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Recently, Antoniadis, Konitopoulos and Savvidy have introduced in Refs. [1–4] a procedure to construct 
background-free gauge invariants, using non-abelian gauge potentials described by forms of higher 
degree. Their construction is particularly useful because it can be used in both, odd- and even-
dimensional spacetimes. Using their technique, we generalize the Chern–Weil theorem and construct a 
gauge-invariant, (2n + 2)-dimensional transgression form, and study its relationship with the generalized 
Chern–Simons forms introduced in Refs. [1,2].
Using the methods for FDA manipulation and decomposition in 1-forms developed in Ref. [5] and applied 
in Refs. [6] and [7], we construct a four-dimensional Chern–Simons gravity action, which is off-shell gauge 
invariant under the Maxwell algebra.
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1. Introduction

Many models in string theory predict an infinite tower of par-
ticles of arbitrary high spin in their spectrum (e.g., see Refs. [8,9]). 
For instance, in the low energy limit of open string theory with 
Chan–Paton charges [10], the massless states can be identified with 
Yang–Mills quanta.

A text book example of the situation is provided by the so-
called Kalb–Ramond field (also known as NS–NSB field). It is 
a 2-form quantum field, i.e. an antisymmetric tensor field Bμν

with two indices. The gauge transformation δBμν(x) = ∂μεν(x) −
∂νεμ(x) leaves invariant the 3-form field strength Hμνρ(x) =
∂μBνρ + ∂ν Bρμ + ∂ρ Bμν . Therefore when a background metric is 
provided, it is possible to construct the invariant action principle 
[8] SKR = − 1

12

∫
dD x

√|g|Hμνρ Hμνρ = − 1
2

∫
H ∧ ∗H for the fields.1

These fields of rank two and higher are interesting as part of 
the spectrum of a QFT. This motivates a generalization of Yang–
Mills symmetry to include forms of higher degree as non-abelian 
gauge fields. In recent times, important research has been carried 
out in this direction, see for instance Refs. [11–15].

In particular, in Ref. [1] this idea of using forms of higher 
degree as non-abelian gauge fields was used to construct gauge 
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invariant Lagrangian forms which are independent of the metric. 
These forms are analogous to the Pontryagin-forms in Yang–Mills 
gauge theory.

These results were generalized in Refs. [2–4]. There were found 
closed invariant forms, similar to the Pontryagin–Chern forms in 
non-abelian tensor gauge field theory. These forms are based on 
non-abelian tensor gauge fields and are polynomial on the corre-
sponding curvature forms.

It is the purpose of this paper to extend these results to 
the case of the Chern–Weil theorem and transgression forms in 
(2n + 2) dimensions. Using this generalized case, we will construct 
a four-dimensional Chern–Simons gravity action invariant under 
the Maxwell algebra. This is accomplished using the formalism de-
veloped in Refs. [1–4] and afterwards using the methods developed 
in Ref. [5], and which were later applied in Refs. [6] and [7].

This paper is organized as follows. In Section 2 we briefly 
review the usual Chern–Simons theory and the non-abelian ten-
sor gauge theory. In Section 3 we study a generalization of the 
Chern–Weil theorem. Taking this theorem as the starting point, it 
is possible to construct generalized (2n + 2)-dimensional trangres-
sion forms, which allows us to reproduce the (2n + 2)-dimensional 
Chern–Simons forms obtained in Refs. [1,2]. These mathematical 
results are used in Section 4 to study the construction of an off-
shell gauge-invariant Chern–Simons–Antoniadis–Savvidy action for 
gravity in d = 4. We finish in Section 5 with some final remarks 
and some considerations on future possible developments.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Gravitation as a gauge theory

Quantum chromodynamics and the Weinberg–Salam electro-
weak unification are described by gauge theories. The same is true 
for GUTs. However, the standard theory of General Relativity for 
gravity does not correspond to a genuinely off-shell gauge invari-
ant theory, even though General Relativity and Yang–Mills theories 
have similar geometric foundations.

