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Some new continuity concepts for metric projections are introduced which are 
simpler and more general than the usual upper and lower semicontinuity. These 
concepts are strong enough to generalize a number of known results yet weak 
enough so that now the converses of many of these generalizations are also 
valid. In particular, in a large class of normed linear spaces, suns and Chebychev 
sets can be characterized by a certain continuity property of their metric pro- 
jections. 

1. INTRODUCTION 

There has been much recent interest in studying various continuity criteria 
for the set-valued metric projection onto a set I’. Particular interest has 
centered around the relationship between these criteria and either the 
structure of the set V itself or the geometry of the whole space. (See, for 
example, [3], [4], [7], [8], [lo], [16], [17], [18], and [21].) In essentially all 
of these papers, the concepts of lower semicontinuity (I.s.c.) and/or upper 
semicontinuity (u.s.c.) for set-valued mappings (as defined, for example, 
in Hahn [12]) played the key role. 

In this paper we consider some simpler and more general “radial” con- 
tinuity criteria (called ORL, IRL, and ORU continuity). Roughly speaking, 
these criteria require that the restriction of the metric projection to certain 
prescribed line segments be I.s.c. or U.S.C. We will show that these criteria, 
which are formally much weaker than 1.s.c. or u.s.c., are still strong enough 
to generalize a number of known results, and weak enough so that many of 
these theorems now have valid converses (which they did not have under the 
stronger hypotheses of 1.s.c. or u.s.c.). 

236 
Copyright 0 1974 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82355659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RADIAL CONTINUITY 237 

In particular, in a large class of spaces: suns are characterized by the ORL 
continuity of their metric projections (Corollary 2.4); Chebyshev sets are 
characterized by the IRL continuity of their metric projections (Corollary 3.8); 
and (in every space), those closed convex sets whose metric projections are 
compact-valued are characterized by the ORU continuity of their metric 
projections (Corollary 4.7). In what is probably the main result of Section 3, 
we prove (Theorem 3.6) the denseness of the set of those points whose set 
of best approximations is contained in a convex subset of a sphere. From 
this theorem we obtain Corollary 3.8 mentioned above as well as a theorem 
of Stechkin [19] which asserts-in a strictly convex space-the denseness of 
the set of points having unique best approximations. In Section 5, a set 
having both an IRL and ORU continuous metric projection is shown to be 
boundedly connected and have a “connected-valued” metric projection 
(Theorem 5.1). As a consequence (Corollary 5.4) a result of Wulbert ([23], 
[24]) is obtained to the effect that the set of rational functions Rllnz[a, b] in 
C[a, b] is boundedly connected. 

Throughout this paper X will denote a (real or complex) normed linear 
space, X* its dual space, and for every x E X and r > 0, 

B(x, r> = {YE x: II x -Y II -=c r>, S(x, r) = {y E X: 11 x - y I[ = r}. 

We sometimes denote the unit sphere S(0, 1) by S(X). If o # V C X, the 
distance from a point x to V, denoted d(x, V), is defined by inf{/i x - ~11: 2, E I’]. 
The metricprqjection onto V is the mapping Pv which takes each element of X 
into its set of best approximations in V, i.e. 

P”(X) = (u E v: Ij x - v Ij = d(x, V)}. 

V is called proximinal if P&T) # o for every x E X V is called Chebyshev 
if Py(x) is a single point for each x E X. V is called a sun if for each x E X 
and a E P&C), v E Py(v + h(x - v)) for every h > 0. Pv is said to be 1.s.c. 
(resp. u.s.c.) at x if for each open set W with P&C) n W # o (resp. 
P&c) C W), there exists a neighborhood U of x such that Pv(y) n W f o 
(resp. Pv(y) C W) for every y E U. The kernel of the metric projection Pv 
is the set 

PiI = {x E x: 0 E P”(X)}. 

The line segment joining the points x and y is the set 

[x, y] = {Xx + (1 - X) y: 0 < x < l}. 

The line segment obtained by excluding the end points of [x, y] is denoted 
by (x, y). The convex hull of a set A is denoted by co(A). 
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All other undefined notation or terminology is standard and can be found 
in [ll]. 

2. ORL CONTINUITY 

The results of this section overlap some of those presented in [9]. For 
completeness we have included the results, but omitted the proofs. 

Our first generalization of 1s.~. is the following. 

DEFINITION 2.1. Let V C X and x,, E X. Pv is said to be outer radially 
lower (abbrev. ORL) continuous at x0 if for every q, E Py(xO) and each open 
set W with W n P”(x,,) # @, there exists a neighborhood U of x,, such that 
Pv(x) n W # 0 for every x in U n {u,, + h(x,, - a,,): A > l}. P, is called 
ORL continuous if it is ORL continuous at each point. 

