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A Note on the Calculation of Empirical P Values from
Monte Carlo Procedures

To the Editor:
It has become commonplace in the statistical analysis of
genetic data to use Monte Carlo procedures to calculate
empirical P values. The reasons for this include the fol-
lowing: (1) many test statistics do not have a standard
asymptotic distribution; (2) even if a standard asymp-
totic distribution does exist, it may not be reliable in re-
alistic sample sizes; and (3) calculation of the exact sam-
pling distribution through exhaustive enumeration of all
possible samples may be too computationally intensive
to be feasible. In contrast, Monte Carlo methods can be
used to obtain an empirical P value that approximates
the exact P value without relying on asymptotic distri-
butional theory or exhaustive enumeration. Examples
of procedures for genetic analysis that use simulation
methods to determine statistical significance are CLUMP
(Sham and Curtis 1995), MCETDT (Zhao et al. 1999),
and a new test of linkage for a second locus conditional
on information from an already-known locus (Cordell
et al. 2000).

In this letter, we would first like to draw attention to
the fact that some currently available genetic-analysis pro-
grams (including some of our own) use a method of cal-
culating empirical P values that is not strictly correct.
Typically, the estimate of the P value is obtained as

, where n is the number of replicate samples thatp̂ p r/n
have been simulated and r is the number of these replicates
that produce a test statistic greater than or equal to that
calculated for the actual data. However, Davison and
Hinkley (1997) give the correct formula for obtaining an
empirical P value as . The reasoning is(r � 1)/(n � 1)
roughly as follows: if the null hypothesis is true, then the
test statistics of the n replicates and the test statistic of
the actual data are all realizations of the same random
variable. These realizations can be ranked, and then the
probability, under the null hypothesis, that the test statistic
from the actual data has the observed rank or a higher
rank is , the proportion of all possible rank-(r � 1)/(n � 1)
ings of the realizations that fulfill this criterion.

It is perhaps worth explicitly making the point that

this procedure utilizes the ranks, rather than the actual
values, of the test statistics. Another approach to the
Monte Carlo estimation of significance would be to use
the simulated test statistics to estimate the shape of the
probability distribution and then to calculate a P value
from this, but the use of ranks renders the process dis-
tribution free and is used almost universally.

Given that the most accurate estimate of the P value is
actually , any procedure that uses will(r � 1)/(n � 1) r/n
tend to underestimate the P value if the null hypothesis
is true—although, in most circumstances, to only a small
degree. For example, if and , then the cor-r p 5 n p 500
rect estimate of the P value is , rather than6/501 p 0.012
.01. The effect is greatest when r is small: for andr p 1

, the correct P value is , rather thann p 500 2/501 p .004
.002, and, for and , the correct P value isr p 0 n p 500

, rather than 0. It is straightforward to dem-1/501 p .002
onstrate this effect in practice. We wrote a small comput-
er program to generate a random number, x, to repre-
sent a test statistic observed under the null hypothesis.
It then generates n more random numbers, to obtain
an empirical estimate of the P value associated with x,
where r is the number of replicates obtained that are
�x. We repeated this procedure 106 times, using a value
of 500 for n and counting the number of times that we
obtained an empirical P value �.01. When we used r/n
to estimate the P value, we obtained a P value of .01 on
12,103 of 106 occasions, whereas, when we used (r �

, this P value was obtained on 10,106 of 1061)/(n � 1)
occasions. This confirms that use of to estimate Pr/n
values is anticonservative.

Using also avoids the problem of ob-(r � 1)/(n � 1)
taining a P value of 0 when the observed test statistic is
greater than those in any of the replicates. For n repli-
cates, the minimum possible estimate of the P value be-
comes . Thus, to obtain a very small P value,1/(n � 1)
it will be necessary to simulate a large number of rep-
licates. Another way of viewing this issue is as follows.
Although use of produces an unbiased(r � 1)/(n � 1)
estimate of the true P value (in contrast to use of ),r/n
this procedure will consistently overestimate small P val-
ues but will underestimate large P values. In fact, the
expectation of is , so that(r � 1)/(n � 1) (np � 1)/(n � 1)
the bias is . Once again, when n is large,(1 � P)/(n � 1)
this overestimation is unlikely to be important.

It is helpful to provide some quantification of the ef-
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fects that we describe. Typically, the true P value will be
unknown, and judgments will need to be made on the
basis of the observed values of r and n.

