tissue secretes adipokines that mediate
insulin resistance, a characteristic feature of obesity
and type 2 diabetes. By differential proteome anal-
ysis of cellular models of insulin resistance, we iden-
tified progranulin (PGRN) as an adipokine induced by
TNF-a and dexamethasone. PGRN in blood and
adipose tissues was markedly increased in obese
mouse models and was normalized with treatment
of pioglitazone, an insulin-sensitizing agent. Ablation
of PGRN (Grn�/�) prevented mice from high fat diet
(HFD)-induced insulin resistance, adipocyte hyper-
trophy, and obesity. Grn deficiency blocked eleva-
tion of IL-6, an inflammatory cytokine, induced by
HFD in blood and adipose tissues. Insulin resistance
induced by chronic administration of PGRNwas sup-
pressed by neutralizing IL-6 in vivo. Thus, PGRN is
a key adipokine that mediates HFD-induced insulin
resistance and obesity through production of IL-6
in adipose tissue, and may be a promising thera-
peutic target for obesity.

INTRODUCTION

Insulin resistance is a characteristic feature of obesity and type 2

diabetes. Adipose tissue is now recognized as not only an

energy-storage tissue but also an endocrine tissue that secretes

a variety of bioactive substances (adipokines) including adipo-

nectin, resistin, tumor necrosis factor (TNF)-a, interleukin-6
38 Cell Metabolism 15, 38–50, January 4, 2012 ª2012 Elsevier Inc.
(IL-6), and monocyte chemoattractant protein (MCP)-1 (Shoe-

lson et al., 2007; Waki and Tontonoz, 2007). Defects in adipokine

secretion accompanying adipose tissue dysfunction contribute

to the pathophysiology of insulin resistance and obesity (Kahn

and Flier, 2000). Reduced expression and secretion of adiponec-

tin in obesity promotes the development of systemic insulin

resistance by enhancing hepatic gluconeogenesis and sup-

pressing glucose uptake in skeletal muscle (Guilherme et al.,

2008; Berg et al., 2001). In contrast, resistin, TNF-a, IL-6 and

MCP-1, the levels of which in adipose tissues and blood are

elevated in obesity, have been shown to be mediators in pro-

gression of insulin resistance (Waki and Tontonoz, 2007).

The relationship between inflammatory process and insulin

resistance has recently drawn considerable attention. For ex-

ample, TNF-a, a proinflammatory cytokine, has been shown to

contribute to the development of insulin resistance by altering

insulin signaling mediated by activation of the IKK-NFkB and

JNK-AP1 signaling pathways (Hotamisligil et al., 1994, 1995;

Uysal et al., 1997). On the other hand, glucocorticoids, which

are known to have an anti-inflammatory action, also induce

insulin resistance in human and animals (Caro and Amatruda,

1982). Dexamethasone, a glucocorticoid, has been reported to

impair insulin signaling and insulin-stimulated glucose uptake

in adipose tissue, liver, and skeletal muscle (Qi and Rodrigues,

2007). Since TNF-a and dexamethasone both induce insulin

resistance despite their opposite inflammatory properties (Hota-

misligil et al., 1994; Hotamisligil, 2006; Wellen and Hotamisligil,

2005; Qi and Rodrigues, 2007; van Putten et al., 1985; Turnbow

et al., 1994; Sakoda et al., 2000), we reasoned that there might

be a common mediator responsible for the cellular basis of

insulin resistance induced by TNF-a and dexamethasone. In

the present study, we searched for a novel adipokine(s) that
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play a key role in developing insulin resistance using 3T3-L1

adipocytes treated with TNF-a or dexamethasone. For this

purpose, we utilized a method of differential proteome analysis

based on stable isotope labeling of proteins with chemical

reagent 2-nitrobenzenesulfenyl chloride (NBSCl) incorporating

six 13C (13C6) or six
12C (13C0) in the tryptophan residues (Kuyama

et al., 2003; Matsuo et al., 2009). The NBSmethod has an advan-

tage in reducing the complexity of the analysis because the

method targets only peptides that contain tryptophan, which is

the least abundant amino acid but is widespread in proteins

(Matsuo et al., 2009), and has been used successfully for differ-

ential expression analysis in clinical samples (Watanabe et al.,

2008; Okamura et al., 2008).

We applied differential proteome analysis using the NBS-

based method to search for novel adipokines and identified

progranulin (PGRN) as a candidate. PGRN, also known as proe-

pithelin, granulin/epithelin precursor (GEP) or PC cell-derived

growth factor (PCDGF), was originally discovered as an acro-

somal glycoprotein, named acrogranin, which is synthesized

during guinea pig spermatogenesis (Anakwe and Gerton,

1990). PGRN is a 68-88 kDa secreted protein having seven

and one-half granulin (GRN) motifs connected by short linker

domains (He and Bateman, 2003). It is expressed widely in

tissues, especially at high levels in spleen and placenta (Bate-

man and Bennett, 1998). PGRN has been shown to be a plu-

ripotent growth factor that mediates cell-cycle progression,

tumorigenesis, and wound healing (He and Bateman, 2003).

PGRN is also implicated in various disease states in humans,

including cancers of the breast and ovaries (He and Bateman,

2003), neurodegenerative diseases such as frontotemporal

dementia (Cruts and Van Broeckhoven, 2008), and rheumatoid

arthritis (Tang et al., 2011).

In the course of this study, it was reported that serum PGRN

concentrations in patients with type 2 diabetes are higher than

those in normal subjects (Youn et al., 2009). However, the role

of PGRN in insulin resistance and obesity remains unknown. In

the present study, we found that PGRN is a key adipokine that

mediates high fat diet (HFD)-induced insulin resistance, adipo-

cyte hypertrophy, and obesity through production of IL-6 in

adipose tissue and that it is a potential target for treating HFD-

induced obesity.

