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Capacity and Error Bounds for a Time-Continuous 
Gaussian Channel* 

R. B. As~ 

Columbia University, New York, New York t 

A model proposed by Fortet for a time-continuous Gaussian channel 
is analyzed. The model differs from that of Shannon in that a different 
constraint is imposed on the allowable input signals, and in addition 
the transmission of a code word in a given time interval is not assumed 
to interfere with the transmission of a word in any other interval. The 
capacity of the Fortet channel is established by proving a coding 
theorem and its weak converse. It is shown that the probability of 
error of an optimal code approaches zero exponentially with the time 
duration of the code words, provided the transmission rate is below 
channel capacity. 

INTRODUCTION 

Recently, Fortet  (1961) introduced a new model for a time-continuous 
channel with additive Gaussian noise of arbitrary spectrum. The model ~ 
differs from that  of Shannon (1948) in the following way. In  each case the 
code words are truncated versions sT(t) of signals s(t)  limited to the same 
frequency band as the noise. In  other words, s t ( t )  = s ( t ) ,  - T <- t <- T; 
st(t) = 0 elsewhere, where the Fourier transform of s(t)  vanishes 
wherever the noise spectrum vanishes. A decision is made as to the 
identity of the code word transmitted during the interval [ - T ,  T] after 
observing the output  during that  interval. However, implicit in the 
Shannon theory is the assumption that  the entire signal s(t)  is trans- 
mitted through the channel. Consequently the particular signal chosen 
for transmission during [ -  T, T] could conceivably interfere with the re- 
ception of code words during all other intervals, past as well as future. 

* This research was supported by the National Science Foundation under 
Grant No. G-15965. 

t Present address: Department of Electrical Engineering, University of Cali- 
fornia, Berkeley, California. 

1 As interpreted by the author. 
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TIME-CONTINUOUS GAUSSIAN CHANNEL 15 

Shannon solves the interference problem by postulating a decoding pro- 
cedure based on observation of the output at discrete sampling instants, 
and restricting the class of allowable signals to those with only a finite 
number of nonzero samples. 

Fortet's model is static in the sense that no word-to-word dependence 
is assumed. Although the signals s(t) from which the code words are 
derived have in general an infinite time duration, attention is restricted 
in the analysis to the finite interval [ -  T, T]. The effect of the portion of 
s(t) outside [--T, T] on past and future transmissions is ignored. In 
addition, Fortet imposes a constraint on the input signals which depends 
upon the spectrum of the noise. Fortet's constraint is not the same as the 
"average power" constraint imposed by Shannon, except in the case 
where the noise is band limited with a flat spectrum. In this case, the 
basic difference between the two approaches becomes clear. Both Shan- 
non and Fortet derive their code words from band limited signals. How- 
ever, in restricting his attention to the interval [ -  T, T] Fortet is essen- 
tially time limiting his code words. Thus, it is not surprising that the 
capacity of the Fortet channel in this case agrees with Shannon's ca- 
pacity formula for the limiting case of infinite bandwidth. 

In this paper, the capacity of the Fortet channel is established by 
proving a coding theorem and its (weak) converse. In addition, it is 
shown that the probability of error of an optimal code approaches zero 
exponentially with the time duration of the code words. 

I t  must be emphasized that there is no contradiction between the 
results of the present paper and those of Shannon; the models are quite 
different. The Shannon model is physically more realistic, but the 
Fortet model is more tractable mathematically. There are certain diffi- 
culties in the Shannon formulation of a model for a band limited channel 
which have not yet been resolved. 

