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Abstract The significance of the Soil Water Characteristic Curve (SWCC) or soil retention curve in
understanding the unsaturated soils behavior such as shear strength, volume change and permeability
has resulted in many attempts for its prediction. In this regard, the authors had previously developed
two models, namely. Genetic-Based Neural Network (GBNN) and Genetic Programming (GP). These two
models have identical set of input parameters. These parameters include void ratio, initial water content,
clay fraction, silt content and logarithm of suction normalized with respect to air pressure. In this paper,
performance of these two models is further investigated using additional test data. For this purpose, soil
samples from14different locations in Shiraz city in the Fars province of Iran are tested and their SWCCs are
established, using a pressure plate apparatus. Next, the results are used to demonstrate the suitability of
the previously proposed models and to evaluate relative importance of the input parameters. Assessment
of the results indicates that predictions from GBNNmodel have relatively higher accuracy as compared to
GP model.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Compacted fine soils are often used in landfills and foun-
dations of many structures. As compacted soil barriers are
frequently unsaturated, modeling of flow and transport in
these soils requires knowledge of their unsaturated hydraulic
properties. SWCC, which relates suction (matric or total) to
water content or degree of saturation, is an important part of
any constitutive relationship for unsaturated soils. SWCC can
be expressed as a continuous sigmoidal function, describing
the water storage capacity of a soil as it is subjected to vari-
ous soil suctions. SWCC includes important information about
the amount of water contained in the pores at any soil suction
and the pore size distribution, corresponding to the stress state
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in the soil. Unsaturated soil behavior such as shear strength,
volume change, diffusivity and absorption, as well as most of
soil properties such as specific heat, permeability and thermal
conductivity can also be related to the soil water characteristic
curve [1].

The methods for predicting the SWCC of a particular soil can
be classified into five groups as follows:
1. Fitting type equations for the SWCC. In this group of

equations a simple mathematical equation is fitted to
the experimental data, and the unknown parameters are
determined [2–4].

2. Water contents at different suctions are correlated to spe-
cific soil properties such as D10 (sieve size for 10% passing)
and porosity. This process generally requires a regression
analysis followed by a curve fitting procedure [5,6].

3. Correlating parameters of an analytical equation with basic
soil properties such as grain size distribution and dry den-
sity, using a regression analysis [7,8].

4. Physico-empirical modelling of SWCC. This approach con-
verts the grain size distribution into a pore size distribution,
which is in turn related to a distribution ofwater content and
associated pore pressure [9–12].

5. Artificial Intelligence (AI) methods such as neural network,
genetic programming and other machine learning meth-
ods have been used in various disciplines of civil engineer-
ing [13–15]. Prediction of SWCC, using artificial intelligence
falls into the fifth group [16–18].
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Table 1: Properties of tested soils.

Sample USCS
classification

Gsb LLb PIb Clay (%) Silt (%) Sand (%) Optimumc water
content

Maximum dry
density (kg/m3)

1 MLa 2.70 20 5 35.2 52.0 12.6 14.0 1808
2 CLa 2.76 28 7 3.8 69.3 26.9 20.0 1685
3 CL 2.75 28 11 4.4 60.9 34.6 18.0 1714
4 ML 2.73 19 2 23.0 54.0 19.3 15.0 1834
5 CL–MLa 2.77 27 7 1.7 64.4 33.9 21.5 1662
6 ML 2.67 21 3 11.6 65.2 23.3 15.2 1798
7 ML 2.73 24 4 5.4 77.8 16.8 15.5 1710
8 ML 2.69 21 5 33.4 57.5 8.6 12.5 1913
9 ML 2.74 22 3 22.0 54.8 21.9 15.0 1845

10 CL 2.70 32 12 5.7 62.8 31.5 18.5 1728
11 CL–ML 2.74 24 6 7.3 66.4 26.3 17.0 1780
12 CL 2.69 28 9 7.2 60.0 27.4 18.0 1764
13 CL 2.72 26 7 8.1 53.5 38.2 17.0 1796
14 CL 2.71 23 6 15.0 71.2 13.9 15.5 1813

a ML: Low plasticity silt, CL: Low plasticity clay, CL–ML: Low plasticity silty clay.
b Gs: Specific gravity, LL: Liquid limit, PI: Plastic limit.
c Standard Procter test.
Figure 1: Grain size distribution curves of the soils.