RESULTS

Identification of PGRN as an Adipokine Involved
in Insulin Resistance In Vitro
To identify proteins associated with insulin resistance in adipo-

cytes in vitro, differential proteome analysis using the NBS

method (Matsuo et al., 2009) was performed in 3T3-L1 adipo-

cytes in which insulin resistance was induced by TNF-a or dexa-

methasone, as outlined in Figure 1A. Expression levels of

proteins in these adipocytes were compared with those in

untreated adipocytes. The relative ratio of protein expressions

was estimated from the intensity of paired peaks with mass

difference of 6 Da derived from 13C0 and 13C6NBS-tagged

peptides in mass spectrum (Figure 1B). Since expression levels

of glyceraldehydes-3-phosphate dehydrogenase (GAPDH; aa

308-321; m/z 1933.1 [13C0], 1939.1 [13C6]) were not changed

by these treatments (Figure S1A available online), we used
C

GAPDH as an internal control. We found that 37 and 43 proteins

were upregulated by TNF-a treatment and dexamethasone

treatment, respectively, among which 21 proteins are common

in the two treatments (Figure S1D). We also found that 11 and

7 proteins were downregulated by TNF-a treatment and dexa-

methasone treatment, respectively, among which 2 proteins

are common in these treatments (Figure S1D). Identification of

haptoglobin, serum amyloid A-3 (SAA3) protein precursor, and

nicotinamide phosphoribosyltransferase, all of which are known

as adipokines to be upregulated by such treatment (Shoelson

et al., 2007; Lago et al., 2007; do Nascimento et al., 2004; Chiel-

lini et al., 2002), confirmed the validity of the method (Table S1).

After excluding known adipokines among the 23 proteins identi-

fied, we confirmed the results of differential proteome analysis

on 8 proteins by immunoblot analysis using antibodies currently

available. We finally selected progranulin (PGRN) because it

is the only protein with both secretory and proinflammatory

properties.

PGRN,detectedasanNBS-modifiedpeptidepair (m/z1634.70

[13C0], 1640.70 [13C6]), was upregulated in both TNF-a-treated

(1.66-fold versus control) and dexamethasone-treated (3.01-

fold versus control) adipocytes (Figures 1B and S1C). Using

tandem mass spectrometry (MS/MS) (Perkins et al., 1999), the

heavier peptide peak (m/z 1640.70 [13C6]) was found to match

the amino acid sequence (N-LNTGAWGCCPFAK-C) of trypsi-

nized peptide derived from PGRN with a 13C6NBS modification

of the tryptophan residue (MASCOT score 49, expected P-value

0.0018) (Figure S1B). Using immunoblot analysis, we confirmed

that PGRN detected as an 80 kDa protein was significantly

increased under both conditions (Figure S1E).

Induction of PGRN expression by TNF-a or dexamethasone

was completely blocked by pioglitazone (Figure 1C), a peroxi-

some proliferators-activated receptor (PPAR) g agonist that

improves insulin resistance (Olefsky, 2000). In addition, we found

that PGRN expression decreased with differentiation of the cells

(Figure 1D), as assessed by Pref-1, PPARg, and FAPB4. These

results indicate that PGRN expression is associated strongly

with insulin resistance at cell level.

PGRN Has a Causative Role in Insulin Resistance In Vivo
We investigated the role of PGRN in insulin resistance in vivo.

Among liver, skeletal muscle, and adipose tissues, which are

the major target tissues of insulin, PGRN was expressed at

high levels in epididymal fat, at moderate levels in mesenteric

fat, and at low levels in liver in wild-type mice but was not ex-

pressed in skeletal muscle (Figure 2A). PGRN levels were signif-

icantly increased in adipose tissues and liver by HFD but not in

skeletal muscle (Figures 2A, S2A, and S2B). Grn (the gene

symbol of PGRN) was also expressed in leukocytes, spleen,

and lung, which abundantly contain immune cells, but was not

increased by HFD in these cells and tissues (Figure 2B). Immu-

nohistochemistry of epididymal fat revealed PGRN to be

present in adipose tissue (Figure 2C) but the cellular distribution

was not clear. Therefore, we performed immunoblot analysis

of adipocytes and stromal vascular fraction (SVF) separated

from epididymal fat and found the presence of PGRN in both

adipocytes and stroma (Figure 2D). Expression levels of

PGRN were significantly increased by HFD in both fractions

(Figure 2D).
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Figure 1. Proteome Analysis of 3T3-L1 Adipocytes Treated with TNF-a or Dexamethasone

(A) Outline of NBS method for differential proteome analysis in 3T3-L1 adipocytes. Proteins from untreated adipocytes were tagged with 13C0NBS reagents and

those from TNF-a-treated or dexamethasone-treated were tagged with 13C6NBS reagents. Relative quantification of the NBS-tagged proteins in the two samples

was performed from the MS spectra; proteins were then identified by a database search using queries based on data from the MS/MS spectra.

(B) MS spectrum of NBS proteome analysis. Inset shows 13C0NBS- and
13C6NBS-tagged peptide (LNTGAWGCCPFAK) from PGRN. The asterisk shown in the

peptide sequence indicates the tryptophan residue with a NBS modification.

(C) Effect of pioglitazone (Pio) on PGRN expression in 3T3-L1 adipocytes treatedwith TNF-a or dexamethasone. Quantitative data are presented asmeans ± SEM

from three independent experiments. *p < 0.05; **p < 0.01 (Student’s unpaired t-test).

