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1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x⋆ of an equation

F(x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a non-empty, open, convex subset D of a Banach space X with
values in a Banach space Y.

A large number of problems in applied mathematics and engineering are solved by finding the solutions of certain
equations. For example, dynamic systems are mathematically modeled by difference or differential equations, and their
solutions usually represent the states of the systems. For the sake of simplicity, we assume that a time-invariant system
is driven by the equation ẋ = Q (x), for some suitable operator Q , where x is the state. Then the equilibrium states are
determined by solving Eq. (1.1). Similar equations are used in the case of discrete systems. The unknowns of engineering
equations can be functions (difference, differential, and integral equations), vectors (systems of linear or nonlinear algebraic
equations), or real or complex numbers (single algebraic equations with single unknowns). Except in special cases, the
most commonly used solution methods are iterative. In fact, starting from one or several initial approximations a sequence
is constructed that converges to a solution of the equation. Iteration methods are also applied for solving optimization
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problems. In such cases, the iteration sequences converge to an optimal solution of the problem at hand. Since all of these
methods have the same recursive structure, they can be introduced and discussed in a general framework.

A classic iterative process for solving nonlinear equations is Chebyshev’s method (see [1,2]):
x0 ∈ D,

yk = xk − F ′(xk)−1 F(xk),

xk+1 = yk −
1
2
F ′(xk)−1F ′′(xk)(yk − xk)2, k ≥ 0.

This one-point iterative process depends explicitly on the two first derivatives of F (namely, xn+1 = ψ(xn, F(xn), F ′(xn),
F ′′(xn))). Ezquerro and Hernández introduced in [1] somemodifications of Chebyshev’s method that avoid the computation
of the second derivative of F and reduce the number of evaluations of the first derivative of F . Actually, these authors have
obtained a modification of the Chebyshev iterative process which only need to evaluate the first derivative of F , (namely,
xn+1 = ψ(xn, F ′(xn))), but with third-order of convergence. In this paper we recall this method as the Chebyshev–Newton-
type method (CNTM) and it is written as follows:

x0 ∈ D,

yk = xk − F ′(xk)−1 F(xk),
zk = xk + a (yk − xk)

xk+1 = xk −
1
a2

F ′(xk)−1 ((a2 + a − 1) F(xk)+ F(zk)), k ≥ 0,

where F ′(x)(x ∈ D) is the Fréchet-derivative of F . A semilocal convergence analysis was provided by Ezquerro and
Hernández in [1].

The main aim of this paper is focused on constructing a family of iterative processes free of derivatives as the classic
Secant method (SM) [3]. To obtain this new family we consider an approximation of the first derivative of F from a divided
difference of first order, that is, F ′(xn) ≈ [xn−1, xn, F ], where, [x, y; F ] is a divided difference of order one for the operator F
at the points x, y ∈ D . Then, we introduce the Chebyshev–Secant-type method (CSTM)

x−1, x0 ∈ D,

yk = xk − A−1
k F(xk), Ak = [xk−1, xk; F ],

zk = xk + a (yk − xk),
xk+1 = xk − A−1

k (b F(xk)+ c F(zk)), k ≥ 0,

where a, b, c are non-negative parameters to be chosen so that sequence {xk} converges to x⋆. Note that (CSTM) is reduced
to (SM) if a = 0, b = c = 1/2, and yk = xk+1. Moreover, if xk−1 = xk, and F is differentiable on D , then, F ′(xk) = [xk, xk; F ],
and (CSTM) reduces to Newton’s method (NM).

Bosarge and Falb [4], Dennis [5], Potra [6], Argyros [7–11], Hernández et al. [12] and others [3,13,14], have provided
sufficient convergence conditions for the (SM) based on Lipschitz-type conditions on divided difference operator (see, also
relevant works in [15,4,16,5,17,18,6,19–21]).

Here, we provide a semilocal convergence analysis for (CSTM) using recurrence relations, as it was done in [1] for (CNTM).
Three numerical examples are also provided. First, we consider a scalar equation where the main study of the paper is
applied. Second, we discretize a nonlinear integral equation and approximate a numerical solution by a method of (CSTM)
and its computational order of convergence. Thirdly, we do a comparative study of the methods of (CSTM), depending on
the parameter c.