Among the above mentioned five groups, artificial intelligence
methods are known to have a better accuracy and a relatively
straight forward approach [16,17]. The purpose of this paper
is to investigate the performance of two AI systems, namely,
Genetic-Based Neural Network (GBNN), and Genetic Program-
ming (GP). To this end, an experimental program was planned
to test 14 soil samples in laboratory pressure plate apparatus
and examine the accuracy of the models predictions against
these data. Details of the experimental program are presented
in the next section.

2. Experimentation

Experimental methods include pressure plate, osmotic
method, tensiometers, pressuremembranes and electricalmea-
surements [19]. These methods measure the pore water pres-
sure in the soil directly or indirectly by imposing a known air
pressure to the soil and allow the water content to come to
equilibrium with the imposed air pressure. The method used
to measure the SWCC depends on the texture of soil (coarse
versus fine) and the magnitude of the suctions that must be
established.

Thepresence of fine grained soils in a vast area of Shiraz plain
on onehand and the frequent change in the behavior of this type
of soil by absorbing and desorbing of water on the other hand
clearly necessitates careful examination of the soil behavior for
any project. Since the most important tool for assessing the
behavior of unsaturated soils subjected to a change in their
water content is SWCC, it was decided to obtain soil samples
from several locations of Shiraz plain in order to determine their
SWCCs, using pressure plate apparatus. This taskwas important
both for developing a database for the soils in this region and to
study their possible differences. Details of the soil properties,
preparation and test method are presented in the following
sections.

3. Soil properties

Bulk samples of soil were taken from boreholes and
excavation walls from fourteen locations in Shiraz city in the
Fars province of Iran. Sampling sites were selected so that they
represent different soil types (CL, ML and CL–ML, classified
according to unified classification system) with maximum
overall coverage over the city. The grain size distribution curves
of these soils are depicted in Figure 1. Atterberg limits, specific
gravity and other index properties are presented in Table 1.

4. Compaction test

Compacted soil specimens were prepared for pressure plate
test using optimum water content and maximum dry unit
weight. This procedure was adopted, considering the fact that
maximum specific weight is frequently used in embankments
and other earth structures. For this purpose, the compaction
curves of the soil samples were developed based on ASTM
D698-70 [20]. The initial conditions of the compacted samples
are depicted in Table 1.

5. Sample preparation

The following steps were adopted for preparing the testing
soil samples:

1. Compacted samples were obtained in standard Procter
mold, using the optimum water content.

2. The compacted samples were then taken out of the mold,
using a jack, and cut horizontally into slices of about 2 cm
thick. Then, each soil slicewas pushed into a standard sharp-
edged thin metal ring (soil retainer) and carefully trimmed
to provide a smooth surface on both sides.

3. The samples were placed on the high air entry ceramic disk
in a symmetrical arrangement. Although the 15 bar ceramic
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stone in the pressure plate apparatus was sufficient for the
purposes of the experiments, in order to expedite the test
and also to reach a higher precision in determining the initial
points of the curves, two pressure plate apparatus with 15
and 5 bar ceramic stones were used simultaneously. The 5
bar ceramic stone was used for samples tested at 0.0, 10, 50
and 100 kPa of suction, whereas the 15 bar ceramic stone
was used for samples tested at 200, 400, 800 and 1100 kPa
of suction.

4. A porous stone with a diameter equal to that of the samples
and a surcharge of 200 g was laid on each sample. In order
to saturate the samples, water was poured over the ceramic
disk. This operation was continued until the water reached
about 2 mm below the top edge of the rings. This technique
helps in saturating the sample from bottom to top and thus
minimizing the trapped air in the samples. To ensure an
acceptable saturation and equalization inside the sample,
which could satisfy the recommended standard, the samples
were kept under this condition for 24 h.