(D) Changes in PGRN expression during adipocyte differentiation. The differentiation of 3T3-L1 preadipocytes were initiated by addition of differentiationmedium

at Day 0. PGRN, Pref-1, PPARg, FABP4, and ACTIN expressions were determined by immunoblot analysis. Data are representative of three independent

experiments.
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We then examined Grn expression in ob/obmice, a well-char-

acterized obese and insulin resistance model (Friedman and

Halaas, 1998). Grn expression in ob/ob mice was upregulated

in both peritoneal and subcutaneous white adipose tissues

(WAT) but not in brown adipose tissue (BAT), as compared

with that of ob/+ mice (Figure 2E, left). Serum PGRN levels of

ob/obmice were also higher than those of ob/+ mice (Figure 2E,

right). Immunohistochemistry of epididymal fat revealed that
40 Cell Metabolism 15, 38–50, January 4, 2012 ª2012 Elsevier Inc.
PGRN was detected predominantly in macrophages (as as-

sessed by Mac-3 costaining) and also was present in the cyto-

plasm of adipocytes (Figure 2F).

ob/ob mice treated with pioglitazone exhibited a significant

improvement of glucose tolerance (Figure S2D) and increases

in expressions of TZD/PPARg-dependent genes in adipose

tissues (Table S2) but no significant change in body weight (Fig-

ure S2C). Under these conditions, Grn expressions in both
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peritoneal and subcutaneous WAT but not in BAT were de-

creased significantly (Figure 2G, left). Pioglitazone also normal-

ized serum PGRN levels (Figure 2G, right). These results indicate

that PGRN levels in both adipose tissues and blood are associ-

ated with insulin resistance and obesity in vivo.

To determine whether PGRN causes insulin resistance in vivo

directly, recombinant mouse PGRN (rmPGRN) was adminis-

trated intraperitoneally to wild-type (WT) mice under standard

diet (SD) condition. We found that serum PGRN levels increased

about 2.4-fold within 1 hr after administration and were kept

constant for 24 hr onward (Figure S2E); we also found that

PGRN levels increased about 2.0–2.5-fold after treatment with

rmPGRN for 14 days (Figure S2F). This level of increased serum

PGRN is similar to that observed in obese (ob/ob) mice (Fig-

ure 2G, right). Under these conditions, the fasting insulin level

in the mice tended to increase (Figure S2I) despite no change

in either body weight or blood glucose level (Figures S2G,

and S2H). We also found that WT mice treated with rmPGRN

for 14 days exhibited insulin resistance, as assessed by insulin

tolerance test (ITT) (Figure 2H). Thus, PGRN has a causative

role in insulin resistance in vivo. These findings indicate that

PGRN is associated with insulin resistance and obesity and

that PGRN directly causes insulin resistance in vivo.

Ablation of Grn Prevents HFD-Induced Obesity
and Insulin Resistance In Vivo
To clarify the physiological and pathophysiological roles of

PGRN directly, we utilizedGrn deficient (Grn�/�) mice (Kayasuga

et al., 2007). The body weight of Grn�/� mice fed SD was similar

to that of WT mice (Figure 3A,top left), whereas the body weight

of Grn�/� mice fed HFD was significantly lower than that of WT

mice (Figure 3A, top right), despite similar food intake (Figure 3A,

bottom). In addition, Grn�/� mice fed HFD exhibited a marked

reduction in deposition of peritoneal fat compared to WT mice

(Figure 3C, left) as well as in fat mass of both visceral and subcu-

taneous fat pad (Figure 3B). Immunohistochemistry revealed that

the size of adipocytes in epididymal fat pads ofGrn�/� mice was

significantly smaller than that of WT mice (Figures 3C, middle,

and 3D) and that infiltration of mac-3 positive inflammatory cells

was significantly less in Grn�/� mice than that in WT mice under

HFD condition (Figures 3C,right, and 3E). In addition, glucose

intolerance induced by HFD was improved in Grn�/� mice with

a decrease in serum insulin levels (Figures 3F and S3A), suggest-

ing enhanced insulin sensitivity in Grn�/� mice. Indeed, insulin

tolerance test confirmed that insulin resistance induced by

HFD, which was seen in WT mice, was prevented in Grn�/�

mice (Figure 3G). These results indicate that ablation of Grn

prevents HFD-induced obesity and insulin resistance in vivo.

PGRN Impairs Insulin Signaling in Adipocytes
Since PGRN has been shown to be involved in the PI3K/Akt

signaling pathway (He and Bateman, 2003; Youn et al., 2009;

Zanocco-Marani et al., 1999; Lu and Serrero, 2001), we rea-

soned that PGRN might directly affect insulin signaling in

3T3-L1 adipocytes. Although PGRN treatment did not affect

phosphorylation of insulin receptor (IR) (Figure 4A), it decreased

insulin-stimulated phosphorylation of both insulin receptor

substrate (IRS)-1 (Figure 4A) and Akt in a dose-dependent

manner (Figure 4B). PGRN treatment also suppressed insulin-
C

stimulated glucose uptake (Figure 4C). To further confirm the

involvement of PGRN in insulin signaling, we utilized shRNA

against Grn. The phosphorylations of both IRS-1 and Akt were

increased at basal state and were further increased by insulin

treatment inGrn knockdown (KD) adipocytes compared to those

of respective controls, but the phosphorylation of IR was not

changed (Figures 4D and 4E). In addition,Grn KD also enhanced

insulin-stimulated glucose uptake (Figure 4F). Furthermore, the

TNF-a-induced decrement of insulin-stimulated Akt phosphory-

lation was reduced byGrn KD (52% in control versus 24% in KD)

(Figure 4G). These results indicate that PGRN in adipocytes

impairs insulin signaling downstream of IR and suppresses

insulin-stimulated glucose uptake and that PGRN mediates

TNF-a-induced insulin resistance at cell level.

PGRN Mediates TNF-a-Induced Insulin Resistance
through IL-6 Expression in 3T3-L1 Adipocytes
To clarify the mechanism by which PGRN mediates insulin re-

sistance at cell level, we first examined the expressions of adipo-

genic genes (Pparg and Cebpa), adipose-specific genes (Fabp4

and Glut4), and inflammatory adipokines (Lep, Il6, Tnf, and Ccl2)

that are involved in the development of insulin resistance.

Expressions of Pparg and Cebpa in Grn KD adipocytes were

decreased significantly compared to control (Figure 5A). Among

Lep, Il6, Tnf, andCcl2, which are known to be induced by TNF-a,

induction of Il6was blocked completely inGrn KD 3T3-L1 adipo-

cytes (Figure 5A). IL-6 has been reported to induce insulin resis-

tance through JAK/STAT signaling and suppression of cytokine

signaling-3 (SOCS3) in both adipocytes and hepatocytes (He

et al., 2002; Rotter et al., 2003; Fasshauer et al., 2004; Ueki

et al., 2004; Emanuelli et al., 2001; Howard and Flier, 2006).