2. Semilocal convergence analysis of (CSTM)

We shall show the semilocal convergence of (CSTM) under the following conditions
(C1) F : D ⊆ X −→ Y is a Fréchet-differentiable operator, and there exists a divided difference denoted by [x, y; F ]

satisfying

[x, y; F ](x − y) = F(x)− F(y) for all x, y ∈ D;

(C2) There exist x−1 and x0 in D such that

A−1
0 = [x−1, x0; F ]

−1
∈ L(Y,X)

exists and

0 < ‖A−1
0 ‖ ≤ β;

(C3) There exists d > 0 such that

‖x0 − x−1‖ ≤ d;

(C4) There exists η > 0 such that

0 < ‖A−1
0 F(x0)‖ ≤ η;
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(C5) There exists a constantM > 0, such that for all x, y, z in D

‖[x, y; F ] − F ′(z)‖ ≤
M
2
(‖x − z‖ + ‖y − z‖);

(C6) For a ∈ [0, 1], b ∈ [0, 1] and c > 0 given in (CSTM), we suppose

(1 − a)c = 1 − b.

Note that in view of (C5), the following assumption holds:

(C7) There exists M0 > 0 such that, for all z in D ,

‖[x−1, x0; F ] − F ′(z)‖ ≤
M0

2
(‖x−1 − z‖ + ‖x0 − z‖).

(C8)

α = (1 + d + a c γ (a + d0)) γ < 1,

where,

γ =
β M η

2
, d0 =

d
η
;

(C9)

U(x0, r η) = {x ∈ X : ‖x − x0‖ ≤ r η} ⊆ D,

for some r > 0 to be precised later in Theorem 2.5.

Note that
M0

M
= λ ≤ 1

holds in general, and λ can be arbitrarily large [9–11,15].
We note by (C) the set of conditions (C1)–(C9).

Definition 2.1. Let γ and d0 as defined in (C8). It is convenient to define for µ0 = w0 = 1, q−1 = d0, and n ≥ 0, the
following sequences

pn = a c γ µn(awn + qn−1) wn,

qn = pn + wn,

µn+1 =
µn

1 − γ µn (qn−1 + qn)
,

cn =
M
2
((qn + qn−1) qn + a c (awn + qn−1) wn),

and

wn+1 = γ µn+1 ((qn + qn−1) qn + a c (awn + qn−1) wn).

Note that

wn+1 = β η µn+1 cn.

Next, we give some Ostrowski-type approximations for (CSTM) that are needed later.

Lemma 2.2. Assume sequence {xk} generated by (CSTM) is well-defined, (1− a) c = 1− b holds for a ∈ [0, 1], b ∈ [0, 1], and
c ≥ 0.

Then, the following items hold for all k ≥ 0:

F(zk) = (1 − a)F(xk)+ a
∫ 1

0
(F ′(xk + a t (yk − xk))− F ′(xk))(yk − xk) dt + a (F ′(xk)− Ak)(yk − xk), (2.1)

xk+1 − yk = −a c A−1
k

∫ 1

0
(F ′(xk + a t (yk − xk))− F ′(xk))(yk − xk) dt + (F ′(xk)− Ak)(yk − xk)


, (2.2)
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and

F(xk+1) =

∫ 1

0
(F ′(xk + t (xk+1 − xk))− F ′(xk)) (xk+1 − xk) dt + (F ′(xk)− Ak)(xk+1 − xk)

− a c

∫ 1

0
(F ′(xk + a t (yk − xk))− F ′(xk)) (yk − xk) dt + (F ′(xk)− Ak) (yk − xk)


. (2.3)

Proof. We have in turn using (CSTM)

a F(xk) = a Ak (xk − yk) H⇒ 0 = −a F(xk)+ Ak (xk − zk) H⇒

F(zk) = F(zk)− a F(xk)+ Ak (xk − zk)
= (1 − a) F(xk)+ F(zk)− F(xk)+ Ak (xk − zk)

= (1 − a) F(xk)+

∫ 1

0
(F ′(xk + t (zk − xk))− Ak) (zk − xk) dt

= (1 − a) F(xk)+

∫ 1

0
(F ′(xk + t a (yk − xk))− F ′(xk)) a (yk − xk) dt + a (F ′(xk)− Ak) (yk − xk),

and (2.1) is proved.
By eliminating xk from the first and the third approximations in (CSTM), we get:

xk+1 − yk = A−1
k F(xk)− A−1

k b F(xk)− A−1
k c F(zk)

= A−1
k ((1 − b) F(xk)− c F(zk))

= A−1
k ((1 − a) F(xk)− F(zk)) c

= −A−1
k (−(1 − a) F(xk)+ F(zk)) c

= −A−1
k c


a
∫ 1

0
(F ′(xk + a t (yk − xk))− F ′(xk)) (yk − xk) dt + a (F ′(xk)− Ak) (yk − xk)