6. Testing method

After 24 h, the weights and the porous stones were removed
from the samples and the water around the rings was collected,
using a syringe in order to prevent error in determining the
water content of the samples. Next, the drainage pipe was
connected to the ceramic disk and the pressure plate cap was
fastened, using available screws. The desired air pressure was
applied for two days (for air pressures below 1000 kPa) and
four days (for air pressures above 1000 kPa), based on the
recommendation of ASTM D6836 [21].

After each increment of pressure application, one sample
was taken for water content determination and the procedure
was repeated for the next increment of air pressure. Extraction
of the samples from the pressure chamber was quick enough
to minimize the possibility of change in water content of the
samples.

7. Test results

Following the steps explained in Section 5 for the soil
samples taken from different areas of Shiraz city, their SWCCs
were established as shown in Figure 2. All the samples indicated
almost a similar trend, but had different initial saturated water
content.

8. GBNNmodeling of SWCC

In ordinary NNs, the ‘‘back propagation law’’ is used as
a device for determining the minimum of function with
weight variables connecting the layers. In Genetic-BasedNeural
Network (GBNN) model, based on the optimization features
of the Genetic Algorithm (GA), it is used for determining the
optimal weights of a NN, for predicting SWCC. The optimum
number of hidden neurons, is determined by trial and error.
The network characteristics adopted here are those explained
in [15]. A brief description of the network is given below.

Five parameters, namely, void ratio, initial water content,
clay fraction, silt content and logarithm of suction normalized,
with respect to air pressure [log(ua − uw)/pa], (ua = air pres-
sure, uw = pore water pressure, pa = atmospheric pressure
taken as 100 kPa) were selected as the input neurons. The hid-
den layer consisted of five neurons with one output neuron
yielding the gravimetric water content corresponding to the as-
signed input suction.
Figure 2: The SWCCs of the soil samples.

Table 2: Relative importance of input parameters.

Input parameters Relative importance (%)

Initial void ratio 23.2
Initial water content (%) 21.7
log(ua − uw)/pa 33.6
Clay (%) 14.1
Silt (%) 7.4

Table 3: Range of basic soil properties of specimens adopted for
developing model.

Property Range

Initial void ratio 0.46–2.85
Suction (kPa) 0.2–104857.6
Specific gravity 2.28–2.92
Water content (%) 0.18–98.27
Dry density (kg/m3) 702–1811
Initial water content (%) 17.34–105.41
Clay content (<0.005 mm) (%) 4.4–76.7
Silt content (0.005–0.075 mm) (%) 10.3–87.5
Sand content (>0.075 mm) (%) 0.1–55.3

The input parameters were selected after a thorough study
of various combinations of soil parameters and their impact
on the output error. The relative importance of various input
parameters was evaluated using the procedure suggested by
Garson [22] and the results summarized in Table 2.

Based on Table 2, suction has the highest influence on the
predicted value for water content followed by void ratio and
initial water content.

Results of the pressure plate tests performed on clay, silty
clay, sandy loam and loam soil reported by various researchers
and compiled in [23] were adopted for the analysis. Table 3
indicates the range of the basic soil properties employed for
this study. This database consists of the results from 186
pressure plate tests, together with their grain size distributions.
Figure 3 shows the proposed network configuration, and
Table 4 indicates the optimal connection weights of the
model.

In order to match the starting point of the model with the
laboratory results, all the outputs of the model were corrected
as follows:

ω = X(Y/Y0), (1)
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Table 4: Optimal connection weights of GBNN [16].

Hidden
neuron

Initialvoid ratio Initial water
content

[log(ua − uw)/pa] Clay (%) Silt (%) Input bias Output
neuron

1 −12.92 17.83 19.87 7.58 17.05 −34.60 −10.75
2 −10.20 25.41 −28.80 26.54 0.15 6.80 1.07
3 8.67 10.06 −20.52 −3.74 −10.24 −8.29 7.78
4 −18.14 −0.13 −12.80 4.09 2.56 1.19 −2.72
5 4.71 −10.83 8.30 −2.54 −0.89 0.05 −4.79
Bias – – – – – – −0.04
Figure 3: The proposed neural network for the prediction of SWCC.