Yang–Mills theories require a background metric in order to 
construct the action principle. On the contrary, an authentic 
gauge invariant theory of gravity requires a background-free ac-
tion principle. An action for gravity fulfilling this condition is 
provided by Chern–Simons and Transgression form gravities. This 
kind of theories have been extensively studied (see for instance 
Refs. [16–25]), but the construction is possible only in the case 
of odd-dimensional spacetimes. In this work we consider the con-
struction of a transgression form in even dimensions and a four-
dimensional Chern–Simons gravity action. The resulting theory is 
off-shell gauge invariant under the Maxwell algebra.

2.1. Chern–Weil theorem: Chern–Simons and transgressions forms

Chern–Simons (2n + 1)-forms can be obtained as local poten-
tials for the (2n + 2)-Pontryagin–Chern forms

P2n+2 = 〈F n+1〉, (1)

where 〈· · · 〉 stands for a multilineal symmetric invariant polyno-
mial for the Lie algebra

〈· · · 〉 : gn+1 →R,

as for instance the one provided by the symmetrized trace in some 
matrix representation of the Lie algebra (see [26]), i.e., 〈F n+1〉 =
Str (F ∧ · · · ∧ F )︸ ︷︷ ︸

n+1

.

The Pontryagin–Chern forms (1) which satisfy the condition 
dP2n+2 = 0, where F = dA + A2 is the 2-form Yang–Mills field-
strength of the 1-form vector field A. From the Poincaré lemma, 
we know that locally there exists a (2n + 1)-form C2n+1 such 
that P2n+2 = dC2n+1. This (2n + 1)-form C2n+1 is called a Chern–
Simons form.

It is easily checked that the Chern–Simons form is locally quasi-
invariant under gauge transformations (i.e. invariant modulo closed 
forms) [32]. In order to find an explicit expression for the Chern–
Simons form, we have to make use of the Chern–Weil theorem, 
which we will sketch briefly.

2.1.1. Chern–Weil theorem
Let A0 and A1 be two one-form gauge connections on a fiber 

bundle over a (2n + 1)-dimensional base manifold M , and let F0

and F1 be the corresponding curvatures. Then, the difference of 
Pontryagin–Chern forms is exact,〈
F n+1

1

〉
−

〈
F n+1

0

〉
= dT (2n+1) (A1, A0) , (2)

where

T (2n+1) (A1, A0) = (n + 1)

1∫
0

dt
〈
�F n

t

〉
(3)

is called a transgression (2n + 1)-form, where � = A1 − A0 and 
At = A0 + t�. The 2-form Ft stands for the field-strength of the 
1-form connection At , Ft = dAt + At At .

Setting A0 = 0 and A1 = A in (3), we obtain the well known 
Chern–Simons (2n + 1)-form
C2n+1 (A) = T (2n+1) (A,0) = (n +1)

1∫
0

dt〈A
(

tdA + t2 A2
)n〉. (4)

From the Chern–Weil theorem it is straightforward to show 
that under gauge transformations dδC(2n+1) (A) = 0, i.e. the Chern–
Simons form is quasi-invariant. However, it is important to stress 
that since a connection cannot be globally set to zero unless the 
bundle (topology) is trivial, Chern–Simons forms turn out to be 
only locally defined.

These properties imply that Chern–Simons forms have nice fea-
tures as Lagrangians: (i) they lead to gauge theories with a fiber-
bundle structure, whose only dynamical field is a one-form gauge 
connection A, and (ii) they do change by only a total deriva-
tive under gauge transformations. When we choose g = so (2n + 2)

we can write A = 1
l ea Pa + 1

2 ωab Jab , and therefore the Chern–
Simons form provides with a background-free gravity theory in 
d = 2n + 1. The main drawback of the construction is that trans-
gression and Chern–Simons Lagrangians seem to be intrinsically 
odd-dimensional. In the following sections we will show how this 
issue can be circumvented.

2.2. Non-abelian tensor gauge fields

The idea of extending the Yang–Mills fields to higher rank ten-
sor gauge fields was used in Ref. [1] in order to construct gauge in-
variant and metric independent forms in higher dimensions. These 
forms are analogous to the Pontryagin–Chern forms in Yang–Mills 
gauge theory.

These results were generalized in Refs. [2–4], where the au-
thors found closed invariant forms similar to the Pontryagin–Chern 
forms in non-abelian tensor gauge field theory. These forms are 
based on non-abelian tensor gauge fields and are polynomial on 
the corresponding curvature forms.