,

(by (2.1)), which proves (2.2).
Finally, we have:

F(xk+1) = F(xk+1)− F(xk)− Ak (yk − xk)

=

∫ 1

0
(F ′(xk + t (xk+1 − xk))− F ′(xk)) (xk+1 − xk) dt + F ′(xk) (xk+1 − xk)− Ak (yk − xk)

=

∫ 1

0
(F ′(xk + t (xk+1 − xk))− F ′(xk)) (xk+1 − xk) dt

+ (F ′(xk)− Ak) (xk+1 − xk)+ Ak (xk+1 − xk)− Ak (yk − xk)

=

∫ 1

0
(F ′(xk + t (xk+1 − xk))− F ′(xk)) (xk+1 − xk) dt + (F ′(xk)− Ak) (xk+1 − xk)+ Ak (xk+1 − yk),

and (2.3) is proved by (2.2).
This completes the proof of Lemma 2.2. �

The following relates (CSTM) with scalar sequences introduced in Definition 2.1.

Lemma 2.3. Under the (C) conditions, we assume:

xn ∈ D and γ µn (qn−1 + qn) < 1 (n ≥ 0).

Then, the following items hold for all n ≥ 0:
(In)

‖A−1
n ‖ ≤ µn β,

(IIn)
‖yn − xn‖ = ‖A−1

n F(xn)‖ ≤ wn η,

(IIIn)
‖xn+1 − yn‖ ≤ pn η,

(IVn)

‖xn+1 − xn‖ ≤ qn η.
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Proof. We use induction.
We have ‖y0 − x0‖ ≤ η, and ‖z0 − x0‖ ≤ a η, so that x0, z0 ∈ D .
Items (I0) and (II0) hold by (C2) and (C4), respectively. To prove (III0), we use Lemma2.2 for n = 0 to obtain by (C2)–(C5)

‖x1 − y0‖ ≤ a c ‖A−1
0 ‖

M
2
(a ‖y0 − x0‖ + ‖x0 − x−1‖) ‖y0 − x0‖

≤
a c β M

2
(a η + d) η

= a c γ (a + d0) η = p0 η.

Moreover,

‖x1 − x0‖ ≤ ‖x1 − y0‖ + ‖y0 − x0‖ ≤ p0 η + η = (1 + p0) η = q0 η,

which implies (IV0). Note also that z1 ∈ D . Following an inductive argument, assume xk ∈ D , and γ µk (qk−1 + qk) < 1.
Then, we have

‖A−1
k ‖ ‖Ak+1 − Ak‖ ≤ ‖A−1

k ‖ ‖[xk, xk+1; F ] − [xk−1, xk; F ]‖

≤ ‖A−1
k ‖

M
2
(‖xk − xk−1‖ + ‖xk+1 − xk‖)

≤
β M
2
µk (qk−1 + qk) η = γ µk (qk−1 + qk) < 1.

It follows from the Banach lemma on invertible operators [7,11] that A−1
k+1 exists, and

‖A−1
k+1‖ ≤

‖A−1
k ‖

1 − ‖A−1
k ‖

M
2 (‖xk − xk−1‖ + ‖xk+1 − xk‖)

≤
β µk

1 − γ µk (qk−1 + qk)
= µk+1 β,

which shows (Ik+1). Using Lemma 2.2, (C5), and the induction hypotheses, we get

‖F(xk+1)‖ ≤
M
2

‖xk+1 − xk‖2
+

M
2

‖xk+1 − xk‖ ‖xk − xk−1‖

+ a c


aM
2

‖yk − xk‖2
+

M
2

‖xk − xk−1‖ ‖yk − xk‖



≤
M
2

q2k η
2
+

M
2

qk η qk−1 η + a c

aM
2
w2

k η
2
+

M
2

qk−1 ηwk η


= ck η2. (2.4)

Then, we get

‖yk+1 − xk+1‖ ≤ ‖A−1
k+1‖ ‖F(xk+1)‖ ≤ µk+1 β ck η2 = wk+1 η.

Moreover, by Lemma 2.2, we have

‖xk+2 − yk+1‖ ≤ a c‖A−1
k+1‖

M
2
(a ‖yk+1 − xk+1‖ + ‖xk+1 − xk‖) ‖yk+1 − xk+1‖

≤ a c µk+1
β M
2
(awk+1 + qk) wk+1 η

2
= pk+1 η,

and consequently,

‖xk+2 − xk+1‖ ≤ ‖xk+2 − yk+1‖ + ‖yk+1 − xk+1‖ ≤ (pk+1 + wk+1) η = qk+1 η.