We found that PGRN induced both Il6 and Socs3 expression in

a dose-dependent manner (Figures 5B and 5C). In addition,

induction of STAT3 phosphorylation and Socs3 expression by

TNF-a were also abolished in Grn KD adipocytes (Figures 5D

and 5E). These results indicate that PGRNpromotes IL-6 expres-

sion in adipocytes and suggest that the resultant increase in IL-6

enhances SOCS3 expression through activating JAK-STAT

signaling, leading to insulin resistance in adipocytes.

PGRN Mediates HFD-Induced Insulin Resistance
through IL-6 Expression in Adipose Tissue In Vivo
We then examined expressions of the genes involved in adipo-

cyte hypertrophy and inflammation in adipose tissue. In epidid-

ymal fat of Grn�/� mice, expressions of Pparg and Cebpa,

Fabp4, Glut4, and Adipoq decreased significantly compared to

those in WT mice (Figure 6A). HFD-induced elevations of inflam-

matory markers Il6, Tnf, and Emr1were found inWTmice but not

in Grn�/� mice (Figure 6A).

Among Il6, Tnf, and Ccl2 induced by HFD, induction of Il6 was

blocked almost completely in adipose tissue ofGrn�/�mice (Fig-

ure 6A), as was found in Grn KD adipocytes (Figure 5A). In addi-

tion, HFD-induced elevation of serum IL-6 concentration was

also blocked markedly in Grn�/� mice (Figure 6B). Moreover,

HFD-induced Socs3 expressions were completely diminished

in both epididymal fat and liver in Grn�/� mice (Figures 6C and

6D). Because expression of Il6 in liver was not changed by

HFD (Figure 6E), HFD-induced SOCS3 expression is likely to

be mediated by IL-6 derived from adipose tissue.
ell Metabolism 15, 38–50, January 4, 2012 ª2012 Elsevier Inc. 41
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Figure 2. Relationship between PGRN and Insulin Resistance In Vivo

(A) Immunoblot analysis of PGRN in epididymal fat (EF; 6 mg/lane, n = 5), mesenteric fat (MF; 6 mg/lane, n = 5), liver (12 mg/lane, n = 5), and skeletal muscle

(12 mg/lane, n = 5) in 26-week-old C57BL/6J mice fed standard diet (SD) or high fat diet (HFD).

(B) mRNA expression ofGrn in EF,MF, subcutaneous fat (SF), brown adipose tissue (BAT), spleen, leukocytes, lung, and brain in 23-week-old C57BL/6Jmice (n =

5) fed SD or HFD.

(C) Immunohistochemistry of PGRN in EF of 11-week-old C57BL/6J mice on SD. Immunoreactivities of PGRN (red arrow) are shown. Scale bar, 50 mm.

(D) Immunoblot analysis of PGRN in stromal vascular fraction (SVF) and adipocytes from EF of 33-week-old C57BL/6J mice (SD, n = 5; HFD, n = 5).

(E) PGRN levels in adipose tissues (left) and serum (right) of ob/+ (n = 5) and ob/ob (n = 5) mice. Grn expression in EF, MF, SF, and BAT at 10-week-old were

quantified by quantitative real-time RT-PCR analysis, and serum concentrations of PGRN were measured by ELISA assay.

(F) Immunofluorescent staining of PGRN and mac-3, and nuclear counterstaining with DAPI in EF of 14-week-old ob/ob mice. Arrows indicate mac-3 positive

cells. Scale bars, 25 mm.

(G) Effect of pioglitazone (Pio) on PGRN levels in adipose tissues (left) and serum (right) of ob/obmice. Pio (n = 5) or vehicle (n = 4) was administered to ob/obmice

for 7 days. Grn expressions in adipose tissues and serum concentrations of PGRN were quantified by quantitative real-time RT-PCR analysis and ELISA assay,

respectively.
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Neutralizing IL-6 Improves PGRN-Induced Insulin
Resistance In Vivo
To ascertain that IL-6mediates PGRN-induced insulin resistance

in vivo, we utilized neutralizing antibody against IL-6. We found

that PGRN level was increased about 2.1-fold after chronic treat-

ment of WTmice fed SD with rmPGRN (20 mg/day) once daily for

3 weeks (Figure S4A). Under this condition, the increased fasting

serum insulin level in themice treated with rmPGRN tended to be

decreased by neutralizing antibody against IL-6 despite no

change in either body weight or blood glucose level (Figures

S4B–S4D). Importantly, ITT reveals that insulin resistance

induced by rmPGRN was significantly improved by neutralizing

antibody against IL-6 (Figure 7) without change in body weight

(Figure S4B), indicating that IL-6 is a mediator of PGRN-induced

insulin resistance in vivo.

DISCUSSION

In the present study, we found that PGRN is a key adipokine

mediating HFD-induced insulin resistance and obesity through

IL-6 in adipose tissues. Despite an extensive search for novel

adipokines, PGRN has not been reported as an adipokine to

date. The NBS method used here has an advantage in reducing

the complexity of analysis by targeting peptides containing tryp-

tophan, which is the least abundant amino acid but is wide-

spread in proteins (Matsuo et al., 2009), and has permitted iden-

tification of PGRN as an adipokine.

Proinflammatory adipokines, which are secreted from adipo-

cytes and/ormacrophages in adipose tissue, induce a low-grade

chronic inflammatory state that plays a critical role in insulin

resistance associated with obesity (Hotamisligil, 2006; Wellen

and Hotamisligil, 2005; Weisberg et al., 2003; Xu et al., 2003).