Table 5: Comparing error of GBNN and GP models.

Samples GP GBNN
MSSE Av. relative

error (%)
MSSE Av. relative

error (%)

1 3.78 16.11 1.06 7.83
2 0.28 2.78 2.52 8.01
3 0.95 4.30 1.33 5.47
4 2.66 10.83 1.08 6.46
5 0.93 4.26 0.61 3.59
6 0.32 3.30 0.74 4.16
7 1.60 8.90 0.84 6.28
8 4.77 21.29 1.99 12.93
9 0.03 0.99 0.19 2.65

10 0.31 2.94 0.64 4.16
11 0.88 5.66 1.89 8.53
12 0.14 1.55 0.15 2.32
13 2.63 9.49 0.76 4.45
14 11.33 24.24 3.40 10.59
Average 2.19 8.33 1.23 6.25

where:
Y predicted gravimetric water content;
Y0 predicted initial water content (at suction 0.2 kPa);
X initial gravimetric water content.

9. GP modeling of SWCC

Genetic Programming (GP), a branch of the genetic algo-
rithm, is a method for learning the most fit computer programs
(formula) by means of artificial evolution. In GP model, a large
number of generations are done to search a formula with mini-
mum error to predict SWCC with an as short as possible length.
More details of this model are described in [16]. In their model,
five parameters, namely, void ratio, initial water content, log-
arithm of suction normalized with respect to atmospheric air
Table 6: Comparing performance of GBNN and GP
approaches.

Method Av. relative
error (%)

MSSE R2

GBNN 6.25 1.23 0.96
GP 8.33 2.19 0.95

pressure, clay content and silt content were selected as the in-
put terminals. The output terminal was the gravimetric water
content corresponding to the assigned input suction. The ranges
of these data are shown in Table 3. The optimum GP (optimum
formulation) obtained had the following form:

Y = 0.794(X2 + 0.215)(((0.116X3 × XX5
4 )(X1+0.234)

+ (X0.368(X5/X4)
4 )(XX1

3 − X3))X4)
X2
3 . (2)

Outputs of the model then were adjusted based on the initial
water content, to yield:

ω = X2(Y/Y0), (3)

where:
Y predicted water content;
Y0 predicted initial water content (at suction 0.2 kPa);
X1 initial void ratio;
X2 initial water content;
X3 log[suction (kPa)/pa] where pa: atmospheric pressure
(taken as 100 kPa);
X4 clay content (%);
X5 silt content (%);
ω adjusted water content.

10. Prediction of SWCC using AIS

Two artificial Intelligent Systems (AIS), namely, GBNN and
GP were employed to evaluate their capability for prediction
of the SWCC. Two examples are presented in Appendix to
illustrate the procedure for prediction of SWCCs, using GBNN
and GP models.

In order to compare the predictions of the models, the
prediction errors of different samples using both models were
calculated. The results of these calculations are shown in
Table 5. To illustrate the correlation quality of each model, the
experimental results and their corresponding predictions were
plotted against each other. Figures 4 and 5 show the results of
these calculations.

Tables 5 and 6 presents the error estimate from GBNN
and GP predictions, compared with the experiment data. It
is to be noted that the models were calibrated using SoilVi-
sion [23] database, and their accuracy was evaluated using
the experimental data from Shiraz silty clay. In these tables, the
relative error is defined as:

RE =

Ai − Pi
Ai

 × 100, (4)
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Figure 4: Actual versus predicted gravimetricwater content usingGBNNmodel
(R2

= 0.96).

Figure 5: Actual versus predicted gravimetric water content using GP model
(R2

= 0.95).

and the sum of squared errors is defined by:

SSE =

n−
i=1

(Ai − Pi)2, (5)

R2
= Correlation coefficient

×


n∑

i=1
(Ai − Ā)(Pi − P̄)

n∑
i=1

(Ai − Ā)2
n∑

i=1
(Pi − P̄)2


2

, (6)

where:
Ai actual value for data i;
Ā mean of actual values;
Pi predicted value for data i;
P̄ mean of predicted values;
n number of data point for each experiment.