Remark. It is clear that every 1.s.c. metric projection is ORL continuous. 
There are examples where the converse is false, however. E.g. in any space 
which does not have the property (P) of Brown [IO], there exists a (finite- 
dimensional) subspace V such that Py is not 1.s.c. But from Theorem 2.3 
below Pv is ORL continuous. It is easy to check that P, is always ORL con- 
tinuous on V as well as each point x where Pv(x) = O. Moreover, if V is a 
s&space, then Py is ORL (resp. 1.s.c.) if and only if Pv is ORL (resp. 1.s.c.) 
on PiI( 

LEMMA 2.2. Let V C Xand x0 E X. The following statements are equivalent. 

(1) Pv is ORL continuous at x0 . 

(2) For each v,, , v1 E Pv(x,,) and each E > 0, there exists 6 > 0 such that 
P”(x) n B(v, , E) # 0 for every x in {vO + h(x, - vJ: 1 < X < 1 + S}. 

(3) For each v,, , v1 E Pv(x,,) and each sequence (x,,) in {v,, + x(x, - vO): 
h > I> with x, + x,, , d(v, , Pv(x,J) + 0 (i.e. there exist v, E P”(x,) 
such that v, --f vl). 

THEOREM 2.3. Let V C X and consider the following statements. 

(1) Y is a sun. 

(2) P, is ORL continuous. 

(3) “Local best approximations are global,” i.e. for each x E X, every local 
minimum of the function Gz(v) = 11 v - x jJ on V is a global minimum. 

(4) V is a moon (cf. [l] or [9] for the definition). 

Then (1) 3 (2) * (3) * (4). 
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Remark. In general, the implications (3) Z- (2) and (4) * (3) are false. 
To see that (3) + (2), we need only to take V to be the complement of the 
open unit ball in the Euclidean plane. In this case, all best approximations are 
global but Pv is not ORL continuous at the origin. To see that (4) P (3), 
let X be the Euclidean plane and 

This set is moon but the point (0, - 4) has (0, 1) as a local best approximation 
in V which is not a global best approximation. 

We call a space X an MS-space if every moon in X is a sun. In such a space 
all the conditions of Theorem 2.3 are obviously equivalent. In particular, 
we have 

COROLLARY 2.4. Let X be an MS-space and V C X. Then V is a sun ifand 
only ifPy is ORL continuous. 

Regarding this corollary, it should be mentioned that a large class of 
concrete spaces are MS-spaces. In [I] it was shown in particular that the 
MS-spaces include those of type C,,(T), the real continuous functions vanishing 
at infinity on a locally compact Hausdorff space T, as well as those spaces of 
type I,(S). An even larger class of spaces which are MS-spaces was determined 
in [9]. On the negative side, no strictly convex space can be an MS-space [I]. 

It is interesting to compare Corollary 2.4 with a particular consequence 
of two results of Vlasov ([21; Theorem 71 and [20; Theorem 131). These two 
results, when specialized to Hilbert space, yield the hard part of the following 
theorem (cf. also Asplund [2] for an alternate proof): 

THEOREM. A Chebyshev set V in a Hilbert space is a sun (i.e. is convex) if 
and only if Py is continuous. 

It is still not known whether every Chebyshev set in a Hilbert space is 
convex. In fact, it is apparently unknown whether there exists a Chebyshev 
set in any space which is not a sun.l Finally, we do not know whether Corol- 
lary 2.4 is valid in non-MS-Spaces. 

3. IRL CONTINUITY 

A second generalization of 1.s.c. is as follows. 

DEFINITION 3.1. Let V C X and x0 E X. Pv is said to be inner radially 
lower (abbrev. IRL) continuous at x,, if for every v,, E P&q,) and each open 

1 Added in proof: C. B. Dunham (“Chebychev sets in CIO, l] which are not suns,” to 
appear in Canadian Math. Bull.) has recently exhibited such an example. 
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set W with W n Pv(xO) # m , there exists a neighborhood U of x0 such that 
Py(x) n W # 0 for every x in U n (2~~ + A(xo - 21~): 0 < h < 11. Pv is 
called IRL continuous if it is IRL continuous at each point. 

Remark. Clearly, each 1s.~. metric projection is IRL continuous. The 
same example given in the remark following Definition 2.1 shows, using 
Theorem 3.3 below, that there are IRL continuous metric projections which 
are not 1.s.c. Note that P, is always IRL continuous on V as well as at each 
point x with Pv(x) = m. When V is a subspace, then Pv is IRL continuous 
if and only if it is IRL continuous on P;‘(O). 