However, the molecular basis for adipocyte hypertrophy and

the inflammation process underlying obesity is not fully under-

stood. PGRN caught our attention because it is a secreted

protein associated with proinflammatory properties and, there-

fore, is a strong candidate for an adipokine involved in insulin

resistance. PGRN has been characterized as the precursor of

granulins (GRNs), some of which have been shown to modulate

inflammation and wound repair (He and Bateman, 2003). The

physiological and pathophysiological functions of PGRN are

complex: PGRN has both anti-inflammatory and proinflamma-

tory properties (Zhu et al., 2002; Kessenbrock et al., 2008; He

and Bateman, 2003). It has been suggested that the full-length

form of the protein has trophic and anti-inflammatory activity,

whereas proteolytic cleavage generates GRNs that promote

inflammatory activity (Eriksen and Mackenzie, 2008). However,

we found that PGRN levels were increased in the insulin resistant

state both in vivo and in vitro and that PGRN induced the expres-

sion of IL-6, a proinflammatory adipokine. Accordingly, PGRN in

adipose tissues may well participate in chronic inflammation

associated with insulin resistance and obesity. A recent study

has shown that PGRN binds to TNF receptor and prevents
(H) Induction of insulin resistance by administration of recombinant PGRN in viv

administered to C57BL/6J mice once daily for 14 days (n = 7) under SD conditi

glucose levels were determined at the indicated times after intraperitoneal injectio

All data are means ± SEM. *p < 0.05; **p < 0.01 in (A), (B), (D), (E), left of (G), (H) (St

C

mice from inflammatory arthritis by blocking interaction with

TNF-a (Tang et al., 2011). Thus, it is possible that PGRN has

dual roles in inflammation and exerts proinflammatory or anti-

inflammatory function in different tissues.

In the present study, we also found that ablation of PGRN

protected against HFD-induced obesity and insulin resistance

in vivo. Although Grn�/� mice were originally reported to

exhibit offensive behavior against intruders, the mice did not

show hyperactivity under SD condition (Kayasuga et al.,

2007). In addition, neither energy metabolism nor locomotor

activity under HFD condition was investigated in their study.

To determine whether hyperactive behavior and/or energy

expenditure contributed to the development of obesity in

Grn�/� mice, we measured locomotor activity and performed

respiratory gas analysis before the development of obesity in

these mice. Grn�/� mice exhibited neither hyperactivity (Fig-

ure S3B) nor increased energy expenditure (Figures S3C–S3I)

under SD or HFD condition. It is unlikely, therefore, that the

protective phenotype against HFD-induced obesity is due to

hyperactivity. Interestingly, the respiratory quotient in Grn�/�

mice fed HFD was significantly lower at dark phase, suggest-

ing that ablation of PGRN suppressed HFD-induced obesity

by consuming lipids more preferentially than carbohydrate

(Figure S3H).

We have also found that PGRN induces insulin resistance

through IL-6 both in vivo and in vitro. It has been hypothesized

that chronic increase of IL-6 plays a role in causing insulin resis-

tance associated with obesity. IL-6 alters insulin signaling differ-

ently in various tissues (Mooney, 2007). The IL-6 / STAT3

pathway is required for the action of insulin signaling in the brain

on hepatic gluconeogenesis (Wallenius et al., 2002; Inoue et al.,

2006). Therefore, IL-6 has both central and peripheral roles in

metabolism and its effects on systemic insulin resistance are

complex. However, IL-6 expression in adipose tissue is known

to contribute to developing chronic inflammatory states, such

as obesity (Senn et al., 2002; Fried et al., 1998; Shoelson et al.,

2007). In addition, it has been shown that circulating IL-6 is

elevated in obese, diabetic subjects (Pickup et al., 1997; Kern

et al., 2001) and that adipose tissue is a major site of IL-6 secre-

tion, accounting for 15%–35% of circulating levels (Fried et al.,

1998; Mohamed-Ali et al., 1997). Considered with our finding

that adipose tissue is a major source of increased PGRN in the

blood of mice fed HFD, PGRN may well induce IL-6 expression

in adipose tissues in obesity.

The mechanisms by which IL-6 inhibits insulin signaling have

been studied extensively in adipocytes and hepatocytes

(Mooney, 2007). IL-6 has been shown to attenuate insulin

signaling, which is mediated by increasing SOCS3 expression

through activation of JAK-STAT signaling in adipocytes and

hepatocytes (Ueki et al., 2004; Shi et al., 2004; Senn et al.,

2003; Emanuelli et al., 2001). SOCS3 impairs tyrosine phosphor-

ylation of IRS-1 by direct interaction and promotes proteasomal

degradation of IRS-1 (Ueki et al., 2004; Emanuelli et al., 2001).
o. Recombinant mouse PGRN (rmPGRN, i.p. 20 mg/day) or PBS (vehicle) was

on. Insulin sensitivity was assessed by insulin tolerance test (ITT) (left). Blood

n of insulin (0.5 IU/kg). Inverse area under curve (AUC) of ITT was shown (right).

udent’s unpaired t-test) and in right (G) (Dunnet’s method); N.S., not significant.
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Figure 3. Prevention of High Fat Diet-Induced Insulin Resistance, Adipocyte Hypertrophy, and Obesity by Ablation of Grn In Vivo

(A) Changes in body weight and food consumption on SD or HFD. Changes in body weights in WT (SD, n = 8, HFD, n = 8) andGrn�/� (SD, n = 5, HFD, n = 9) mice

were measured. Food consumptions in WT (n = 11) and Grn�/� (n = 9) mice fed SD or HFD for 1 week are shown as food intake (g) per day.

(B) Tissue weight of WATs in WT (SD, n = 8; HFD, n = 8) and Grn�/� mice (SD, n = 8; HFD, n = 7).

(C-E) Gross appearance (C left), histology (H&E staining: C middle, mac-3 immunostaining: C right), adipocyte diameter (n = 100) (D), and number of mac-3

positive cells (n = 10) (E) in epididymal fat of WT and Grn�/� mice. Red arrows indicate mac-3 positive cells. Scale bars, 50 mm.