Based on Table 5 and Figures 4 and 5, Table 6 was prepared
to compare the overall errors of the models. Errors shown in
Table 6 clearly indicate that the neural networkmodel has been
more successful than the GP model in predicting the SWCCs of
fine grained soils of Shiraz plain.
Table A.1: Basic soil properties of specimen used for model validation
(sample number 5).

Property Value Property Value

Initial void ratio 0.79 Sand (%) 1.72
Initial water content (%) 28.94 Silt (%) 64.38
Dry density (kg/m3) 1660 Clay (%) 33.90
LL (%) 27.33 Gs 2.77
PI (%) 6.98 – –

11. Conclusion

In this paper, the pressure plate test results from 14 samples
taken from various areas of Shiraz city in the Fars province
of Iran were obtained. Then the results were used for testing
GBNN andGPmodels. Comparing the results from thesemodels
with the experimental data indicates the robust performance
of these models for prediction of SWCC of Shiraz fine grained
soil. However, predictions from GBNN model shows relatively
higher accuracy compared to the other model. Investigating
the relative importance of the input parameters indicates that
suction has the highest influence on the predicted value for
water content followed by soil void ratio and its initial water
content. These models have certain limitations in that they do
not take into account the hysteresis phenomena, soil fabric
effects and influence of the stress state.

The authors suggest the following future works for further
improvements and extension on the topic:
- To validate the conclusions drawn in this paper as further
data becomes available.

- To study other types of AI systems such as RBF (Radial
Basis Function) and GRNN (Generalized Regression) neural
networks.

- Extending the AI systems to include hysteresis phenomena,
soil fabric and stress state effects.

- To extend the AI model to bimodal SWCCs.
- To employ other AImodels such as neuro-fuzzy networks for
SWCC prediction.

Appendix

In this Appendix, two examples were presented to illustrate
the procedure for prediction of SWCCs, using GBNN and GP
models. For this purpose, the laboratory results of the sample
No. 5 were employed. Basic soil properties of this specimen are
shown in Table A.1.

Prediction of SWCC by GBNNmodel

The steps of prediction, by thismodel, for this certain sample
are as follows:
1. The input parameters of themodel were normalized to lie in

an interval of [0, 1], using a max–min approach. The results
are shown in Table A.2.

For each arbitrary suction point, for instance 10 kPa, the
normalization is done as follow:

X3 =
(log(10/100) − log(0.2/100))

(log(104857.6/100) − log(0.2/100))
= 0.30.

2. By multiplying the input-hidden network weights [W ]
(presented in Table 4) and by the normalized input vector [I]
(presented in Table A.2), the input hidden neuronmatrix [Z]
is obtained ([W ] ∗ [I] = [Z]).
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Table A.2: Normalization of input parameters.

Variable Input neuron Value Upper limit Lower limit Normalized value ([I])

Initial void
ratio

1 0.79 2.85 0.46 0.14

Initial water
content (%)

2 28.94 105.41 17.34 0.13

Arbitrary
suction (kPa)

3 10.00 104857.6 0.2 0.30

Clay (%) 4 0.34 0.77 0.04 0.41
Silt (%) 5 0.64 0.88 0.10 0.70
Table A.3: Comparing the performance of GBNN with experimental
approach.

Suction
(kPa)

Experiment
water
content

GBNN
water
content
prediction

Relative error (%) SSE

0.2 28.94 28.94 0.0 0.0
10 26.27 27.36 4.15 1.19
50 23.80 24.60 3.38 0.65
100 22.33 22.88 2.45 0.30
200 20.29 20.76 2.35 0.23
400 17.51 18.17 3.76 0.43
800 15.66 15.06 3.80 0.35
1100 14.84 13.52 8.90 1.74

AREa(%) = 3.59 MSSE = 0.61
a Average relative error.