LEMMA 3.2. Let V C Xand x,, E X. The following statements are equivalent. 

(1) Pv is IRL continuous at x0. 

(2) For each v,, , v1 in Pv(xO) and each E > 0, there exists 8 > 0 such that 
p&> n WV,, l )# 0foreveryxin{v,+h(x,-vv,):l --6<X<l}. 

(3) For each v0 , v1 in Py(xO) and each sequence (x,) in {v,, + X(x, - vO): 
O<h<l} with x,-+x0, d(v, , Py(x,)) --+ 0 (i.e. there exist 
v, E Pv(x,) such that v, + Q). 

Proof. (1) => (2) is clear. 
(2) * (3). If the result were false, there would exist vO, v1 in Py(x,,) and 

a sequence (x,) in {vO + h(x, - vO): 0 < h < l} with x, + x,, but d(vl, Pv(x,)) 3 
E > 0 for every It. Choose 6 > 0 such that Pv(x) n B(u, , c) f ia for every x 
in {vO + X(x, - v,): 1 - 6 < h < l> = Rs . Then for n sufficiently large, 
x, E R6 so d(v, , Pv(x,)) < E which is a contradiction. 

(3) + (1). Suppose (3) holds but (1) fails. Then there exists v0 E P,(x,J 
and an open set W with Pv(xO) n W # o such that for every neighborhood 
U of x0 there exists an x in U n {v,, + h(x, - v,,): 0 < h < l} such that 
P”(x) n W = 0. Choose v1 in Py(xO) n W. Then for every n there exists 
x, = v0 + h,(x, - v,,) with 1 - l/n < h, < 1 such that Pv(x,) n W = 0. 
Choose E > 0 such that B(v, , E) C W. Then Pv(x,) n B(v, , E) = 0 for 
i = 0, 1, 2,... Hence x, + x0 but d(v, , P,(x,J) >, E for every n, a contra- 
diction. 

THEOREM 3.3. If Pv(x) is convex, then Pv is IRL continuous at x. 

Proof. If Py(x) = 0, the result is trivially true. Let v0 , v1 E Pv(x) and 
x, E [x, v,,] with x, + x0 . Thus x, = v,, + (1 - E,)(x - v,J where 0 < E, < 1 
and E, -+ 0. Let v, = (1 - E,J v1 + E,v,, . Then v, E Pv(x) C V and v, -+ v1 . 
Also, 

II x7z - v, II = (1 - 4 II x - Ul II = (1 - 4 II x - Do II 
= II x, - vo II = d&z, V 

so v, E Pv(x,). 
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Remark. The converse of Theorem 3.3 is false in general. For example, 
taking X to be the plane with the maximum norm and letting V be the two 
point set {Cl, 01, (LiN, one sees that Py(0) = V is not convex but Py is IRL 
continuous at 0. 

COROLLARY 3.4. If V is convex or a Chebyshev set, then Pv is IRL 
continuous. 

Remark. Neither of the sufficient conditions of Corollary 3.4 are neces- 
sary. For example, by letting X denote the plane with the maximum norm, and 

it is seen that V is neither convex nor Chebyshev but Pv is IRL continuous 
(since Pv(x) is convex for every x). 

It will be useful, for proving some later results, to record the following 
fact. If x E S(X), then the minimal (necessariIy convex) extremal subset of 
S(X) which contains x is given by 

E(X)={vES(X):X=Xv+(1 - X)24 for some 0 < h < 1, u E S(X)} 

= {v E S(X): /I x - hv 11 = 1 - h for some 0 < X < l}. 

This result is well-known and easy to prove. 
As a consequence of this, we can give a brief proof of another useful result 

observed by Klee [13]: 

LEMMA 3.5. Let v E S(X) and 0 < X < 1. Then the set 

s = S(0, 1) n S(Xv, 1 - h) 

is star-shaped relative to v. 

Proof. Let x ES. Then 11 x - Xv 11 = 1 - h so v E E(x). Since E(x) is 
convex, [v, X] C S(0, 1). Also, since v, x, and Xv + (1 - X)x are in S(hv, 1 - X), 
it follows that [v, x] C S(Xv, 1 - X). Hence [v, x] C S. 