(F) Oral glucose tolerance test. Blood glucose (left) and serum insulin (right) levels inWTmice (SD, n = 8; HFD, n = 10) andGrn�/�mice (SD, n = 5; HFD, n = 9) were

determined at the indicated times after oral administration of glucose.

(G) Insulin tolerance test (ITT). Blood glucose levels in WT (SD, n = 8; HFD, n = 9) and Grn�/� (SD, n = 5; HFD, n = 9) mice were determined at the indicated times

after intraperitoneal injection of insulin (0.3 IU/kg) (left). Insulin sensitivity was assessed by inverse AUC of ITT (right).

All data are means ± SEM. *p < 0.05; **p < 0.01 in (A), (B), (D), (E), (F) (Student’s unpaired t-test), and in (G), compared with WT mice fed SD (Dunnet’s method);

N.S., not significant.
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Figure 4. Inhibition of Insulin Signaling by PGRN in

3T3-L1 Adipocytes

(A) Effects of exogenous PGRN on IR and IRS-1 phos-

phorylation. 3T3-L1 adipocytes were treated with various

concentrations of recombinant mouse PGRN protein

(rmPGRN) for 20 hr and subsequently stimulated with

100 nM of insulin for 10 min. Activation of insulin signaling

was then assessed by phosphorylation of IR (Tyr1146)

and tyrosine phosphorylation of immunoprecipitated (IP)

IRS-1.

(B) Effect of exogenous PGRN on Akt phosphorylation

(n = 4). 3T3-L1 adipocytes were treated with various

concentrations of rmPGRN for 4 hr and subsequently

stimulated with 10 nM of insulin for 10 min. Activation of

insulin signaling was then assessed by phosphorylation of

Akt (Ser743).

(C) Effects of exogenous PGRN on glucose uptake.

3T3-L1 adipocytes were treated with various concentra-

tions of rmPGRN for 20 hr and subsequently stimulated

with 10 nM of insulin for 10 min (n = 3).

(D) Effects of Grn knockdown (KD) on IR and IRS-1

phosphorylation. 3T3-L1 adipocytes were infected with

adenovirus carrying shRNA for Grn (GrnshRNA) or adeno-

virus carrying nontarget shRNA (control) at MOI of 100.

Activation of insulin signaling was then assessed by

phosphorylation of IR (Tyr1146) and tyrosine phosphory-

lation of immunoprecipitated (IP) IRS-1.

(E) Effect of Grn KD on insulin-stimulated Akt phosphor-

ylation. Insulin-stimulated Akt phosphorylation in KD or

control cells was analyzed by immunoblot analysis (n = 4).

(F) Effects of Grn KD on glucose uptake (n = 3).

(G) Effect of Grn KD on the suppression by TNF-a of

insulin-stimulated Akt phosphorylation. KD or control cells

were treated with 10 ng/ml TNF-a for 16 hr. Insulin-

stimulated Akt phosphorylation was then analyzed by

immunoblot analysis (n = 4).

All data are means ± SEM. *p < 0.05; **p < 0.01; ***p <

0.0005 in (B), (C) (Dunnet’s method) and in (E), (F), (G)

(Student’s unpaired t-test); N.S., not significant.
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Thus, the finding that PGRN in vitro impairs insulin signaling

downstream of IR andmeditates TNF-a-induced IL-6 expression

implicates IL-6 as a mediator of PGRN-induced insulin resis-

tance in adipocytes.

In the present study, we also found that neutralizing antibody

against IL-6 improved PGRN-induced insulin resistance in vivo.

Treatment with IL-6 enhances hepatic insulin resistance (Klover

et al., 2003; Lagathu et al., 2003), while neutralization of IL-6

by administration of antibody specific for IL-6 reduces HFD-

induced insulin resistance (Klover et al., 2005). It has been re-

ported also that reduced expression of IL-6 in adipose tissues

by adipocyte-specific deficiency of JNK potentiates hepatic

insulin sensitivity and prevents mice from the development of

insulin resistance by HFD (Sabio et al., 2008). Taken together,

these findings suggest that PGRN in adipose tissues triggers

systemic insulin resistance by elevating levels of IL-6 in adipose

tissues and blood.
Cell Metabolism 1
SOCS3 has been shown to be a physiological

regulator of insulin signaling in both hepato-

cytes and adipocytes (Rønn et al., 2007).

SOCS3 expression was found to be elevated

in adipose tissue of obese mice (Emanuelli
et al., 2001). In addition, ablation of Socs3 in liver improved

hepatic insulin sensitivity (Torisu et al., 2007; Sachithanandan

et al., 2010). Considered together with our present findings,

SOCS3 might, therefore, contribute to the development of

systemic insulin resistance by PGRN through elevated levels of

IL-6.

In conclusion, PGRN is a key adipokine that mediates HFD-

induced insulin resistance and obesity through IL-6 and may

be a promising therapeutic target for preventing obesity.

EXPERIMENTAL PROCEDURES

Mice

We obtained male C57BL/6J from CLEA Japan (Tokyo, Japan), and ob/ob and

ob/+ mice from Charles River Japan (Yokohama, Japan). Grn+/� mice were

purchased from RIKEN BioResource Center (BRC) (Tsukuba, Japan). Geno-

typing of Grn�/� mice was performed as described previously (Kayasuga

et al., 2007). C57BL/6J mice were fed HFD from 7 through 33 weeks of age.
5, 38–50, January 4, 2012 ª2012 Elsevier Inc. 45
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Figure 5. Effects of Grn Knockdown or PGRN

Treatment on Il6 and Socs3 Expressions in 3T3-L1

Adipocytes

(A) Quantitative real-time RT-PCR analysis of various

genes in Grn KD adipocytes (n = 6). 3T3-L1 adipocytes

infected with adenovirus carrying GrnshRNA or adenovirus

carrying nontarget shRNA (control) at MOI of 100 were

treated with or without 10 ng/ml TNF-a for 16 hr.

