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Abstract

One-loop QED corrections to the differential width of radiative muon decay are considered. Results can be used to an
high statistics data of modern and future experiments.
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1. Introduction

Since the discovery of muon in 1937, the stud
of its properties were always very important for t
progress of the elementary particle physics. No
days, such precision observations like the muon
time and the muon anomalous magnetic moment
important for the checks of the Standard Model a
searches fornew physics. Besides many others, th
process of radiative muon decay,

(1)µ+ → e+ + νe + ν̄µ + γ,
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is investigated in the modern experiments. In p
ticular, the set of data from the PIBETA(πβ) ex-
periment[1] at the Paul-Scherrer Institute contains
considerable amount of these decays. Accurate m
surements of the process provide interesting infor
tion about the structure of weak interactions.

In this Letter we construct an advanced theoret
prediction for the differential distribution of proce
(1). Our calculations of radiative corrections (RC)
low to reduce the theoretical uncertainty. That ma
it possible to perform precision comparisons with
experimental data and potentially look fornew physics
or rule out certain extensions of the Standard Mod

In the limit of small energy loss (carried awa
by the neutrinos), radiative corrections to the proc
were considered in Ref.[2]. In this limit the standard
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decay produces a background to the searches fo
neutrinoless decayµ → eγ .

In this Letter we will consider the general kinema
ics assuming that the energies of the final state elec
and photon are above of a certain threshold and
angle between their momenta is not small (see S
tion 3.3). The tree-level distribution and the notatio
are introduced in Section2. Then we consider differ
ent RC contributions. In Conclusions we present so
numerical results and estimate the theoretical unce
tainty in description of the radiative muon decay.

2. The tree-level distribution

Within the Fermi model of four-fermion interac
tion, the differential width of radiative muon deca
was first considered in Refs.[3,4]. Accurate for-
mulae including the terms suppressed by the fa
(me/mµ)2 were recently presented in Ref.[5]. We
checked that their results coincide with the relevan
contribution, which have appeared in calculations
exact one-loop radiative corrections to the muon de
spectrum[6]. At the Born level the differential distri
bution of the electrons and photons of the process(1)
has the form

d6Γ µ±→e±νν̄γ

dx dy d2Ωe d2Ωγ

= Γ0
α

64π3y
β
[
F(x, y, d) ∓ β �Pµp̂eG(x, y, d)

∓ β �Pµp̂γ H(x, y, d)
]
,

Γ0 = G2
F m5

µ

192π3 , d = 1− βc,

(2)β =
√

1− m2
e

E2
e

,

whereGF is the Fermi coupling constant;me andmµ

are the electron and muonmasses, respectively;�Pµ is
the muon polarization vector;x andy are the electron
and photon energy fractions in the muon rest re
ence frame,x = 2Ee/mµ and y = 2Eγ /mµ; by p̂e

andp̂γ we denote the unit vectors in the directions
motion of the electron and photon,p̂e = �pe/| �pe| and

p̂γ = �pγ /| �pγ |; c = cos( �̂pe �pγ ). FunctionsF(x, y, d),
G(x,y, d), andH(x,y, d) can be found in Appendix
of Ref. [5].
In what follows we will concentrate on the case
unpolarized muon decay, since it is the one measu
in the PIBETA experiment. In the unpolarized ca
only three variables are relevant and the tree-level
tribution can be represented as

(3)
d3Γ Born

unpol.

dx dy dc
= Γ0

α

8πy
βF(x, y, d).

Model independent parameterization of four-ferm
interaction (see Particle Data Group[7]) leads to the
appearance of two additional contributions. One
them is proportional to the difference(1 − 4ρ/3),
which describes the deviation of the Michel parame
ρ from its value in the Standard Model. And the oth
one contains parameterη̄, which is a positive semi
definite quantity (see Ref.[8])

η̄ = (∣∣gV
RL

∣∣2 + ∣∣gV
LR

∣∣2)
+ 1

8

(∣∣gS
LR + 2gT

LR

∣∣2 + ∣∣gS
RL + 2gT

RL

∣∣2)
(4)+ 2

(∣∣gT
LR

∣∣2 + ∣∣gT
RL

∣∣2),
whereg

S,V ,T
RL,LR are the right–left(RL) and left–right

(LR) coupling constants, which parameterize n
standard scalar(S), vector(V ) and tensor(T ) four-
fermion interactions. In principle, one can look al
for other exotic interactions, e.g., for the ones me
ated by antisymmetric tensor fields[9]. Extraction of
η̄ from the experimental data potentially can put st
limits on physics beyond the Standard Model.