THEOREM 3.6. Let V C X be proximinal and suppose that every convex 
extremal subset of S(X) is finite dimensional. Then for each x E x\ V there exists 
v E Py(x) such thatfor every y E (v, x), co(Pv( y)) C S( y, d( y, V)). Inparticular, 
the set 

is dense in X. 
tx E x: co(Pv(xN C S(x, &x, V>l 
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Proof Let x E X\ I’. We may assume x = 0 and d(0, V) = 1. Since 
S(X) = u {E(x): x E S(X)}, we have 

P”(o) = (J [v n E(X)] = u [V n E(U)]. 
ES(X) tES(X)A v 

Order the sets Y = {E(u): v E S(X) n V} by containment. If @ is a totally 
ordered subset of Y, set E = lJ {E(v): E(u) E Sp}. Clearly, E is a convex 
extremal subset of S(X). Further, since dim E < co, it follows that E is the 
union of only finitely many sets E(v). Thus there exists E(u) E @ such that 
E = E(U). By Zorn’s lemma Y has a maximal element E(u,), u,, E S(X) n V. 
Let y = Au,, 0 < X < 1. To complete the proof, it suffices to show that 
P,(y) C E(Q). If not, then there is some u1 E P&v)\E(v,). Hence I/ Y, 11 = 1 
and 

II 01 - &I II = II VI - Y II = II uo -Y II = 1 - h 

which implies a0 E E(q) and hence E(u,) C E(Q). But E(u,) was maximal so 
E(v,) = E(v,) and u1 E E(u,), a contradiction. 

Remark. Theorem 3.6 is false in general without the restriction on the 
finite-dimensionality of the faces of S(X). For example, take X = L,([O, 11, p) 
where p is Lebesgue measure, and V = S(X). Then V is clearly proximinal. 
However, if x E X, 11 x 11 < 4, there exist q, r2 E P&v) such that 11 $(ul + us)ll < 1. 
To see this, define, for each n 2 3, the set 

M, = it E [O, 11: I x(t)1 > II x I/ - ;I. 

Then p(M,J > 0 and M, r) AN,,, for every 12, and 

A4 = {t E [O, 11: I x(t)1 = II x iI> = fi M, . 
3 

Clearly, p(M) = lim, p(M,). We consider two cases: 

Case 1. p(M) > 0. 
Then we can choose disjoint sets A, B such that p(A) > 0, p(B) > 0, and 

A u B = M. Define u1 = (sgn x) xa , o2 = (sgn x) xB , where xE denotes 
the characteristic function of E. Then (/ vi Ij = 1 and 11 ui - x 1) = 1 - Ij x 11, 
i.e. vi E P”(x), but I/ &(Q + uz)ll = 4. 

Case 2. p(M) = 0. 
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Define E, = M,\M,,+I . Then (E,) is a disjoint sequence. By passing to 
a subsequence, if necessary, we may assume p(E,,) > 0 for every n. Define 

v1 = (en x> $ (1 - &) xh 9 
and 

u2 = (sgn 4 f (1 - &) XE~,+~ 
1 

Then 11 ud 11 = 1, 11 ui - x I/ = 1 - jl x 11, i.e. vi E P&), but /I &(a1 + u.Jll = 8. 
From Theorem 3.6 we immediately obtain the well-known result of 

Stechkin [19]: 

COROLLARY 3.7 [19]. Let V be a proximinal subset of a strictly convex 
space X. Then the set 

{x E X: x has a unique best approximation in V} 

is dense in X. 

COROLLARY 3.8. Let V be a proximinal subset of a strictly convex space. 
Then Py is IRL continuous if and only if V is Chebyshev. 

Proof. The “if” part follows from Corollary 3.4. Assume Pv is IRL 
continuous and let x E X\V. By Theorem 3.6 and the strict convexity of X 
there exists v E Py(x) such that each y E (v, x) has a unique best approximation 
(viz. v). If P”(x) contained some v1 # v, this would violate the IRL continuity. 

One should observe that (the “only if” part of) Corollary 3.8 does not 
follow from Corollary 3.7, but that the stronger conclusion of Theorem 3.6 
is necessary. 

In the special case when Pv is Hausdorff continuous (resp. lower semi- 
continuous), the “only if” part of Corollary 3.8 had been established by 
Blatter, Morris, and Wulbert [4] (resp. Blatter [5]). It is interesting to note 
that the converses of their results, however, are not valid. This follows from 
the recent example of Kripke [14] of a Chebyshev subspace, having a dis- 
continuous metric projection, in a strictly convex reflexive space. 

A subset V is called boundedly compact if the intersection of V with each 
closed ball is compact. 

COROLLARY 3.9. Let X be a strictly convex and smooth Banach space and 
V C X be boundedly compact. The following are equivalent. 
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(1) Py is 1.s.c. 
(2) Py is IRL continuous. 

(3) V is Chebyshev. 

(4) v is convex. 

(5) Pv is convex-valued. 

(6) V is a sure. 

This result follows using Corollary 3.8 and the result of Vlasov [20] that 
in a smooth Banach space every boundedly compact Chebyshev set is convex. 
The equivalence of (l), (3), and (4) had been observed earlier by Blatter, 
Morris, and Wulbert [4]. 