This completes the proof of Lemma 2.3. �

We shall establish the convergence of sequence {xn} generated by (CSTM). This can be achieved by showing that {qn} is
a Cauchy sequence, if the following conditions hold for n ≥ 0:

(A1) xn ∈ D , and
(A2) γ µn (qn−1 + qn) < 1.

In the next result, we show the Cauchy property for sequence {qn}.
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Lemma 2.4. Assume (C8). Note that α ∈ [0, 1) implies γ (q−1 + q0) < 1. Then, the scalar sequence:
(a) {µn} is increasing.
(b) {qn} is decreasing and limn−→∞ qn = 0.
Proof. (a) We show using induction that all scalar sequences involved are positive. By Definition 2.1, and (C8), we have for

j = 0:µj, pj, qj,wj, cj, and 1−γ µj (qj−1 +qj) are positive. Assumeµk, pk, qk,wk, ck, and 1−γ µk (qk−1 +qk) are positive
for all k ≤ n. Since ck > 0, it follows from the definition of the scalar sequences that wk+1, µk+1, pk+1, dk+1 have the
same sign. Assume the common sign to be negative. Then

qk−1 + qk + qk+1 < qk−1 + qk H⇒ 1 − γ µk (qk−1 + qk + qk+1) > 1 − γ µk (qk−1 + qk)

H⇒
1 − γ µk (qk−1 + qk + qk+1)

1 − γ µk (qk−1 + qk)
> 1.

But it follows from the definition of sequence {µk} that

1 − γ µk+1 (qk + qk+1) =
1 − γ µk (qk−1 + 2 qk + qk+1)

1 − γ µk (qk−1 + qk)

H⇒ 1 − γ µk+1 qk+1 =
1 − γ µk (qk−1 + 2 qk + qk+1)

1 − γ µk (qk−1 + qk)
+ γ µk+1 qk

=
1 − γ µk (qk−1 + qk + qk+1)

1 − γ µk (qk−1 + qk)
> 1,

which is a contradiction, since we get γ µk+1 qk+1 < 0, but µk+1 qk+1 have the same sign, and γ > 0. The induction is
then completed.

By the definition of sequence {µn} and µ0 = 1, we have

1 − γ µk (qk−1 + qk) =
µk

µk+1

H⇒ qk−1 + qk =
1
γ


1
µk

−
1

µk+1


H⇒

k−1−
i=0

(qi−1 + qi) =
1
γ


1
µ0

−
1
µk


=

1
γ


1 −

1
µk


H⇒ µk =

1

1 − γ
k−1∑
i=0
(qi−1 + qi)

.

But 1 − γ
∑k−1

i=0 (qi−1 + qi) decreases. Therefore, sequence {µk} increases, and consequently µk ≥ µ0 = 1.
(b) We have that sequenceµk > 1 is increasing, so that 0 ≤

1
µk

≤ 1. Since


1
µk


is monotonic on a compact set, it converges

to 1
µ∞

. Then, we have

lim
k−→∞

(qk−1 + qk) =
1
γ

lim
k−→∞


1
µk

−
1

µk+1


=

1
γ


1
µ∞

−
1
µ∞


= 0.

This completes the proof of Lemma 2.4. �

We can show the main semilocal convergence theorem for (CSTM).

Theorem 2.5. Let F : D ⊆ X −→ Y be a Fréchet-differentiable operator defined on a non-empty open, convex domain D of a
Banach space X, with values in a Banach space Y. Assume that the (C) conditions hold. Then, sequence {xn} (n ≥ −1), generated
by (CSTM), is well-defined, remains in U(x0, r η) for all n ≥ 0, and converges to a solution x⋆ ∈ U(x0, r η) of equation F(x) = 0,
where,

r =

∞−
n=0

qn. (2.5)

Moreover, the following estimate holds

‖xn − x⋆‖ ≤

∞−
k=n+1

qk η < r η.