D E F I N I T I O N S  A N D  S T A T E M E N T S  OF R E S U L T S  

Let n(t) be a stationary Gaussian stochastic process with zero mean, 
continuous covarance function 2 R(T), and spectral density N(c0), with 

1 fS j2 

-~ To avoid  degene racy  we a s sume  t h a t  t he  e igenfune t ions  of t he  in tegra l  equa-  
t ion  f_T T R( t  -- r )g ( r )  d~" ~ Xg(t) span  the  en t i r e  L~ space  of squa re  i n t eg rab l e  
func t i ons  over  [--T, T]. This  will be  t h e  ease,  acco rd ing  to  R o o t  and  P i t c h e r  
(1955) if n(t) is f i l te red  wh i t e  noise.  
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Consider the class of real functions of integrable square over ( - -  ~ ,  ~ ), 
whose Fourier transforms are zero whenever N(~o) is zero. If S(~o) is 
the Fourier transform of a function s(t) in this class, let F(co) = 
S(~o)/%/N(~) and let f ( t )  be the inverse Fourier t ransform of F(~0). 
(F(co) will have an inverse Fourier transform, at least in the sense of a 
limit in the mean, if F(¢o) is of integrable square: this will be the ease in 
the problem under consideration.) For any positive real number T, define 
sT(t) = s(t) ,  - T  <= t <= T; sT(t) = 0 elsewhere; similarly define 
nr( t )  = n(t ) ,  - T <- t <- T; nr(t)  - 0 elsewhere. A function s(t) (and 
its corresponding st(t)  ) will be called allowable if 

2 

f K T  (1) 
2~ J-~ N(~) = 

where K is a positive constant which is fixed for the remainder of the 
discussion. The integrand is defined to be zero whenever N(~0) = 0. We 
define a time-continuous Gaussian channel as follows. Let  T be an arbi- 
t rary  but  fixed positive real number. The inputs to the channel will be 
allowable functions s~(t); the outputs will be functions st(t)  + n~(t). 
An input is chosen from a specified set and transmit ted through the 
channel, where it is corrupted by the additive "noise" nr ( t ) .  The  received 
signal is observed over the interval [ -  T, 7'] and then a decision is made 
as to the identi ty of the input signal. More formally, following 
Wolfowitz (1961) we define a code (T,  M, ~) as a set 

{(st(t), A1), (s~(t), A2), . . . ,  ( s~( t ) ,  A~)} 

where each s~(t) is an allowable function st(t)  and the Ai are disjoint 
Borel sets in function space such tha t  

P{sj(t) + nr( t )  E A,} > 1 -- f~ ( j  = 1, 2, . - -  , M) (2) 

Thus the "probabil i ty of error" does not exceed ~ no mat ter  which "code 
word" s~(t) is transmitted. A number R is called a permissible rate of 
transmission if for each T there is a code (T, [e'r], /~(T)) such tha t  
f~(T) -+ 0 as T -+ ~ .  The channel capacity C is the supremum of all 
permissible transmission rates. (Clearly zero is a permissible transmission 
rate so that  the set of permissible rates is not empty.)  The main results 
of this paper are: 

THEOREM l .  C ---- K/2.  
THEOREM 2. (Exponential Bound) For each R = C - ¢, 0 K e < C, 
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there exist positive constants A and B (depending on K and e) such that for 
each T there is a code ( T, [eR~], f~(T) ) such that ~( T) <= Ae - ~ .  

Remarks: The result C >= K / 2  is credited to Bethoux in Fortet (1961) ; 
the argument given here seems more direct than the one sketched by 
Fortet. The results C <= K / 2  and Theorem 2 are new, although the 
method of attack leans heavily on the ideas of Feinstein (1958), Black- 
well, Breiman, and Thomasian (1958, 1959) and Thomasian (1960). If 
N(o~) = N / 2 ( - 2 7 r W  <- co <- 27rW);N(c0) -- 0elsewhere, andK = 2P/N,  
we have (2~)-1f~-. ] S(o~) l 2 do~ <= PT, i.e., the "average signal power" 
is limited; this is the constraint imposed by Shannon (1948). Using 
the Sampling Theorem Shannon obtained C = W log (1 + P / N W ) ,  
which is always less than K / 2  = P / N  and approaches P / N  only as the 
bandwidth W becomes infinite. Since in the present problem, the signals 
which are actually transmitted through the channel are time limited and 
hence not band limited, the Sampling Theorem is not applicable in this 
case. As indicated in the introduction, the time limiting of the code words 
accounts for the agreement between the channel capacity as given by 
Theorem 1 and the Shannon formula for the infinite bandwidth ease. 
Note that if no constraint at all is put on the inputs, the capacity is 
clearly infinite;this has been pointed out by Good and Doog (1958) and 
Swerling (1960). 