3. Radiative corrections

New precision experiments call for an adequ
level of accuracy in theoretical predictions within the
Standard Model. Effects of higher orders of the p
turbation theory become important. Here we will co
sider the first order QED radiative corrections.
usually, we separate them into three parts: (i) em
sion of an additional soft photon; (ii) effect due
one-loop virtual photonic correction; (iii) emission o
an additional hard photon. Note that all the relev
pure week corrections (like loop insertions into t
W -propagator) are included into theGF coupling con-
stant [10,11], which is measured directly from th
muon lifetime. Effects of strong interactions in th
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(a) (b) (c) (d)

Fig. 1. Types of Feynman diagrams for radiative muon decay with one-loop RC.
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process under consideration are negligible for the
ment. They start to appear only at the orderO(α2)

through hadronic vacuum polarization.

3.1. Soft photon contribution

We assume, that emission of an additional s
photon of energy below certain threshold is not dis
guished by the experiment from the tree-level proc
(1). The energy of the soft photon,ω2, is limited by
the parameter∆:

(5)ω2 � ∆
mµ

2
, ∆ � 1.

The corresponding correction can be factorized
in front of the tree-level differential distribution:

d3Γ Soft
unpol.

dx dy dc
= δSoft

d3Γ Born
unpol.

dx dy dc
,

δSoft = α

2π

{
1

2
L2 − (L − 2+ 2 lnx)

×
(

1− 2 ln∆ − ln
m2

e

λ2

)

− 2 ln2 x + 4 lnx − 2ζ(2)

}
+O

(
m2

e

m2
µ

)
,

(6)ζ(2) = π2

6
,

whereλ is a fictitious photon mass;L is the so-called
large logarithm,L = ln(m2

µ/m2
e) ≈ 10.66. Quantity

δSoft coincides with the corresponding factor, arisi
in the correction to the non-radiative muon decay (s
e.g., Ref.[6]).

3.2. One-loop virtual correction

Here we will consider the effect of one-loop ph
tonic corrections. Some representatives of the rele
Feynman diagrams are given inFig. 1. There are two
diagrams of class (a) with photon emission from
external leg (electron or muon line). In the same w
the two box-type diagrams of class (b) describe r
photon emission from virtual electron and muon pro
agators. Diagrams of classes (c) and (d) give cor
tions to photon radiation from a single leg. To get
corresponding correction to the muon decay spect
we have to multiply the complete set of amplitud
of classes (a)–(d) by two tree-level amplitudes,
scribing single photon emission. In our calculatio
we followed the procedure which has been applied
Ref. [12].

The standard technique for one-loop integrat
was used. The list of relevant integrals can be fo
in the Appendix of our preprint[13]. To eliminate the
ultraviolet divergences we applied renormalization
the masses and wave functions of the electron
muon. Note that this is enough in the case of muon
cay (see Refs.[14,15]), contrary to the general case
the Fermi four-fermion interaction. An analytical r
sult for the virtual correction was obtained. We do n
give the full formula here, since it is rather long.

3.3. Emission of an additional collinear hard photon

Events with registration of two hard photons a
supposed to be rejected by the experimental even
lection. But if the additional photon is emitted at
small angle with respect to the momentum of the o
going electron (positron), the former is not recogniz
by a calorimetric detector as an independent part
(this can happen if there is no any considerable m
netic field in the detector volume). So, for the so-cal
collinear photon emission, one observes an effec
electron with the energy and momentum composed
the sum of the corresponding quantities of the pho-
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ton and thebare electron. Let us assume that this ki
of calorimetric registration happens in the experime
if the angle between the electron and photon mome
does not exceed a certain valueθ0, which plays the role
of a small parameter. We demandme/mµ � θ0 � 1.
Typical experimental valuesfor this parameter, a few
degrees, satisfy our conditions. On the other hand
angle between the observed photon and the elec

should satisfy the conditionθ = �̂pe �pγ � θ0.
According to the general factorization procedu

we can represent the result for the contribution
collinear photon radiation as the product of two fa
tors:

d3Γ H-coll
unpol.

dx dy dc
= d3Γ Born

unpol.

dx dy dc
Rcoll,

(7)

Rcoll = α

2π

1∫
∆/x

dz

z

×
{[

1+ (1− z)2](L + 2 lnx − 1+ ln
θ2

0

4

+ 2 ln(1− z)

)
+ z2

}
.