A Lie algebra valued, 1-form connection A can be written mak-
ing more or less explicit dependence on the Lie algebra generator 
basis Ta or the basis of 1-forms dxμ ,

A = Aμ ⊗ dxμ = Aa
μTa ⊗ dxμ.

The same is true for the gauge potential 2-form B = 1
2! Bμν ⊗

dxμdxν = 1
2! Ba

μν Ta ⊗ dxμdxν . The corresponding 2-form and 
3-form “curvatures” are given by F = 1

2! Fμν ⊗ dxμdxν and H =
1
3! Hμνλ ⊗ dxμdxνdxλ respectively, where

F = dA + A2, H = DB = dB + [A, B]. (5)

The curvatures F and H satisfy the Bianchi identities,

DF = 0, (6)

DH + [B, F ] = 0. (7)

The infinitesimal, non-abelian gauge transformations of the 
generalized gauge fields are given by

δA = Dξ0, (8)

δB = Dξ1 + [B, ξ0], (9)

where ξ0 is a 0-form gauge parameter ξ0 = ξa Ta and ξ1 is a 1-form 
gauge parameter ξ1 = ξa

μTa ⊗dxμ [1]. Under these gauge transfor-
mations, the curvatures transform as [2]

δF = D(δA) = [F , ξ0] (10)

δH = D(δB) + [δA, B] (11)



F. Izaurieta et al. / Physics Letters B 750 (2015) 39–44 41
2.3. Chern–Simons forms in (2n + 2) dimensions

In Refs. [1,2] there were found closed invariant forms similar to 
the Pontryagin–Chern forms in non-abelian tensor gauge field the-
ory. In particular, it was found that there exists a gauge invariant 
metric-independent invariant �(A) in (2n + 3)-dimensional space-
time

�2n+3 = 〈F n H〉 (12)

where H = dB + [A, B] is the 3-form field-strength tensor for the 
rank-2 gauge field B . By direct computation of the derivative it is 
possible to prove that �2n+3 is a closed form, d�2n+3 = 0 (see the 
proof in Ref. [2]). According to the Poincaré lemma, this implies 
that �2n+3 can be locally written as an exterior differential of a 
certain (2n + 2)-form. In order to find this potential (2n + 2)-form, 
the variation of �2n+3 induced by a variation of A and B is com-
puted. Since

δF = D(δA), δH = D(δB) + [δA, B], (13)

the variation δ�2n+3 is given by

δ�2n+3 = 〈δF F n−1 H + · · · + F n−1δF H + F nδH〉
= d〈δA F n−1 H + · · · + F n−1δAH + F nδB〉 (14)

Following Ref. [26], we introduce a one-parameter family of po-
tentials and strengths through the parameter t , 0 ≤ t ≤ 1:

At = t A, Ft = t F + (t2 − t)A2,

Bt = t B, Ht = t H + (t2 − t)[A, B].
When a variation of the form δ = δt(∂/∂t) is chosen, we have 

δAt = δt A and Bt = δt B . From eq. (14), we have

�2n+3 = 〈F n H〉 = dC(2n+2)

ChSAS , (15)

where the (2n + 2)-form C(2n+2)

ChSAS , is what we will call a “Chern–
Simons–Antoniadis–Savvidy” form, and it is given explicitly by

C
(2n+2)

ChSAS (A, B) =
1∫

0

dt〈A F n−1
t Ht + . . . + F n−1

t AHt + F n
t B〉. (16)

This result is analogous to the usual Chern–Simons form (4), 
but in even dimensions [2]. From eq. (16), we have for the case 
n = 1 [2],

C
(4)

ChSAS =
1∫

0

dt〈AHt + Ft B〉 = 〈F B〉. (17)

This means that the four-dimensional Chern–Simons–Antonia-
dis–Savvidy action is given by

S(A, B) =
∫

M4

〈F B〉. (18)

Using eqs. (10) and (9), it is direct to prove that the action 
eq. (18) is gauge invariant (modulo boundary terms) under the 
transformations eqs. (8) and (9).
3. Transgressions forms in (2n + 2) dimensions