PROOF OF THE D I R E C T  HALF OF T H E O R E M  1 (C => K/2)  

It is well known that the process n(t) can be represented over [ -  T, T] 
as  

nr(t) = ~'~ z.g~(t) (3) 
n ~ l  

where the gn(t) are the orthonormalized eigenfunctions of the integral 
equation 

T 

f R( t  -- ~-)g(~-) = Xg(t), <= t <= (4) dr - - T  T 
T 

The z~ = f ~  nT(t)g~(t)dt are independent, normally distributed ran- 
dom variables with zero mean and variance X,~, where X~ is the eigen- 
value corresponding to g.(t).  The series (3) converges in mean square 
for all t in [-- T, T]. 

Now let h(t) be the inverse Fourier transform of %/N(@(h(t)  exists 
since (2~r) -~ f_~ N(c0) de = R(0) < :c ;note that h ( - t )  = h(t) since 



18 ASH 

N(  - ~) = N(~)  .) Following Kelly, Reed, and Root  (1960, Appendix 1), 
we define an auxiliary set of functions ¢~(t) by 

- h ( t - -  s ) g , ( s ) d s ,  - - ~  < t < 0¢ (5) o (t) 

To prove the direct half of Theorem 1 we shall consider signals gener- 
ated in the following manner. Let f ( t )  be any function of the form 
~'~=lf~¢~(t), - ~  < t < o~, with ~:t=lj .2 __< K T .  Let F(~)  be the 
Fourier transform of f ( t ) .  Let s(t) be the signal whose Fourier transform 
is S(o~) = F(x)  x/N-(x), i.e., 

F s(t) = h(t  -- s ) f (s )  ds (6) 
a9 

The "coordinates" of s(t) with respect to the functions g, (t) are: 

x~ = s(t)g~(t) dt 
T 

(7) 
= f ~  g~(t) [ f ~  h(t  -- s ) f ( s )  d s l d t  

The integral (7) is absolutely convergent, and thus the order of integra- 
tion may be interchanged, whence 

x~ = ~ f ( s )  h(s  -- t)g~(t) dt ds 

(8) 
= V / ~  f(s)4)~(s) ds = f ~ x / ~  

co 

The last equality of (8) follows since, as may be checked by a direct com- 
putation or by referring to Kelly, Reed, and Root  (1960), the functions 
¢~(t) are orthonormal on the real line. 

Any signal obtained in the above manner is allowable, since 

__1 f = ] S ( w )  l z = 1 f °* ]2 = ~ = 2~r ~ N(o~) d~ ~ ~ [ F ( ~ )  d~ ~=~f2 < K T  

In fact, s(t) is completely characterized by the vector (x~, x2, " "  , x ,)  
and 

x~ < K T  (9) 
/ = 1  ~ - i  : 
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If  the signal s t ( t )  is t ransmi t ted ,  the coordinates of the  received signal 
with respect  to the funct ions g~(t) are 

T 

y~ = ~ Is(t) ~- n(t)]g~(t) dt = x~ --k z~ (10) 
T 

Hav ing  observed y = @1, " ' "  , yn) we a t t e m p t  to determine the co- 
ordinates x -- (x l ,  " -  , x~) of the input  signal. I f  we assume t h a t  the 
input  signals are derived by  the procedure described above, and t h a t  a 
decision is made  at  the receiver based only on the first n coordinates of 
the output ,  then  the original channel  is equivalent  to a t ime-discrete 
memoryless  channel.  The  input  to  the memoryless  channel  is a vector  
x = @1, " ' "  , x , ) .  The  ou tpu t  is a vector  y = @1, " ' "  , Y~) = x q- z 
where z -- ( a ,  • • • , z~). The  condit ional  densi ty  of y given x is 

Let  us now const ruct  a probabi l i ty  dis tr ibut ion on the set of input  
vectors  x by  assuming t h a t  the coordinates of x are independent ,  nor- 
mal ly  dis t r ibuted r a n d o m  variables wi th  zero means and variances 

2 • ~ ,  z = 1, 2, • • • , n. I n  other  words, let 

p(xl, ' ' '  ,xn)= I~--H~ (27r(r~2)-l/21exp(-- £XJ2/2(rg)2=1 ( 1 - 9 )  

The densities p(x)  and p ( y / x )  induce a densi ty  p (y )  on the set of ou tpu t  
vectors. 