In the important case when X is smooth, the restriction on the finite- 
dimensionality of the faces of S(X) in Theorem 3.6 may be dropped. 

THEOREM 3.10. Let X be smooth and V C X be proximinal. Let x,, E X\V 
and v,, E Pr(xJ. Then for each x E (x,, , v,), 

co(P,(x>> C Sk 4x9 VI>. 

In particular, the set 

is dense in X. 

{x E X: co(Pv(x)) C S(x, d(x, V))} 

Proof. Let H,,, be the unique supporting hyperplane to S(x, , jl xg - a,, 11) 
at v,, . Let x E (x,, , z+,). By Lemma 3.5, the set 

s = wo 9 II x0 - vo II) n SC& II x - 00 II) 

is star-shaped about v. . Choose any u1 E P”(x). Then v1 E S and so 
[u. , ox] C S. Let H be the unique supporting hyperplane to S(x, ,\I x0 - v. II) 
at i(vo + uJ. Then H 2 [v. , VJ and so H = H”, . This shows that 
P”(x) C Hv, and hence co(P&)) C Hv, . This completes the proof. 

THEOREM 3.11. Let V C X. If Pv is IRL continuous, then 

co(Py(x)) C S(x, d(x, V)) for every x E X. 

Proof. Let x E X. If Pv(x) = 0, the result is trivial. Thus assume 
Pv(x) # m and let vl ,..., v, in P”(x), hi > 0, and C3f hi = 1. We must show 
C; hp, E S(x, d(x, V)). W e p roceed by induction in n. For n = 1 the result 
is trivial. Assume the result is true for n - 1. We may take x = 0 and 
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d(0, V) = 1. Thus we need to show 11 Cl” A,vr I/ = 1, and for this it suffices 
to show that 11 C,” X,v, ]I > 1 - E for every E > 0. Write 

f &Vi = x,v, + (1 - A&, 
1 

u = gq $ &Vi . 

By the induction hypothesis, jl u /I = 1. By IRL continuity, there exists 
6 > 0 such that 

for every 0 < X < 8 

(i = 2,..., n). Take any 0 < X < min{E, S} and yi E B(vi , l ) n Py(Xv,) 
(i = 2,..., n). Then 

IIYiII = 1, Ij yf - XV~ I/ = 1 - A, II Yi - vi II < 6. 

By the induction step, 

& -f hiyi E S(0, 1) n S(Xv, ) 1 - A) = s. 
12 

Since S is star-shaped relative to vI (Lemma 3.5), 

h,v, + i hiyi = Ql + (1 - Al) 
2 I 

-& i A, y,] ES. 
12 

Thus 

1 - Ji$ &Vi 11 = ii hvl + $ &Yi I! - Jj $ kvi I/ G t xi II Yi - Vi II < E 

so 11 c: A& 11 > 1 - E. 
In the special case when Py is Hausdorff continuous, Theorem 3.11 was 

established by Blatter, Morris, and Wulbert [4]. Morris (oral communication) 
gave another proof of their theorem which essentially used only the IRL 
continuity of Pv . Our only excuse for including our own proof is that it is 
brief and direct. 

The next result was first established in [6] as a consequence of the main 
“intersection theorem” (Satz 12) of that paper. Since it was shown to have 
some useful corollaries, and since the proof of the “intersection theorem” 
of [6] was quite lengthy, it seems worthwhile to record here a short direct 
proof. 
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THEOREM 3.12 [6; Satz 131. Let V be a sun. Then 

co(Pv(x)) C S(x, d(x, V)) for every x E X. 

Proof. Let x E X. If PV(x) = 0, the result is trivial. Thus assume 
Py(x) # o and let u1 ,..., U, in P”(X), hi > 0, 2: hi = 1. TO show C: hiai E 
S(x, d(x, V)). [Use induction on n]. For n = 1, it is clear. Assume true for 
n - 1. Write 

i &vi = h,u, + (1 - h&, 
1 

where u = & $ &vi . 

Since V is a sun, v1 E Py(vl + X(x - Q)) for every h > 1 and so 

4% + h(x - f.4, f9 = AlI x - 0111. 

It follows that ui E PV(vl + h(x - uJ) for every h > 1 for i = 2,..., n. By the 
induction hypothesis, for every X > 1 

u = &f A& E qx, 11 x - Vl II) n S(v, + A(x - VI), x /I x - Ul 11) = s, . 
12 

Since S,, is star-shaped relative to v1 , we have 

f &vi = h,v, + (1 - X,)u in S, C S(x, II x - r1 [I). 
1 

It follows immediately that in a strictly convex space every proximinal sun is 
Chebyshev. 