In this section we prove that it is possible to generalize the 
transgression form and the Chern–Weil theorem to the
(2n + 2)-dimensional case. The theorem ingredients are: (i) Two 
Lie-algebra valued, connection 1-forms A0 and A1. Their cur-
vatures are given by F0 = dA0 + A2

0 and F1 = dA1 + A2
1, re-

spectively. (ii) Two Lie-algebra valued, generalized connection 
2-forms B0 and B1. Their generalized curvatures are given by 
H0 = dB0 + [A0, B0] and H1 = dB1 + [A1, B1], respectively (iii). 
In terms of these fundamental ingredients, it is possible to define 
the differences θ = A1 − A0 and  = B1 − B0, and the interpolat-
ing connections At = A0 + tθ and Bt = B0 + t. Their curvatures 
are given by

Ft = dAt + A2
t , (19)

Ht = Dt Bt = dBt + [At , Bt]. (20)

They satisfy the conditions

d

dt
Ft = Dtθ (21)

d

dt
Ht = Dt + [θ, Bt ] (22)

3.1. Generalized Chern–Weil theorem

Let A0 and A1 be two gauge connection 1-forms, and let F0

and F1 be their corresponding curvature 2-forms. Let B0 and B1

be two gauge connection 2-forms and let H0 and H1 be their cor-
responding curvature 3-forms. Then, the difference �(1)

2n+3 − �
(0)
2n+3

is an exact form,

�
(1)
2n+3 − �

(0)
2n+3 = 〈F n

1 H1〉 − 〈F n
0 H0〉 = dT(2n+2)(A0, B0; A1, B1),

(23)

where

T(2n+2)(A0, B0; A1, B1) =
1∫

0

dt
(

n〈F n−1θ Ht〉 + 〈F n
t 〉

)
(24)

is what we call a “Antoniadis–Savvidy transgression form”.

Proof. Let us start writing the LHS of eq. (23) as

〈F n
1 H1〉 − 〈F n

0 H0〉 =
1∫

0

dt
d

dt

〈
F n

t Ht
〉
.

Using eqs. (21) and (22),

�
(1)
2n+3 − �

(0)
2n+3

=
1∫

0

dt

(〈
nF n−1

t
dFt

dt
Ht

〉
+

〈
F n

t
dHt

dτ

〉)
,

=
1∫

0

dt
(

n
〈
F n−1

t Dτ θ Ht

〉
+ d

〈
F n

t 
〉 − (−1)p 〈

[Bt, θ ] F n
t

〉)
.

Since

n
〈
F n−1

t Dτ θ Ht

〉
= nd

〈
F n−1

t θ Ht

〉
− 〈

θ
[

Bt, F n
t

]〉
,

we have
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〈F n
1 H1〉 − 〈F n

0 H0〉

=
1∫

0

dt
(

nd
〈
F n−1

t θ Ht

〉
+ d

〈
F n

t 
〉 − (−1)p 〈[

Bt, θ F n
t

]〉)
,

= d

1∫
0

dt
(

n
〈
F n−1

t θ Ht

〉
+ 〈

F n
t 

〉)
.

Therefore, defining the (2n + 2)-Antoniadis–Savvidy-transgres-
sion form as

T(2n+2)(A0, B0; A1, B1) =
1∫

0

dt
(

n〈F n−1θ Ht〉 + 〈F n
t 〉

)
,

we have

〈F n
1 H1〉 − 〈F n

0 H0〉 = dT(2n+2)(A0, B0; A1, B1). �
Following the procedure followed in the case of the Chern–

Simons forms, we define the (2n + 2)-Chern–Simons–Antoniadis–
Savvidy form as

C
(2n+2)

ChSAS = T(2n+2)(A, B;0,0)

=
1∫

0

dt〈nA F n−1
t Ht + B F n

t 〉.

This result agrees with the expression found by Antoniadis and 
Savvidy in Refs. [1,2]. It is interesting to notice that transgres-
sion forms (both, standard ones and the above generalization) are 
defined globally on the spacetime basis manifold of the princi-
pal bundle, and are off-shell gauge invariant. Chern–Simons forms 
(both, standard ones and the Antoniadis–Savvidy generalization) 
are locally defined and are off-shell gauge invariant only up to 
boundary terms (i.e., quasi-invariants). Physical consequences of 
this subtle difference between Chern–Simons and transgression
forms has been studied in the literature for the case of standard 
odd-dimensional Chern–Simons gravity in Refs. [33,34]. What it 
could imply in the current approach is work in progress, as it will 
require a deeper exploration of the phenomenology of this kind 
of theories for specific symmetries. For this reason, in the next 
section we will study the construction of four-dimensional gravity 
using the Antoniadis and Savvidy [1,2] expression for C(2n+2)

ChSAS with 
n = 1 and the Maxwell algebra as gauge symmetry.