First, any methodology that utilizes to estimate ther/n
P value will tend to underestimate the actual P value by
a factor of ∼ . Often, it will be possible to re-r/(r � 1)
calculate the true estimate of the P value, but, in some
situations, the estimated P value may not be stated ex-
plicitly (e.g., when multiple tests are applied and only
corrected P values are provided). In any event, if r �
, then the bias in the estimate of the P value will not4

be likely to lead to any serious error in interpretation.
If , then perhaps results should be treated with somer ! 4
suspicion and a larger number of simulations should be
performed.

Second, if r is small, then small P values will tend to
be overestimated, and potentially important results could
be missed. Obviously, if one uses , observesn p 19 r p
, and estimates a P value of , then0 (r � 1)/(n � 1) p .05

the true P value might be as low as or . One�6 �1210 10
would hope that any researcher obtaining wouldr p 0
want to repeat the procedure using larger n. The question
obviously arises of what value of r is “enough”—that is,
what value should one observe to be reasonably confident
that one is not wildly overestimating the P value? For
given values of the true P value and of n, we can use a
binomial distribution to calculate the probability that a
value of r will be obtained such that will(r � 1)/(n � 1)
overestimate P by a factor of �2. The following examples
are chosen such that, for a true P value of .01, the stated
values of r and n will yield an estimate of �.02: with

, ; with , ; withn p 149 P p 0.44 n p 249 P p .24r�2 r�4

, ; and with ,n p 449 P p .085 n p 549 P pr�8 r�10

. As it turns out, the probabilities associated with.052
these values of r remain very similar, albeit not identical,
if different P values are used, along with appropriate val-
ues for n chosen to yield an overestimate by a factor of
2. For example, the corresponding probabilities of r ex-
ceeding the threshold values of 2, 4, 8, and 10, if the true
P value is .00001, are .44, .24, .087, and .054, respec-
tively. It should perhaps be emphasized that this tendency
to overestimate small P values is not purely a consequence
of using rather than as an estimate: use(r � 1)/(n � 1) r/n
of would give corresponding probabilities (with a truer/n
P value of .00001) of .26, .14, .051, and .031. From these
observations, we can construct the general rule that, if
one observes , then there is a strong possibility thatr p 2
one may be overestimating the P value by a factor of �2,
whereas, if one observes , then such a large over-r � 10
estimate is fairly unlikely.

Finally, although we have said that use of ratherr/n
than is anticonservative to only a small(r � 1)/(n � 1)
degree—which would be unlikely to have an important
effect on interpretation (at least provided )—therer � 4
is one situation in which even a small bias could be

important: when the power of different methods is being
compared. We have noted that the true P value associ-
ated with and is .012, rather than .01.r p 5 n p 500
This means that a Monte Carlo method that used tor/n
estimate the P value might find 20% more observations
significant at a level of .01 compared with an accurate
method. One might be concerned that, if one performed
a power study comparing two such methods, the Monte
Carlo method might be found to be considerably more
powerful than the other method, such a finding being
an artifact of the anticonservative nature of the Monte
Carlo method. In fact, we have carried out extensive
simulations and have found this not to be the case. We
simulated affected sib-pair samples with allele-sharing
probabilities increased above the null hypothesis value
of 0.5 and measured the power of a Monte Carlo method
using compared to the power of an exact binomialr/n
method to detect this deviation. Once again, we found
that, at least for values of , the power of the twor � 4
methods was very similar and that the theoretically an-
ticonservative nature of the Monte Carlo test did not,
after all, have important practical implications. The rea-
son for this seems to be that the Monte Carlo test does
not measure significance, but only estimates it, and that
the effect of the anticonservative bias is almost exactly
counterbalanced by the tendency to overestimate small
P values.

We therefore draw the following conclusions. First,
taking rather than as an estimate ofr/n (r � 1)/(n � 1)
the P value is essentially incorrect and should not be
used. However, in practice, doing so is unlikely to have
any serious implications either in individual tests or in
power comparisons between methods, at least when

. Second, Monte Carlo methods provide an esti-r � 4
mate, rather than a measure, of the P value. This implies
that they tend to overestimate P values that are, in re-
ality, small, and, hence, they may have less power than
other methods. This effect decreases as r increases and
becomes fairly unimportant when . We thereforer � 10
recommend that, for all applications, enough replicates
are obtained to ensure that .r � 10
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