(B) Effect of exogenous PGRN on Il6mRNA expression. Il6

expression in 3T3-L1 adipocytes treated with indicated

concentrations of recombinant PGRN protein for 16 hr

were examined by quantitative real-time RT-PCR analysis

(n = 6).

(C) Effect of exogenous PGRN on Socs3 mRNA expres-

sion (n = 6). Socs3 expression in 3T3-L1 adipocytes

treated with indicated concentrations of recombinant

PGRN protein for 16 hr were examined by quantitative

real-time RT-PCR analysis.

(D) Quantitative real-time RT-PCR analysis of Socs3 inGrn

KD adipocytes (n = 6). Grn KD and control 3T3-L1 adipo-

cytes were treated as in (A).

(E) Effect of Grn KD on TNF-a stimulated STAT3 phos-

phorylation (n = 6). STAT3 phosphorylation in KD and

control 3T3-L1 adipocytes treated as in (A) was analyzed

by immunoblot analysis.

All data are means ± SEM. *p < 0.05; **p < 0.01 in (A), (D),

and (E) (Tukey-Kramer’s method) and in (B) and (C)

(Dunnet’s method); N.S., not significant.
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Grn�/� mice were fed HFD from 5 through 17 weeks of age. The SD (CE-2,

CLEA Japan) supplied 4.8% of calories as fat with an energy density of

3.43 kcal/g. The HFD (D12492, Research Diet Inc., NJ) supplied 60% of calo-

ries as fat with an energy density of 5.24 kcal/g. Animal care and experimental

procedures were approved by the Institutional Animal Care and Use

Committee and carried out according to the Kobe University Experimentation

Regulations.

Cell Culture

3T3-L1 cells were purchased from the American Tissue Culture Collection

(Manassas, VA) and maintained at 37�C in a humidified atmosphere of 5%

CO2–95% air in Dulbecco’s modified Eagle’s medium (DMEM) containing

5.6 mM glucose (Wako) supplemented with 10% (vol/vol) heat-inactivated

newborn calf serum (Invitrogen, Carlsbad, CA). Differentiation medium, which

consists of DMEM containing 25 mM glucose supplemented with 10% fetal

bovine serum (FBS) (Hyclone, Logan, UT), 0.5 mM isobutylmethylxanthine
46 Cell Metabolism 15, 38–50, January 4, 2012 ª2012 Elsevier Inc.
(IBMX), 5 mg/ml insulin, and 1 mM dexamethasone was

added to preadipocytes 2 days after reaching confluence

(day 0). On day 3, the medium was replaced with DMEM

containing 25 mM glucose, 10% FBS and 5 mg/ml

insulin. From day 5 onward, cells were maintained in

DMEM containing 25 mM glucose and 10% FBS, with

a media change every other day until experimental treat-

ments were initiated. Dexamethasone (20 nM) or TNF-a

(4 ng/ml) was added to mature adipocytes at any time

from day 8 to day 14 of differentiation. Media containing

TNF-a was changed daily for a total incubation period

of 4 days. Media containing dexamethasone was

changed every other day for a total of 8 days. Cells

were then collected by scraping and were lysed in buffer

containing 6 M guanidine-HCl, 50 mM Tris-HCl (pH 8.0),

2 mM EDTA, 1 mM phenylmethylsulfonyl fluoride

(PMSF), 10 mg/ml leupeptin, and 10 mg/ml aprotinin)

for NBS reagent labeling, or in TNE buffer [1% (w/w)

Nonidet-P40, 150 mM NaCl, 20 mM Tris-HCl (pH 7.4),
2 mM EDTA, 10 mg/ml leupeptin, 10 mg/ml aprotinin, 5 mM mercaptoethanol,

1 mM PMSF, 1 mM Na3VO4, 10 mM Na2MoO4, 50 mM NaF] for immunoblot

analysis.

NBS Tagging, Peptide Fractionation, and Mass Spectrometry

NBS tagging was performed according to the manufacturer’s protocol

(13CNBS stable isotope labeling kit-N; Shimadzu Biotech, Kyoto, Japan).

Briefly, each cell lysate (each containing 200 mg of protein) was labeled with

isotopically 13C0NBS or 13C6NBS reagent. NBS-tagged proteins were then

mixed, reduced, alkylated, and digested by trypsin. NBS-tagged peptides

were enriched and separated by reversed-phase liquid choromatography

(LC-10ADvp mHPLC System; Shimadzu, Kyoto, Japan) as described previ-

ously (Matsuo et al., 2009). Eluates were automatically deposited onto MALDI

target plates by the LC spotting system (AccuSpot; Shimadzu). These spotted

samples were automatically analyzed by MALDI-TOF MS (AXIMA-CFR Plus or

AXIMA-TOF2; Shimadzu/Kratos, Manchester, UK).



A

B

P
p
a
rg

C
e
b
p
a

F
a
b
p
4

G
lu
t4

A
d
ip
o
q

L
e
p

Il
6

T
n
f

C
c
l2

G
rn

E
m

r1

Grn

Grn

N.S.

WT Grn
-/-

N.S.

*

R
el

at
iv

e 
S

o
c
s
3

 
m

R
N

A 

N.S.

C

D E

N.S.

N.S.

R
el

at
iv

e 
S

o
c
s
3

 
m

R
N

A 

R
el

at
iv

e 
I
l6

 
m

R
N

A 

WT Grn
-/-

WT Grn
-/-

WT Grn
-/-

Figure 6. Effects of Grn Deficiency on HFD-

Induced Elevation of IL-6 and SOCS3 In Vivo

(A) Quantitative real-time RT-PCR analysis of EF of WT

(SD, n = 8; HFD, n = 8) and Grn�/� mice (SD, n = 7; HFD,

n = 5).

(B) Serum concentrations of IL-6 in WT (SD, n = 19; HFD,

n = 27) and Grn�/� mice (SD, n = 15; HFD, n = 22).

(C) Quantitative real-time RT-PCR analysis of Socs3 in

EF ofWT (SD, n = 8; HFD, n = 8) andGrn�/�mice (SD, n = 7;

HFD, n = 5).