For  any  positive number  a, let A be the set of pairs ix, y) such tha t  
log [ p ( y / x ) / p ( y ) ]  > a. Let  E be any set of input  vectors.  The following 
result  was proved by  Thomas ian  (1960, Theorem 2) as an extension of 
a result  of Feinstein:  

FEII~-STEIN-THoMASIAN LEMMA: Given any integer M >= 1, there exist 
M distinct inputs x~, x_~, - . .  , XM, all belonging to E,  and M disjoint 
output sets B~ , B2,  • • • , B ~  such that 

P ( B ~ / x 0  = 3//-e -~ -t- P(J~) -k P ( 2 : ) ,  i = 1, 2, - - -  , M (13) 

The bar over a set denotes complementation; P( /~ /x~)  is the probability 
that the output does not belong to the set B~ , given that the input  x~ is trans- 
mitted. 

Given an a rb i t ra ry  bu t  fixed e, with 0 < e < K / 2 ,  assume 

• __< K - ~ T ( 1 4 )  
~=i i 
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Let us take E to be the set of x satisfying (9),  and let a = (K -- ~) T/2. 
The Feinstein-Thomasian Lemma yields a code consisting of M input 
vectors satisfying (9), with a probability of error bounded above by 

+ P > + log [P(Y/x , ) ]  Me--(K-O~/2 

(15) 
< (K -- e)T~ 
= 2 J 

Let us first consider the term P ( A ) .  From (15) we obtain 

P ( A ) = P  ~ log 1 +  + 
;=~ x ; /  2 (x j+  ~?) G;  _1 

< ( K -  ¢)T~ 
= -j 

(16) 

fn ( ( K - - e / 2 ) T ) + w ~ < ( K - - e ) T  t (18) 
P ( - 4 )  = P \ 2 1 ° g  1 + n = 

where W~ is a random variable with zero mean and variance 

(K - e/2)Tn < (g  - e/2)T 
n-4- (K - e/2)T 

Now for sufficiently large n, in particular 

12(K --~/2)2T' 1 n => max -e 2 (K  -- e/2)T (19) 

we have 

n l o g  (1 + (K --__S2)T~ > (K - - e / 2 ) T -  (K e / 2 ) 2 T  2 
(20) 

2n \ "rb ] 

Then 

I t  is easy to verify tha t  the mean and variance of 
2 

Y~ (Yi -- xi) ~ 
2(X3" + ¢~ "2) 2X~ 

2 are respectively 0 and o-y2/(~.3 -~- o'y2). We are free to choose the ~, sub- 
ject to (14). Let  us take 

2 X~(K -- ~/2)T 
~ = , i = 1, . - -  , n  (17) 

n 
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I t  follows from (18) and (20) tha t  for any n satisfying (19), 

P(TI)  <= P{W, ,  < ( K  -- e ) T / 2  - ( K  - ~ / 2 ) T / 2  + ( K  - ¢/2)2T2/4n} 

= P { W ~  < - e T / 4  + ( K  - e/2)~T2/4n} 

P{W,~ <= - e T / 8 }  =< P{I W ,  J > eT/8} (21) 

Chebyshev's inequality yields 

p ( • )  < 64(K - e/2) (22) 
= ~2 V 

We now consider the term P(/~).  I t  follows by a direct computation tha t  
~'~j~=ix~2/X5 has mean ( K  - e / 2 ) T  and variance 2 (K - e/2)2T2/n. 