Furthermore, x⋆ is the unique solution of F(x) = 0 in U(x0, r0) ∩ D , provided that r0 ≥ r η, where,

r0 =
2

β M0
− d − r η. (2.6)
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Proof. According to Lemmas 2.3 and 2.4, sequence {xn} is of Cauchy ({qn} is of Cauchy) in a Banach spaceX, and it converges
to some x⋆ ∈ U(x0, r η) (since, U(x0, r η) is a closed set). The sequence {µn} is bounded above. Indeed, we have

µn =
1

1 − γ
n−1∑
i=0

qi

≤
1

1 − γ
∞∑
i=0

qi
,

and limn−→∞ qn = 0, which imply limn−→∞ cn = 0. By letting n −→ ∞ in (2.4), we get F(x⋆) = 0.
We also have

‖xn+1 − x0‖ ≤

n−
i=0

‖xi+1 − xi‖ ≤

n−
i=0

qi η < r η, (2.7)

which imply xn ∈ U(x0, r η). Consequently, we obtain x⋆ ∈ U(x0, r η).
Finally, we shall show the uniqueness of the solution x⋆ in U(x0, r0). Let y⋆ be a solution of equation F(x) = 0 in U(x0, r0).

Define linear operator

L =

∫ 1

0
F ′(x⋆t) dt, where x⋆t = x⋆ + t (y⋆ − x⋆).

We shall show L−1 exists. Using (C2) and (C7), we get

‖A−1
0 ‖ ‖A0 − L‖ ≤

β M0

2

∫ 1

0
(‖x−1 − x⋆t‖ + ‖x0 − x⋆t‖) dt

≤
β M0

2

∫ 1

0
(‖x0 − x−1‖ + 2 ‖x0 − x⋆t‖) dt

≤
β M0

2
(d + ‖x0 − x⋆‖ + ‖y⋆ − x⋆‖)

≤
β M0

2
(d + r η + r0) = 1. (2.8)

It follows from (2.8), and the Banach lemma on invertible operators, that L is invertible.
Finally, in view of the equality

0 = F(y⋆)− F(x⋆) = L (y⋆ − x⋆),

we obtain

x⋆ = y⋆.

This completes the proof of Theorem 2.5. �

Remark 2.6. (a) It follows from the proof of Lemma 2.4 that

µk =
1

1 − γ
k−1∑
i=0
(qi−1 + qi)

,

so that
k−1−
i=0

(qi−1 + qi) =
1
γ


1 −

1
µk


. (2.9)

By (2.9), the following relation between µ∞ and r holds:

r = 0.5


q−1 +

1
γ


1 −

1
µ∞


.

Set

rn = 0.5


q−1 +

1
γ


1 −

1
µn


, r = 0.5


q−1 +

1
γ


and r0 =

2
β M

− d − r η.

Then, we have

r > r and r0 < r0.
In view of the proof of Theorem2.5, r can replace r . However, this approach is less accurate but it avoids the computation
of µ∞.
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(b) Condition (C5) implies that for x = y,

‖F ′(x0)−1 (F ′(x)− F ′(z))‖ ≤ M‖x − z‖ for all x, z ∈ D.

Then the conclusions of [1, Theorem 4.4] can be obtained from Theorem 2.5 for

b =
a2 + a − 1

a2
, c =

1
a2
.

Theorem 2.5 provides a larger uniqueness ball if M0 < M . To obtain the uniqueness ball of [1, Theorem 4.4], simply set
M = M0.

3. Numerical examples

To illustrate the theoretical results introduced previously, we present some numerical examples. In these examples we
show some situations where the results provided in the paper can be applied. In addition, the application of the methods
introduced in (CSTM) for equations defined in functional spaces is also shown.

Example 3.1. Let X = Y = R2 be equipped with the max-norm. Choose:

x−1 = (0.999, 0.999)T , x0 = (1, 1)T , D = U(x0, 1 − κ), κ ∈


0,

1
2


.

Define function F on U0 by

F(x) = (θ31 − κ, θ32 − κ)T , x = (θ1, θ2)
T . (3.1)

The Fréchet-derivative of operator F is given by

F ′(x) =

[
3 θ21 0
0 3 θ22

]
, (3.2)

and the divided difference of F is defined by

[y, x; F ] =

∫ 1

0
F ′(x + t (y − x)) dt.

By the (C) conditions, Definition 2.1, and Remark 2.6(a), we have:

M = 6 β (2 − κ), M0 = 3 β (3 − κ), η = (1 − κ) β.