−12.84 17.83 20.03 7.58 17.05 −34.56
−10.20 25.41 −28.80 26.54 0.15 6.80
8.67 10.06 −20.84 −3.74 −10.28 −8.29

−18.14 −0.13 −12.81 4.09 2.56 1.19
4.69 −10.83 8.30 −2.54 −0.89 0.05



×


0.14
0.13
0.30
0.41
0.70
1.0

 =


−13.03
11.10

−20.67
−1.70
0.08

 ,

where 1.0 in [I] matrix is the bias neuron value.
3. By applying sigmoid activation function to each element of

vector [Z], output vector fromhidden neuron [R] is obtained.
−13.03
11.10

−20.67
−1.70
0.08

 Sigmoid
−−−−→


0.002
0.996
3e−5
0.299
0.510

 .

4. By multiplying the hidden-output network weights [U]

(presented in Table 4), by the output vector from hidden
neuron [R], the input of output neuronmatrix [S] is obtained
([U] × [R] = [S]).

(−10.73 1.07 7.78 −2.72 −4.79 −0.04)

×


0.002
0.996
3e−5
0.299
0.510
1.0


= (−2.25).
Table A.4: Normalization of input parameters.

Variable Name Value Normalized
value

Initial void ratio X1 0.79 0.14
Initial water content (%) X2 28.94 0.13
Arbitrary suction (kPa) X3 10.00 0.30
Clay (%) X4 0.34 0.41
Silt (%) X5 0.64 0.70

5. By applying sigmoid activation function to element of vector
[S], output vector from output neuron [Y ] is obtained.

(−2.25) Sigmoid
−−−−→

(0.24).

6. By de-normalizing the output of the network,

Y(Normalizes) = 0.245
⇒ Y(De-normalizes) = 0.245∗(0.9827 − 0.0018)

+ 0.0018 = 0.242.

7. By scaling the Y(De-normalizes),

ω = X(Y(De-normalizes)/Y0(De-normalizes))

⇒ ω = 28.94(0.242/0.256) = 27.36,

where Y0(De-normalizes) is the water content corresponding to
the zero suction.

For determining the water content corresponding to the
other desired suction, the above steps are followed. Table A.3
shows the result for 8 points in sample 5.

Prediction of SWCC by GP model

The steps of prediction, by this model, for an arbitrary
sample (sample 5) are as follows:
1. Same as in GBNN model, the input parameters of the model

were normalized to lie in an interval of [0, 1], using a max-
min approach. The results are shown in Table A.4.

2. By placing the above normalized value into the Eq. (2), the
result will be:

Y(Normalizes) = 0.253
⇒ Y(De-normalizes) = 0.253 ∗ (0.982777 − 0.00188)

+ 0.00188 = 0.25.

For calculating Y0, Eq. (2) is used. For this purpose, the
magnitudes of X1, X2, X4 and X5 are the same as in step 1,
while X3 is calculated as:

X3 =
(log(0.2/100) − log(0.2/100))

(log(104857.6/100) − log(0.2/100))
= 0.0

⇒ Y0(Normalizes) = 0.275
⇒ Y0(De-normalizes) = 0.2370 ∗ (0.982777 − 0.00188)

+ 0.00188 = 0.272.
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Table A.5: Comparing performance of GP with experimental approach.

Suction
(kPa)

Experiment
water
content

GP water
content
prediction

Relative error (%) SSE

0.2 28.94 28.94 0.0 0.0
10 26.27 26.59 1.22 0.10
50 23.80 23.96 0.65 0.02
100 22.33 22.50 0.74 0.03
200 20.29 20.87 2.85 0.33
400 17.51 19.09 9.01 2.49
800 15.66 17.19 9.79 2.35
1100 14.84 16.29 9.77 2.10

ARE (%) = 4.26 MSSE = 0.93

3. Based on the results of steps 2 and 3, the de-normalized
water content for suction of 10 kPa is calculated as:

ω = X2(Y(De-normalizes)/Y0(De-normalizes))

⇒ ω = 28.94(0.250/0.272) = 26.59.

For determining the water content corresponding to the
other desired suction points, the above steps are taken. As
a result, Table A.5 will be developed.
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