4. Chern–Simons–Antoniadis–Savvidy form for the Maxwell 
algebra

We have seen that the four-dimensional Chern–Simons–Anto-
niadis–Savvidy action corresponds to

SChSAS(A, B) =
∫

M4

〈F B〉, (25)

and it is invariant (modulo boundary terms) under the gauge 
transformations eqs. (8) and (9) [1,2]. Now we will use this con-
struction for the particular case of the Maxwell algebra, in order 
to show the connection between eq. (25) and gravity in d = 4.

4.1. Maxwell algebra

The so-called Maxwell algebra was introduced in the early sev-
enties (see Refs. [28,29]) as an algebra encoding the symmetries of 
a particle moving in a constant electromagnetic field. This algebra 
is generate by {Pa, Jab, Zab} where Pa are not common Poincaré 
translations. In fact, the commutation relations of the Maxwell al-
gebra read

[Pa, Pb] = Zab,

[ Jab, Pc] = ηbc Pa − ηac Pb,

[ Jab, J cd] = ηbc Jad + ηad Jbc − ηac Jbd − ηbd Jac,

[ Jab, Zcd] = ηbc Zad + ηad Zbc − ηac Zbd − ηbd Zac .

This algebra and its invariant polynomials can be studied in the 
context of S-expansions (where it corresponds to the B4 algebra, 
see Refs. [30,31]).

In order to write down a four-dimensional Chern–Simons–
Antoniadis–Savvidy action for Maxwell algebra we start from the 
gauge connections A and B . The connection 1-form A is expressed 
in the Maxwell basis as

A = 1

l
ea Pa + 1

2
ωab Jab + 1

2
kab Zab, (26)

where ea is identified as the vierbein 1-form, ωab is the spin con-
nection 1-form, and kab is an extra antisymmetric bosonic 1-form 
field. The corresponding 2-form curvature F = dA + A A is given by

F = 1

l
T a Pa + 1

2
Rab Jab + 1

2
F ab Zab, (27)

where T a and Rab are the standard torsion and Lorentz curvature 
2-forms,

T a = dea + ωa
beb,

Rab = dωab + ωa
cω

cb,

F ab = Dωkab + 1

l2
eaeb. (28)

From eq. (28) in the case T a = Rab = F ab = 0, we recover the 
Maurer–Cartan equations for the Maxwell algebra,

dea + ωa
beb = 0, (29)

dωab + ωa
cω

cb = 0, (30)

Dωkab + 1

l2
eaeb = 0. (31)

For the two-form B , we can write

B = Ba Pa + 1

2
Bab Jab + 1

2
βab Zab, (32)

where Ba, Bab, βab are 2-forms that we must determine. The cor-
responding 3-form curvature H = DB = dB + [A, B] is given by

H = Ha Pa + 1

2
Hab Jab + 1

2
�ab Zab

where,

Ha = Dω Ba − 1

l
Ba

beb

Hab = Dω Bab

�ab = Dωβab + ka
c Bcb + kb

c Bac + 1

l
[ea Bb − eb Ba]

These equations are analogous to equation (2.13) of Ref. [5], or 
to equation (III.6.47) of Ref. [27], and therefore it is not a free 
differential algebra (FDA). But when the condition Ha = Hab =
�ab = 0 is imposed, we get the corresponding FDA
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Dω Ba − 1

l
Ba

beb = 0, (33)

Dω Bab = 0, (34)

Dωβab + ka
c Bcb + kb

c Bac + 1

l
[ea Bb − eb Ba] = 0. (35)

The set of equations (29), (30), (31), (33), (34), (35) correspond to 
an FDA for the fields {ea, ωab, kab, Ba, Bab, βab}.

The problem now is to express the form B defined by the 
FDA relations (33), (34) and (35) in terms of the one-forms 
{ea, ωab, kab} of the Maxwell algebra.