Let κ = 0.49. Then, using Maple 13, we get for a = b = 0.5, and c = 1:

β = 0.333666889, M = 3.023022014,
M0 = 2.512511674, q−1 = d = 0.001, η = 0.170170113,
γ = 0.08582379485, d0 = 0.005876472562, α = 0.08777269180,

p0 = 0.02170811930 q0 = p0 + w0 = 1.02170811930
µ1 =

µ0
1−γ µ0 (q−1+q0)

= 1.096218005

r1 = 0.5118540590 r1 η = 0.08710226306
c0 = 1.958025248 w1 = β η µ1 c0 = 0.1218741551
p1 = 0.006206866728 q1 = p1 + w1 = 0.1280810218
µ2 = 1.229183711 r2 = 1.086748630 r2 η = 0.1849321372
c1 = 0.3223137037 w2 = β η µ2 c1 = 0.02249530917
p2 = 0.001215093015 q2 = p2 + w2 = 0.02371040218
µ3 = 1.249186897 r3 = 1.162644344 r3 η = 0.1978473194
c2 = 0.007808702470 w3 = β η µ3 c2 = 0.0005538634354
p3 = 7.121800661 × 10−7 q3 = p3 + w3 = 0.0005545756155
µ4 = 1.252445067 r4 = 1.174776832 r4 η = 0.1999119063
c3 = 0.00003038079472 w4 = β η µ4 c3 = 0.000002160499729
p4 = 6.452032164×10−11 q4 = p4 + w4 = 0.000002160564249
µ5 = 1.252520022 r5 = 1.175055202 r5 η = 0.1999592765



I.K. Argyros et al. / Journal of Computational and Applied Mathematics 235 (2011) 3195–3206 3203

c4 = 2.725422817 × 10−9 w5 = β η µ5 c4 = 1.938273079× 10−10

p5 = 2.250940548×10−17 q5 = p5 + w5 = 1.938273304 × 10−10

µ6 = 1.252520313 r6 = 1.175056282 r6 η = 0.1999594603
c5 = 9.495486543 × 10−16 w6 = β η µ6 c5 = 6.753025660× 10−17

p6 = 7.035192511×10−28 q6 = p6 + w6 = 6.753025660 × 10−17

µ7 = 1.252520313 r7 = 1.175056282 r7 η = 0.1999594603

We can stop the process, since r7 = r6. Then, we set r ≃ r7 = 1.175056282. Consequently

r0 = 2.184701893

and

D0 = U(x0, 2.184701893) ∩ D = D.

The hypotheses of Theorem 2.5 are satisfied. Hence, equation F(x) = 0 has a solution

x⋆ = (
3√0.49, 3√0.49)T = (0.788373516, 0.788373516)T ,

which is unique in D0 and can be obtained as the limit of {xk} starting at x0.

Example 3.2. In this example we present an application of the previous analysis to the Chandrasekhar equation [16]:

x(s) = 1 +
s
4
x(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1]. (3.3)

We determine where a solution is located, along with its region of uniqueness. Later, the solution is approximated by an
iterative method of (CSTM).

Note that solving (3.3) is equivalent to solve F(x) = 0, where F : C[0, 1] → C[0, 1] and

[F(x)](s) = x(s)− 1 −
s
4
x(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1]. (3.4)

To obtain the existence of a unique solution of F(x) = 0, where F is given in (3.4), we need to evaluate d, β, η, M from
operator (3.4) and the starting points x−1 and x0. In addition, from (3.4), we have

[F ′(x)y](s) = y(s)−
s
4
x(s)

∫ 1

0

y(t)
s + t

dt −
s
4
y(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1],

[x, y; F ]z(s) =

∫ 1

0
F ′(y + τ(x − y))z(s) dτ

= z(s)−
1
8

∫ 1

0

s
s + t

(3x(s)− y(s))z(t)+ z(s)(3x(t)− y(t)) dt.

On the other hand, from (3.3), we infer that x(0) = 1, so that reasonable choices of initial approximations seem to be
x−1(s) = 0.99 and x0(s) = 1, for all s ∈ [0, 1], and d = ‖x0 − x−1‖ = 0.01. In consequence,

‖I − A0‖ =
1
8

max
s∈[0,1]

∫ 1

0

s
s + t

(3x(s)− y(s))z(t)+ z(s)(3x(t)− y(t)) dt


≤
ln 2
4

‖3x0 − x−1‖ ≤
201
400

ln 2 < 1.

Hence, by the Banach lemma, there exists A−1
0 and

‖A−1
0 ‖ ≤

1
1 − ‖I − A0‖

≤
400

400 − 201 ln 2
= 1.534463572 = β.

Moreover,

‖A−1
0 F(x0)‖ ≤

100 ln 2
400 − 201 ln 2

= 0.2659022747 = η.