Thus 

= P  { xj: j=l  ~ j  

S ( K  - 2 =_< 
ne  2 

(23) 

Finally, for a given T choose any n satisfying (19); then n--+ ¢¢ 
as T - +  ~ .  Let M be any integer -< exp ((½K -- e)T).  The foregoing 
procedure yields a code (T, M, 5 (T) )  where 

5 ( T )  < e -`~12 + 64(K - -  e/2) q_ 8 (K  -- ~/2) 2 
= + 0  a s  T - +  e 2 T ne 2 

This completes the proof. 

PROOF OF THEOREM 2 

The derivation of the exponential bound is based on a sharper estimate 
of the terms of the expression (15). First of all from (21) we have 

P ( A )  < P { W ~  < - e T / 8 }  

where (24) 

W= 
3=1~ L2(X~ + o'j 2) 2kj  / 

The following result is due to Thomasian (1960) : 
* . , z~*) are independent, identically dis- I f  xl*, . . .  , xn* (resp. zl , . .  

tributed Gaussian random variables with mean zero and variance 
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Q (resp. N ) ,  the random vectors (xl*, 
* 

independent, and y ~ 

L2(~) T~V) = (25) 

~ ox~ (~  E#~ + ~ (1 + ~)_ ~]) 
To apply (25) take *2 = x,/v%., ~? = z / V g ,  Y2 = Y#V%, 
N = 1, Q = zj2/h~ = (K - e /2)T/n,  ~ = eT/8n.  From (24) and (25) 
we obtain 

~(~)<ox~(~r¢~+~°~Y~l n ,,~,, + ~,~_~,~,~)_ 1]) 
(26) 

( -~[# , ' < ~ ]  =< exp 1-F 4 \ ~ ]  - 1 , 

We next bound P(F~) as follows: 

j=~- j  > K  = P  - - - -  > K  i=l o'j 2 Xj 
(27) 

j=~ ~ ( K  - i/2) 

The following result is also proved by Thomasian (1960) : 
I f  xl*, " "  , xn* are independent random variables, each normally dis- 

tributed with mean zero and variance one, and d is any real number greater 
than one, then 

P{£,=~ (x~*)2 > n d } <  (dc>~) ~/2 (28) 

Comparing (27) and (28) 

< F K ( ~/2 '~1 '*/2 P(/~) (29) 
= L ( K  - ~/2)exp \ - -  (K -- ~ / 2 ) / J  

• " ,  x,*) and ( z l * , ' "  , zn*)  are 
= x~ + z j*( j  = 1, 2, . . .  , n) then 

o r  

I n  ] P(/~) _-< exp - - ~ l o g b ( K , e )  (a0) 
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where 

b(K, e) - K e/2 exp > 1. 
K K- -- e /2 /  

Thus if M is any integer <= exp ( (½K - e) T),  we can construct a code 
( T, M, fl(T) ) with 

(¢T~ 2- 1] 
+ e x p [ - - n l  o- % b(K, ~)] 

(31) 

For each T we are free to choose n. If T is an integer and n = T, an 
examination of (31) shows that  Theorem 2 is proved, with A = 3 and 

B = rain [~-e~ , -~(%/1 q- e2/16 - 1), ½ log b(K, e)] (32) 

A similar bound is easily obtained when T is not an integer. 

PROOF OF THE CONVERSE HALF OF THEOREM 1 (C <~ K/2) 

We shall show that any code (T, M, fl) with fl < ½ must satisfy 

log M < KT/2  + log 2 (33) 
1 - 2~  

and therefore if M > exp ((½K + ~)T), then 

- ( l / T )  l o g  2 
2~ > (34) 

q- K/2  

Thus the probability of error cannot approach zero as T --~ ~ .  
The idea is to approximate a given code (T, M, fl) by a code for a 

discrete memoryless channel. Since the eigenfunctions of the integral 
equation 

T 

f R( t  -- r)g(r) dr = hg(t), - -T  <- t ~ T, 
T 

span the Hilbert  space L2[--T, T], there is a one to one correspondence 
between square integrable functions over [--T,  T] and square summable 
sequences. The sequence (x l ,  x~, . . . )  corresponding to a function x(t) 
consists of the coordinates of x(t) with respect to the "basis functions" 
g,( t ) .  Thus for each decoding set A~ in function space there is a cor- 
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responding Borel set A~* in sequence space with the following property.  
If  the code word sdt) has the representation 

n=l 
- T  -< t -< T ; i  = 1, 2, . - - , M  (35) 

where 
T 

Sin = I sdt)g~(t) dt 

and the series (35) converges in the mean, then we may write 

P{ ( s ~ l , s i 2 , " .  ) -k @ 1 , z 2 , " "  ) C A~.*} 
(36) 