4. ORU CONTINUITY 

Next we give a generalization of U.S.C. 

DEFINITION 4.1. Let V C X and x,, E X. Py is called outer radially upper 
(abbrev. ORU) continuous at x0 if for each o0 E Py(xO) and each open set 
W r) Py(xO), there exists a neighborhood U of x0 such that P”(x) C W for 
every x in U fl (a0 + h(x,, - u,): X > I}. Py is called ORU continuous if it 
is ORU continuous at each point. 

Remark. Clearly, every U.S.C. metric projection is ORU continuous. 
PV is obviously ORU continuous on V and at each point x with P”(x) = 0. 
When V is a subspace, PV is ORU (resp. u.s.c.) if and only if Py is ORU 
(resp. u.s.c.) on P$(O). 
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LEMMA 4.2. Let V C X and x0 E X. Consider the following statements. 

(1) Pv is ORU continuous at x0 

(2) For each v0 E P&co) and each E > 0 there exists 6 > 0 such that 

sup d@, P&,)) < 6 
VEP”M 

for every x E {v, + X(x, - Q: 1 < h < 1 + S}. 

(3) For each u0 E Pv(x,) and each sequence (x,J in {vO + X(x,, - uJ: X > I} 
with x, + x,, , 

sup d(u, P&J) -+ 0 
UCP &&n) 

(4) For each u0 E Py(xO), each sequence (x3 in (0, + A&, - Q): X > l} 
with x, + x,, , and each sequence (on) with v, E P”(x,), 

d&z , pr44l)) -+ 0 

(5) For each v,, E Py(xO), each sequence (x,) in {o,, + h(x,, - vO): X > I} 
with x ,, -+ x,, , and each sequence (v,J with v, E Py(x,) and v, -+ v, 

fJ E p&0)- 

Then (1) S- (2) Q (3) o (4) 3 (5). Moreover, ifP,(xJ is compact, (4) * (1) 
and the first four statements are equivalent. If V is compact, then (5) z- (1) 
and alljive statements are equivalent. 

Proof. (1) * (2). Choose a,, E P&z,,) and let 

w  = u {B(v, c/2): v E Py(x&} 3 Pv(x,>. 

Then there exists a 6 > 0 such that Pv(x) C Wfor every x E {v, + h(x, - a&: 
1 < h < 1 + S]. Let x E {a,, + A(xO - v,,): 1 < X < 1 + S} and v E P”(x). 
Then there exists a’ E Py(x,,) such that II v’ - tr 11 < e/2 and so d(v, Pv(xO)) < 
e/2. It follows that 

sup{d(v, Py(x,,)): v E PAX)> < e/2 < E 

The proofs of the implications (2) * (3) o (4) * (5) are routine. 
Next assume that Py(xO) is compact. If (4) holds but (1) fails then there is 

an open set W 3 Pv(xO) such that for every II there is an x, E (oO + A@,, - a&: 
1 < h < 1 + l/n} such that P,(x,J\ W + m. Choose V, E Pv(x,)\ W. Then 
x, + x0 so d(v, , Py(xO)) -+ 0. Choose yn E Pv(x,,) such that I/ v, - y, II+ 0. 
By passing to a subsequence we may assume yn + yO, y0 E Py(x,). Hence 
v, --+ y,, also. Since y,, E W is open, ZJ~ E W for n large. But this is a contra- 
diction. 
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Finally, let V be compact. If (5) holds but (1) fails, then a similar argument 
yields a contradiction. 

Remark. In general, the implications (4) * (1) and (5) * (1) are false. 
The following example invalidates both implications. Let Y be the subset of 
the Euclidean plane defined by 

Taking scO = (0, 0), we have 

P&o) = ((6 7): 5” + q = 1, 7 > 0). 

Then (4), and hence (5), is satisfied. However, taking o,, = (0, 1) E PV(xO) 
and W = ((5, v): q > 01, W is open and W 3 Pv(xO). Now every x = 
(6,~) in the set {v,, + X(x, - v,,): h > l} has the property that 7 < 0 and 

PAX) = {(L $9 t-1, ?1)) 

so P,,(x) n W = m . Thus Pv is not ORU continuous at x0 . 

LEMMA 4.3. If V is closed, then (5) of Lemma 4.2 holds. 

Proof. Let 210 E Pv(xO), x, E (vO + h(x, - vO): X >, l}, X, --+ X0, 0, E Pv(x,), 
and v, -+ v. Then v E V and 

II x0 - v II < II x0 - xv2 II + II x72 - %2 II + II &z - 0 II 

= 11x0 - x, II + 4x,, V> + II v, - u II 

-+ 4x0 7 V, 

i.e. II x0 - v II d d(x, , V) so v E Pv(xo). 