To express the 2-forms 
{

Ba, Bab, βab
}

as the wedge product 
of the 1-forms 

{
ea,ωab,kab

}
we follow a procedure developed in 

Refs. [5,6]. We impose the ansatz

Ba = a1

2l
ωa

beb + a2

2l
ka

beb, (36)

Bab = b1

2l2
eaeb + b2

2
ωa

ckcb + b3

2
ka

ckcb + b4

2
ωa

cω
cb, (37)

βab = c1

2l2
eaeb + c2

2
ωa

ckcb + c3

2
ka

ckcb + c4

2
ωa

cω
cb, (38)

where a1, a2, b1, . . . , b4, c1, . . . , c4 are arbitrary constants. In order 
to fix them, we impose that the fields must satisfy the FDA condi-
tions given by eqs. (29), (30), (31), (33), (34), (35).

Introducing eqs. (36) and (37) in eqs. (33) and (34) we find

a1 = b4, a2 = −b1, b2 = b3 = 0, (39)

and using now eqs. (36), (37) and (38), we obtain

c2 = 2a1, c3 = 2a2. (40)

It means that the FDA fields are given by

Ba = a1

2l
ωa

beb + a2

2l
ka

beb, (41)

Bab = a1

2
ωa

cω
cb − a2

2l2
eaeb, (42)

βab = c1

2l2
eaeb + a1

2
ωa

ckcb + a1

2
ωb

ckac + a2

2
ka

ckcb

+ a2

2
kb

ckac + c4

2
ωa

cω
cb. (43)

There are four arbitrary constants in the FDA expansion in 
terms of 1-forms; the fields given by eqs. (41), (42), (43) repre-
sent the most general solution that can be built from the fields 
{ea, ωab, kab}. Any choice of the constants represent a solution to 
the FDA.

It is interesting to note that if c1 is a constant then it is possible 
to write, c1 = a1 + γ , where γ is another constant. Choosing a2 =
c4 = γ = 0 leads to the solution given by

B = a1

2
[A, A]. (44)

4.2. Chern–Simons–Antoniadis–Savvidy Lagrangian

Using the invariant tensor found in Ref. [31],

〈 Jab Jcd〉 = α0l2εabcd, 〈 Jab Zcd〉 = α2l2εabcd, (45)

being α0 and α2 arbitrary constants, the Chern–Simons–Antonia-
dis–Savvidy Lagrangian 4-form L(4)

ChSAS ≡ C
(4)

ChSAS in 4D eq. (17) is 
explicitly given by

L(4)

ChSAS = 1

4
α0l2εabcd Rab Bcd + 1

4
α2l2εabcd Rabβcd

+ 1
α2l2εabcdDωkab Bcd + 1

α2εabcd Babeced. (46)

4 4
Introducing the FDA expansion given by eqs. (41), (42) and (43)
in (46), the Chern–Simons–Antoniadis–Savvidy Lagrangian for the 
Maxwell algebra takes the form

L(4)

ChSAS = μ

8
εabcd Rabeced + νl2

8
εabcd Rabωc

f ω
f d

− σ

8l2
εabcd(eaebeced + 2l2kab T ced − 2l4 Rabkc

f k f d)

+ τ

8
εabcd(ω

a
f ω

f beced + l2Dωkabωc
f ω

f b)

− σ

8
d(εabcdkabeced), (47)

where μ = α2c1 − a2α0, ν = (α0 + 2α2)a1 + c4α2, σ = a2α2 and 
τ = a1α2.

From eq. (47), we can see that when μ �= 0 i.e., α2c1 �= α0a2, 
the Chern–Simons–Antoniadis–Savvidy Lagrangian for the Maxwell 
algebra contains the Einstein–Hilbert term.