Furthermore,

‖A−1
0 ([x, y; F ] − F ′(z))‖ ≤

ln 2
4
β (‖y − z‖ + ‖x − z‖) and M =

ln 2
2
β = 0.5318045495.
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If we now choose a = b = 1/2, c = 1, and using Maple 13, then

γ = 0.1084927426, q−1 = d = 0.01, d0 = 0.03760780163, α = 0.1127416734 < 1,

p0 = 0.02916327242 q0 = 1.029163272 µ1 = 1.127067473
r1 = 0.5245816365 r1 η = 0.1394874504
c0 = 0.3521792331 w1 = 0.1619542298 p1 = 0.0009008346109
q1 = 0.1628550644 µ2 = 1.319377855 r2 = 1.120590804
r2 η = 0.2979676438
c1 = 0.07552214604 w2 = 0.04065576601 p2 = 0.0005330243797
q2 = 0.04118879039 µ3 = 1.359072886 r3 = 1.222612732
r3 η = 0.3250955065
c2 = 0.003224873715 w3 = 0.001788274139 p3 = 0.000005548217528
q3 = 0.001793822357 µ4 = 1.367741311 r4 = 1.244104037
r4 η = 0.3308100934
c3 = 0.00003050725442 w4 = 0.00001702494524 p4 = 2.276647831 × 10−9

q4 = 0.00001702722189 µ5 = 1.368108938 r5 = 1.245009462
r5 η = 0.3310508480
c4 = 1.227832032 × 10−8 w5 = 6.853908064 × 10−9 p5 = 8.662850931×10−15

q5 = 6.853916727 × 10−9 µ6 = 1.368112397 r6 = 1.245017978
r6 η = 0.3310531124
c5 = 4.656304816 × 10−14 w6 = 2.5992126 × 10−14 p6 = 1.322129312×10−23

q6 = 2.599212677 × 10−14 µ7 = 1.368112398 r7 = 1.245017980
r7 η = 0.3310531129
c6 = 7.105511134 × 10−23 w7 = 3.966392956× 10−23 p7 = 7.651208305×10−38

q7 = 3.966392956 × 10−23 µ8 = 1.368112398 r8 = 1.245017980
r8 η = 0.3310531129

We stop the process, since r8 = r7. Then, we set r ≃ r8 = 1.245017980. Consequently

r0 = 1.195858164.

The conditions of Theorem 2.5 are satisfied. In consequence, Eq. (3.3) has a solution x⋆ in {ϕ ∈ C[0, 1]; ‖ϕ − 1‖ ≤

0.3310531129}.
To obtain a numerical solution of (3.3), we first discretize the problem and approach the integral by a Gauss–Legendre

numerical quadrature with eight nodes,∫ 1

0
f (t) dt ≈

8−
j=1

wjf (tj).

If we denote xi = x(ti), i = 1, 2, . . . , 8, Eq. (3.3) is transformed into the following nonlinear system:

xi = 1 +
xi
4

8−
j=1

aijxj, i = 1, 2, . . . , 8,

where aij =
siwj
si+sj

.

Denote now x = (x1, x2, . . . , x8)T , 1 = (1, 1, . . . , 1)T , A = (aij) and write the last nonlinear system in the matrix form:

x = 1 +
1
4
x ⊙ (Ax), (3.5)

where ⊙ represents the inner product. If we choose x0 = (1, 1, . . . , 1)T and x−1 = (0.99, 0.99, . . . , 0.99)T , after eight
iterations by applying method (CSTM) with a = b = 1/2 and c = 1, and using the stopping criterion ‖xn − x⋆‖ < 10−100,
we obtain the numerical solution x⋆ = (x⋆1, x2, . . . , x

⋆
8)

T given in Table 1.
Moreover, if we consider the computational order of convergence ρ (see [2]),

ρ ≈ ln


‖xn+1 − x⋆‖∞

‖xn − x⋆‖∞


ln


‖xn − x⋆‖∞

‖xn−1 − x⋆‖∞


, n ∈ N,

we obtain ρ = 1.6249 . . . .
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Table 1
Numerical solution x⋆ = (x⋆1, x

⋆
2, . . . , x

⋆
8)

T of system (3.5).

j x⋆j j x⋆j j x⋆j j x⋆j

1 1.0217. . . 3 1.1259. . . 5 1.2035. . . 7 1.2420. . .
2 1.0733. . . 4 1.1701. . . 6 1.2269. . . 8 1.2499. . .