(D) Quantitative real-time RT-PCR analysis ofSocs3 in liver

of WT (SD, n = 6; HFD, n = 8) and Grn�/� mice (SD, n = 7;

HFD, n = 7).

(E) Quantitative real-time RT-PCR analysis of Il6 in liver of

WTmice (SD, n = 6; HFD, n = 8) andGrn�/�mice (SD, n = 7;

HFD, n = 7).

All data are means ± SEM. *p < 0.05; **p < 0.01 (Tukey-

Kramer’s method); N.S., not significant.
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RelativeQuantification and Identification of Differentially Expressed

Proteins

Relative quantification between 13C0NBS- and
13C6NBS-tagged peptides was

performed using the proteome analysis assistant software for relative quanti-

fication, TWIP Version 1.0 (DYNACOM, Chiba, Japan), referring to a monoiso-

topic mass list from MASCOT Distiller Ver. 1.1.2 (Matrix Science, London, UK)

as described previously (Matsuo et al., 2009). Threshold values of 13C6/
13C0

ratios in NBS-tagged peptide pairs were set to either larger than 1.25 or less

than 0.8. Candidate peptides having significant difference in peptide pair ratios

were selected and further subjected to MS/MS analysis (AXIMA-QIT-TOF MS;

Shimadzu / Kratos). Proteins were identified by MASCOT MS/MS Ion Search

algorithm (Version 2.0; Matrix Science) using mass lists generated by
Cell Metabolism 1
MASCOT Distiller. The Mascot search parameters were

as follows: trypsin digestion allowing up to 2missed cleav-

ages, fixedmodifications of 13C0NBS (or 13C6NBS) (W) and

carbamidomethyl (C), variable modifications of oxidation

(M), peptide tolerance of 0.3 Da, and MS/MS tolerance

of 0.5 Da. Search results with p values less than 0.05

were judged as positive identifications.

Fractionation of Epididymal White Adipose Tissue

Epididymal white adipose tissues (WAT) dissected from

mice were minced and digested with 2 mg/ml collagenase

P (Roche, Mannheim, Germany) in DMEM containing 1%

BSA and antibiotics for 45 min at 37�C. The digested

tissues were passed through a nylon mesh filter (pore

size, 150 mm) to remove undigested material, and the

filtrates were centrifuged for 5 min at 250 x g. Floating cells

and the pellet was recovered as the mature adipocyte

fraction and the SVF, respectively, and washed twice

with phosphate buffered-saline (pH 7.4).

Treatment of ob/ob Mice with Pioglitazone

Pioglitazone (30 mg/kg) or vehicle (0.25% carboxymethyl

cellulose) was administered orally to 13-week-old ob/ob

mice once daily for 7 consecutive days.

Preparation of Recombinant PGRN

Mouse PGRN (mPGRN) cDNA clone, MGC Image clone,

was purchased from Invitrogen. pCAGIPuro-FLAG-

mPGRN was constructed by subcloning the insert encod-

ing the mPGRN without signal peptide (amino acid 18 to

589), into pCAGIPuro-FLAG (Satoh-Horikawa et al.,

2000). To prepare CHO-K1 cells stably expressing the

FLAG-tagged mPGRN, CHO-K1 cells were transfected

with pCAGIPuro-FLAG-mPGRN construct by electro-

poration. Stably expressed cells were maintained in CD
OptiCHO medium (Invitrogen) supplemented with 10 mg/ml puromycin

(SIGMA), 4 mM GlutaMAX (Invitrogen) 1 3 HT supplement (Invitrogen), and

10 mg/ml insulin (SIGMA). Culture supernatants were collected and subjected

to anti-FLAG M1 agarose affinity gel (SIGMA) column. The column was

washed with 50 mM Tris-HCl (pH7.5), 150 mM NaCl and 1 mM CaCl2, and

then eluted with 50 mM Tris-HCl (pH7.5), 150 mM NaCl, and 2 mM EDTA.

The eluted proteins were dialyzed against PBS.

Statistical Analysis

The data are expressed as means ± SEM. Comparisons were made using

Student’s t-test, Dunnet’s method or Tukey-Kramer’s method as indicated

in the legends. A P value of < 0.05 was considered statistically significant.
5, 38–50, January 4, 2012 ª2012 Elsevier Inc. 47



Figure 7. Effects of Neutralizing Antibody against

IL-6 on Insulin Resistance Induced by PGRN In Vivo

Recombinant mouse PGRN (rmPGRN, i.p. 20 mg/day) or

PBS (control) was administered to C57BL/6J mice once

daily for 21 days (n = 7). Neutralizing antibody against IL-6

(n = 7) or IgG (n = 6) was administered to the mice 72 hr

before ITT. Insulin sensitivity was assessed by inverse

AUC (right) of ITT (left) (insulin injection: 0.3 IU/kg).

All data are means ± SEM. *p < 0.05 (Tukey-Kramer’s

method); N.S., not significant.
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D.E. (2008). Proteinase 3 and neutrophil elastase enhance inflammation in

mice by inactivating antiinflammatory progranulin. J. Clin. Invest. 118,

2438–2447.

Klover, P.J., Zimmers, T.A., Koniaris, L.G., and Mooney, R.A. (2003). Chronic

exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes

52, 2784–2789.

Klover, P.J., Clementi, A.H., and Mooney, R.A. (2005). Interleukin-6 depletion

selectively improves hepatic insulin action in obesity. Endocrinology 146,

3417–3427.

Kuyama, H., Watanabe, M., Toda, C., Ando, E., Tanaka, K., and Nishimura, O.

(2003). An approach to quantitative proteome analysis by labeling tryptophan

residues. Rapid Commun. Mass Spectrom. 17, 1642–1650.

Lagathu, C., Bastard, J.P., Auclair, M., Maachi, M., Capeau, J., and Caron, M.

(2003). Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and

induced insulin resistance in adipocyte: prevention by rosiglitazone.

Biochem. Biophys. Res. Commun. 311, 372–379.
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