THEOREM 4.4. Let V C X be a closed set and suppose P&) is convex for 
each x. If Pv is ORU continuous, then P”(x) is compact for each x. 

Proof. If not, there exists x0 E X\ V and a sequence ( JJ,J in Pv(xo) which 
has no accumulation point. We may assume, by translating, that y, = 0. 
Also, by passing to a subsequence if necessary, we may assume 11 yn 11 >, E 
for every n > 2, and some 0 < E < 1. Choose 0 < 71 < min{l, e/(2 11 x0 II)}. 
Then 0 E P,(vx,,) and 

Pd’lxo) c WA 27 II x0 II). 
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Also, qyyn E P,(Tx,) for every n. Further, the sequence (77y,) has no accumula- 
tion point since (y,) does not. Define, for each n > 2, 

An = sup@: J+, E PY(‘)XO)]. 

Then h, > 1. If 0 < X < A,, then by the convexity of P,(qx,,), ~TJJ, = 
hy, + (I - A) . 0 E Pv(qxo). Since P,(qx,) is closed, h,qy, E P,(qxJ. 
Clearly, [(n + 1)/n] h,r]y, 4 P,(qx,,) for each IZ and ([(n + 1)/n] ~,TJJ,) has 
no accumulation point since [(n + 1)/n] X, 3 I. Since 

nfl ----A 7&q” < 
in+1 

n II 
----A 

n n71YTz I 
nfl 

= ,-~IIXOII < EY 

it follows that [(n + 1)/n] hnv < 1 for each n. Since [0, y,] C PV(xO) for each 
n, we have [(n + 1)/n] h,q~~, E PV(xO) C I’. Hence, from the relation 

II n+l n+lh 
y-lx0 --q-- VLrlYTl II 

nfl 
= y-- II 7x0 - km%2 II 

= + II 7x0 II = d (q ?lxo, V), 

it follows that [(n + 1)/n] h,yyn E Py((n + l/n) 71x0). Let 

Then Wis open and W 3 P,(Tx,). By ORU continuity, PV([(n + 1)/n] vxO)C W 
for IZ sufficiently large. But this contradicts the fact that [(n + 1)/n] Xn7yR 6 W 
for every IZ. 

Singer [I 81 had recently proved Theorem 4.4 in the particular case when Y 
is a subspace and P, is U.S.C. The proof given above is a refinement of his 
proof. 

A close inspection of the proof of Theorem 4.4 reveals that it is not 
necessary that Py(x) be convex for each x but only that each of these sets be 
star-shaped. 

Remark. The theorem is false in general if P, is not star-shaped-valued. 
For example, taking X = 2, and V = X\B(O, l), then Pv is U.S.C. (hence 
ORU continuous), but P”(O) = S(X) is not compact. 

There is a “converse” to Theorem 4.4. 

THEOREM 4.5. Let V be a sun such that P”(x) is compact for every x E X. 
Then P, is ORU continuous. 
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Proof Fix an arbitrary x0 E X and u0 E Py(xO). Let 

x72 = 00 + (1 + %xX0 - Uo)r E, > 0, 6, - 0, 

i.e. x, + x0. We need the following. 

LEMMA. If V is a sun and (x,) is us above, then P&J = fi: P&J. 

Proof of Lemma. Let v E Pv(xO). Then for each n, 

II xn - u II G II xn - x0 II + II x0 - *II 
= II xn - x0 II + II x0 - 00 II = II x?z - 00 II 
= 4x, , V 

so v E Py(xn) and Py(x,,) C fl; Pv(x,J. 
Conversely, if v E fly P,(x,J, then I] x, - u ]I = d(x, , V) for each la 

implies I/ x0 - u 1) = d(x,, , Y) so tt E P&x0). This proves the lemma. 
Now let W be an open set with W 1 Py(xo). Since Pv(xo) = nr P”(x,) 

and Py(x,) is a decreasing sequence of compact sets, there is an integer N 
such that Py(x,) C W for all IZ 3 N. Thus, for some 8 > 0, 

PYW c w  forall XE(U~+X(X~-V~):~ <A < 1 +S}. 

It follows that there is a neighborhood U of x0 such that if x = no + A(xo - uO), 
X > 1, and x E U, then 1 < X < 1 + 6. Hence Pv is ORU continuous at x0 . 

COROLLARY 4.6. If V is a Chebyshev sun, then Pv is ORU continuous. 