Example 3.3. The last example is devoted to illustrate the numerical behavior of the methods introduced in (CSTM). To do
this, we consider as a function test the integral equation

x(s) = s −
s
2

∫ 1

0
cos(x(t)) dt, s ∈ [0, 1], (3.6)

introduced by Döring in [22].
The choice of the integral Eq. (3.6) as a function test is based in two points. First, it is known its exact solution: x⋆(s) = ϱ s,

where ϱ ≈ 0.522, is a solution of the nonlinear equation

2t2 − 2t + sin t = 0.

Second, all the functional compositions derived from the application of (CSTM) can be explicitly computed. Actually, we
rewrite Eq. (3.6) in the form F(x) = 0, where F : C[0, 1] → C[0, 1] and

[F(x)](s) = x(s)− s +
s
2

∫ 1

0
cos(x(t)) dt s ∈ [0, 1]. (3.7)

Then for each x, y, z ∈ C[0, 1] the divided difference operator [x, y; F ](z) is defined as follows

[x, y; F ](z)(s) = z(s)+
s
2

∫ 1

0
z(t)K(x, y; t) dt s ∈ [0, 1],

where

K(x, y; t) =
cos(x(t))− cos(y(t))

x(t)− y(t)
.

In addition,

[x, y; F ]
−1(z)(s) = z(s)+

 1
0 sz(t)K(x, y; t) dt

2 +
 1
0 tK(x, y; t) dt

s ∈ [0, 1].

In the numerical experiment we compare some Chebyshev–Secant-type methods obtained for a = b = 1 and c a free
parameter,

x−1, x0 ∈ C[0, 1],
yk = xk − A−1

k F(xk), Ak = [xk−1, xk; F ], (k ≥ 0)
xk+1 = yk − cA−1

k F(yk), (k ≥ 0)
(3.8)

with the classical Secant method

xk+1 = xk − A−1
k F(xk), x−1, x0 ∈ C[0, 1], (k ≥ 0). (3.9)

Notice that the Secant method (3.9) is included in the family (3.8). In fact it corresponds with the case c = 0.
In this example, we are not interested in checking if the convergence conditions are satisfied or not, but comparing the

numerical behavior of the sequences obtained by applying methods (3.8) to the operator defined in (3.7).
If we consider two initial approximations in the form x−1(s) = ς−1s, x0(s) = ς0s, ς−1, ς0 ∈ R, and we apply methods

(3.8) to operator (3.7), we obtain the iterates

xk(s) = ϱks, k ≥ 1,

where the sequence {αk} is defined as follows:
ϱ−1 = ς−1, ϱ0 = ς0,

βk = ϱk − g(ϱk)
ϱk − ϱk−1

g(ϱk)− g(ϱk−1)

ϱk+1 = βk − cg(βk)
ϱk − ϱk−1

g(ϱk)− g(ϱk−1)
, (k ≥ 0),

(3.10)
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Table 2
Errors obtained by different methods of (3.8) when the solution x⋆(s) of Eq. (3.6) is
approximated.

ek c = 0 c = 0.25 c = 0.5 c = 0.75 c = 1

1 1.1 × 10−2 8.7 × 10−3 6.0 × 10−3 3.4 × 10−3 6.9 × 10−4

2 3.1 × 10−4 1.8 × 10−4 8.4 × 10−5 2.5 × 10−5 5.0 × 10−7

3 2.9 × 10−7 9.7 × 10−8 2.1 × 10−8 1.7 × 10−9 1.7×10−15

4 7.5×10−12 1.1×10−12 7.4×10−14 8.9×10−16 0

where the auxiliary function g(t) is:

g(t) = t − t −
sin t
2t

. (3.11)

If we consider the max-norm ‖x‖∞ = maxt∈[0,1] |x(t)|, the errors ek = ‖xk − x⋆‖∞ can be obtained from the sequence
(3.10):

ek = |ϱ⋆ − ϱk|, ϱ = 0.5224366093993514 . . . .

These errors are shown, for different values of the parameter c , in Table 2. Notice that the smaller errors are obtained for
c = 1.

Conclusion

We provided a semilocal convergence analysis of (CSTM) for approximating a locally unique solution of an equation in
a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions [1],
we provided an analysis with a larger convergence domain and weaker sufficient convergence conditions than in [1]. Note
that these advantages are obtained under the same computational cost as in [1], since in practice the computation of the
Lipschitz constantM requires the computation ofM0. Hence, the applicability of (CSTM) has been extended.
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