An interesting solution can be obtained choosing a1 = a2 = 0. 
In this case the fields of eqs. (41), (42), and (43) take the form

Ba = 0, (48)

Bab = 0, (49)

βab = c1

2l2
eaeb + c4

2
ωa

cω
cb. (50)

Under this choice, the Chern–Simons–Antoniadis–Savvidy La-
grangian for Maxwell algebra takes the compact form

L(4)

ChSAS = μ

8
εabcd Rabeced + ν

8
l2εabcd Rabωc

f ω
f d,

where we can see that in the limit l → 0, we obtain the Einstein–
Hilbert Lagrangian,

L(4)

ChSAS = μ

8
εabcd Rabeced. (51)

Another case particularly interesting choice is given by a1 =
c1 = c4 = 0. In this case the fields of eqs. (41), (42) and (43) are 
given by

Ba = a2

2l
ka

beb, (52)

Bab = − a2

2l2
eaeb, (53)

βab = a2

2
ka

ckcb + a2

2
kb

ckac, (54)

and the Chern–Simons–Antoniadis–Savvidy Lagrangian for the 
Maxwell algebra is given by

L(4)

ChSS = μ

8
εabcd Rabeced

− σ

8l2
εabcd(eaebeced + 2l2kab T ced − 2l4 Rabkc

f k f d)

− σ

8
d(εabcdkabeced), (55)

where the case kab = 0 leads to the standard Einstein–Hilbert La-
grangian with cosmological constant.
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5. Concluding remarks

In Refs. [1,2] there were found invariants similar to the 
Pontryagin–Chern forms in non-abelian tensor gauge field the-
ory [11,12]. The first series of exact (2n + 3)-forms are given by 
�2n+3 = 〈F n H3〉 = dC(2n+2)

ChSAS where H3 = dB + [A, B] is the 3-form 
field-strength tensor for the rank-2 gauge field B . The second series 
of invariant forms are defined in 2n + 4 dimensions and are given 
by �2n+4 = 〈F n H4〉 = dC(2n+3)

ChSAS where the corresponding secondary 
(2n + 3)-form C(2n+3)

ChSAS is defined in terms of the 4-form H4 =
dC +[A, C] as the field-strength tensor for the rank-3 gauge field C . 
The third series of forms is defined in (2n + 6) dimensions [3]
�2n+6 = 〈F n H6〉 + n〈F n−1 H2

4〉 = dC(2n+5)

ChSS . The fourth series of in-
variant closed forms �2n+8 in (2n + 8) dimensions is given by [4]
�2n+8 = 〈F n H8〉 + 3n〈F n−1 H4 H6〉 + n(n − 1)〈F n−2 H3

4〉 = dC(2n+7)

ChSS .
All forms �2n+3, �2n+4, �2n+6 and �2n+8 are analogous to the 

Pontryagin–Chern invariants P2n in the Yang–Mills gauge theory 
in the sense that they are gauge invariant, closed and metric inde-
pendent.

In Refs. [2–4] there were found explicit expressions for these 
invariants in terms of higher order polynomials of the curva-
ture forms on a vector bundle. As with standard Chern–Simons 
forms, the secondary forms C(2n+m)

ChSAS are background-free but quasi-
invariant and only locally defined (and therefore defined only 
up to boundary terms, C(2n+m)

ChSAS ∼ C
(2n+m)

ChSAS + dσ (2n+m−1)). In the 
present article we have constructed the (2n + 2)-dimensional ana-
logue of transgression forms and the Chern–Weil theorem. These 
transgression forms are defined globally and are off-shell gauge 
invariant, but the price to pay is the doubling in the num-
ber of fields. From this theorem is straightforward to recover 
the generalized (2n + 2)-dimensional Chern–Simons–Antoniadis–
Savvidy forms from Refs. [1,2] setting to zero half of the fields. The 
2-form field B can be discomposed in terms of components of the 
1-form A. It is performed in a self-consistent way by considering 
the generalization of Maurer–Cartan approach to forms of higher 
order, i.e. free differential algebras, and by following the procedure 
used in Refs. [5,6] and [7].

The final result is a four-dimensional gravity action principle 
equation (47), which is gauge quasi-invariant under the general-
ized gauge transformations eqs. (8), (9) for the Maxwell algebra.

The dynamics of the system will be presented elsewhere, but 
it is clear that the non-linear couplings with the kab field does 
generate in general non-vanishing torsion, in a way similar to the 
one presented in Ref. [35]. A non-vanishing torsion may lead to 
highly non-trivial consequences in cosmology (see Refs. [35–37]), 
where at the very end it plays the role of an extra stress-energy 
tensor in Einstein field equations.
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