The tree-level radiative muon decay (with phot
emission at large angles with respect to the elec
momentum) serves as a short-wave sub-process. E
sion of a collinear photon bythe outgoing electron
serves as a long-wave sub-processes. The formul
the collinear radiation factor agrees with the one
Ref. [16].

Integration over the energy fraction of the colline
photon,z, gives

(8)

Rcoll = α

2π

[(
L + 2 lnx − 1+ ln

θ2
0

4

)

×
(

2 lnx − 3

2
− 2 ln∆

)
− 4ζ(2)

+ 11

4

]
.

Note that the lower limitof the collinear hard photo
energy fraction is adjusted to the upper limit of s
photon emission.
-

4. Results and conclusions

Summing up the contributions of soft, virtual, a
hard collinear photonic corrections we receive the
nal answer for the first order radiative correction to
process(1). Here is our result for the corrected di
tribution, which substitutes functionF(x, y, d) from
Eq.(3)

F Corr.(x, y, d)

= F(x, y, d)

(
1+ α

2π
A(x, y, d)

)

+ α

2π
BF (x, y, d),

A(x, y, d)

= 2 ln
θ2

0

4
(lnx − ln∆) − 2 ln∆ − 3

2
ln

θ2
0

4

(9)+ 1

2

(
ln

xyd

2
− 2 lnx

)2

.

We presented explicitly only the factorized part
the correction. The remaining non-factorizable p
BF (x, y, d), is rather long. We use it in aFOR-
TRAN code for numerical estimates. Expressio
for the radiatively corrected functionsGCorr.(x, y, d)

and H Corr.(x, y, d) have exactly the same form a
Eq. (9) with the trivial substitutions:F → G(H) and
BF (x, y, d) → BG(H)(x, y, d). The most importan
factorized part of the correction,A(x,y, d), is uni-
versal for all the three functions.

It is worth to note that all the leading logarith
terms were factorized in each of the contributio
but they cancel out in the sum in accord with t
Kinoshita–Lee–Nauenberg theorem[17,18]. More-
over, all the dependence on the parameters∆ andθ0 is
contained inA(x,y, d).

In Fig. 2 we plotted the Born-level differentia
branching ratio of the radiative muon decay for a fixe
value ofc,

(10)R(x, y, c) ≡ 1

Γ0

d3Γ Born
unpol.

dx dy dc
.

The relative contribution of radiative corrections
illustrated byFig. 3,

(11)δRC = F Corr.(x, y, d) − F(x, y, d)

F (x, y, d)
× 100%.
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Fig. 2. Differential branching ratioversus electron energy fractiony for three differentx-values with fixedc = 0.5, ∆ = 0.01, θ0 = 3◦.

Fig. 3. Relative contribution of radiative corrections versusthe electron energy fraction; parameters are the same as inFig. 2.
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The dependence onc value ofδRC is rather weak. Fo
given values ofc andx the maximal value ofy is de-
fined by the kinematics:

(12)ymax= 1− x + m2
e/m2

µ

1− x(1− βc)/2
.

For the given set of parameters, the factorized pa
the correction dominates and gives about 4/5 of the
total effect.

To illustrate also the case of 100% polarized mu
decay we present inFig. 4 a plot for the relative con
tribution of radiative corrections for a set of fixe
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.
Fig. 4. Relative contribution of radiative corrections for the case of polarized muon decay versus the electron energy fraction
-
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variables. Namely,�̂Pµ �pe = 30◦, �̂Pµ �pγ = 60◦; c, θ0

and ∆ are the same as inFig. 2. Quantity δRC
pol. is

defined in analogy to Eq.(11) by adding the rele
vant contributions ofG andH functions according to
Eq.(2).

Thus we presented the calculation of one-loop Q
corrections to the differential distribution of unpola
ized muon decay. OurFORTRAN code is available
upon request from the authors. The results can
applied also for the decaysτ → µν̄µντ γ and τ →
eν̄eντ γ . The theoretical uncertainty of the spectru
description is defined by higher order QED radiat
corrections (EW and QCD effects are negligible co
pared to the QED ones). As a rough upper estim
we can consider the relative contribution of the om
ted higher order terms to be about(δRC)2 � 3× 10−3,
which is small compared to the present experime
precision. If ordered, one can easily get the most
portant higher order terms with logarithms of∆ and
θ0 by means of the soft and collinear approximation
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