Combining Theorems 4.4 and 4.5 we obtain: 

COROLLARY 4.7. Let V be a closed sun with P”(x) convex for each x. 
Then Pv is ORU continuous tf and only zf P”(x) is compact for every x. 

Remark. It is worth noticing that Corollary 4.7 is false with U.S.C. in place 
of ORU continuity even if V is a subspace. This follows since there exist 
Chebyshev subspaces with discontinuous metric projections. (The first such 
example was given by J. Lindenstrauss [15; pp. 87-881). 

There is one case where U.S.C. and ORU continuity coincide. 

COROLLARY 4.8. Let V be a closed hyperplune. The following are equivalent. 

(1) Py is u.s.c. 

(2) Pv is ORU continuous 

(3) Py(x) is compact for every x. 



RADIAL CONTINUITY 251 

The implications (1) * (2) Z= (3) follow from above while the implication 
(3) 3 (1) is a result of Singer [IQ. 

5. IRL AND ORU CONTINUITY 

DEFINITION. A subset V of X is called boundedly connected if V r\ B(x, r) 
is connected for every x E X and r > 0. 

This concept was introduced by Wulbert [24]. Observe that every bound- 
edly connected set is connected, but not conversely in general. 

THEOREM 5.1. Let V be aproximinal set such that Pv is both IRL and ORU 
continuous. Then V is boundedly connected and Pv(x) is connectedfor each x. 

Proof. If V were not boundedly connected, there would exist x0 E X and 
r > 0 such that B(x, , r) n V is not connected. We may assume x0 = 0. 
Thus B(0, r) n V = A u B, where A and B are nonempty disjoint sets which 
are open in V. Clearly, Py(0) C A u B. We may assume P,(O) n A # 0. 
Let y E B. Then there is a X, E (0, 1) such that for every X E [h, , l], P&y) C B. 
Let 

p = inf{h E [O, I]: P&y) C B}. 

We first note that P,@y) C B. For if not, then P&y) n A f m. Choose 
v,, E P&y) n A. For any sequence x, E (fly, y) such that x, -+ /3y, there 
exists (by IRL continuity) u, E Pr(x,) C B such that v, + v0 E A. But this 
is impossible since A is open in V and v, E B\A for every n. Thus P&y) C B. 

On the other hand, since Pr is ORU continuous, it follows that there exists 
E > 0 such that Pv(Xy) C B for every h E (/3 - E, /3). But this contradicts the 
definition of fi and proves that V is boundedly connected. 

The proof that P”(x) is connected for each x is virtually the same. 

Remark. In the particular case when Pv is l.s.c., u.s.c., and Py(x) is 
compact for every x, Theorem 5.1 was established by Blatter, Morris, and 
Wulbert [4]. Pollul [17a] proved Theorem 5.1 in the particular case when Pv 
is both 1.s.c. and U.S.C. The proof above is an obvious modification of Pollul’s 
proof. 

COROLLARY 5.2. Let V be a Chebyshev set such that Pv is ORU continuous. 
Then V is boundedly connected. 

Proof. By Corollary 3.4, every Chebyshev set has IRL continuous metric 
projection. 

COROLLARY 5.3. Let V be a Chebyshev sun. Then V is boundedly connected. 

640/11/3-4 



252 BROSOWSKI AND DEUTSCH 

Proof. By Theorem 4.5, every Chebyshev sun has an ORU continuous 
metric projection. 

COROLLARY 5.4 (Wulbert [23], [24]). The se? of rational functions 
R,“[a, b] in C[u, b] is boundedly connected. 

ProoJ: It is well-known that R,“[a, b] is a Chebyshev sun. 

Remark. From the results of this paper, it follows that each Chebyshev 
subspace V has a metric projection which is ORL, IRL, and ORU continuous. 
However, Pv may still be discontinuous. 

Some Open Questions. The following questions arose naturally during 
this study. Let V C X be proximinal and Pv be ORL continuous. 

(1) Must Pv be IRL continuous? 

(2) Must V be a sun ? 

(3) Must {x E X: co(Pv(x)) C S(x, d(x, V))} be dense in X? 

We conjecture that the answer to each of these questions is negative. Note 
however that an affirmative answer to (2) in the case when X is a Hilbert space 
would have interesting consequences with regard to the convexity of 
Chebyshev sets. In particular, we could conclude that a Chebyshev subset V 
of a Hilbert space is convex and only if Pv is ORL continuous.2 

Note Added in Proof: A preliminary preprint of this paper, with the same title, was 
GWDG-Bericht Nr. 3, Giittingen, Jan. 1972. Also, an announcement of some of these 
results appeared as “Some new continuity concepts for metric projections,” in Bull. Amer. 
Math. Sot. 78 (1972), 974-978. 
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