_>- 1 - -  f~ ( i=  1 , 2 , - . - , M )  

For each A ~-* there is a measurable cylinder B, c A * such that  

P{ (8z1, 8,2,  " ' "  ) ~-  ( Z l ,  Z2, " ' "  ) ~ B~} ~ 1 - -  2~ 

Now membership in a measurable cylinder in sequence space is deter- 
mined by a finite number of coordinates. Since there is only a finite 
number of code words, there is an integer n such that  the base of each 
B~ is n-dimensional. Consequently, 

P { ( s , l , s ~ 2 , . . . , s ~ )  -I- @1,z2 ,  . . . , z ~ )  C Bi,} >= 1 - 2~ 
(37) 

( i =  1 , 2 , . . - , M )  

where B~n is the base of Bi .  
Equivalently, 

(3S) 
__> 1 -  2~ (i = 1,2, . . .  , M )  

where B'  i~ is formed from B~, by dividing the j t h  component of each 
vector in Bi~ by %/~-(j = 1, 2, • • • , n) .  The sets B'~ (as well as the 
Bi~, B~ and A~*) are of course disjoint. Thus the vectors (s i l /%/~,  • " , 
si~/X/r~), i = 1, 2, - - .  , M, may be considered as code words of a code 
(n, M, 2f~) (i.e., a code consisting of M vectors of dimension n with a 
probability of error - 2f~), for a time-discrete memoryless channel with 
noise variance unity. Since each code word is allowable, i.e., satisfies 
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(1), it follows (e.g., Kelly, Reed and Root (1960, Appendix 1, equation 
(I-18)), or Fortet  (1961)) tha t  

sli < K T  (i = 1 , 2 , . . .  M) (39) 
j = l ~ j  = 

Therefore the coordinates (Xl, z2, " "  , x.) of any code word satisfy 

1 ~ K T  
- x~ ~ < ( ~ 0 )  
n j ~ l  n 

By the weak converse for the zero memory Gaussian channel (proved 
in the appendix), any code (n, M, 2~) whose code words meet the con- 
straint (40) must satisfy 

log 3I < ½n log [1 + (KT/n)] -{- log 2 (41) 
1 - -  2 ~  

Thus 

log M < 
½KT + log 2 

1 - -  2 ~  
and the proof is complete. 

Remark: The strong converse for the zero-memory Gaussian channel 
(Wolfowitz, 1961, Chap. 9) does not seem to be directly applicable here. 
The strong converse states that  for n sufftciently large, any code must 
satisfy log M < n(C + ~) where C is the channel capacity. The presence 
of n in the denominator of (40) creates difficulties; the value of n neces- 
sary for the strong converse to hold depends on the average power 
li~mtation on the input, which in this case depends on n. However, it 
seems likely that  Wolfowitz's proof can be suitably modified so as to 
apply to the present problem. 

APPENDIX 

Since a proof of the weak converse for the zero-memory Gaussian 
channel is apparently not available in the literature, we sketch one here. 
Consider any code (n, M, fl) for the memoryless Gaussian channel with 
noise variance N and input constraint (1/n ~ j n  1 X3 2 ~ r .  We shall 
prove that  the code satisfies 

log M < nC + log 2 (A.1) 
1 - ~  

where C = ½ log[1 -t- (P/N)] is the channel capacity. 
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We use the letter Q, with various affixes, to denote distribution func- 
tions. We denote by  I ( Q )  the "information rate"  associated with Q, i.e., 

I ( Q )  = HQ(x) -- HQ(X l y ) = HQ(y) -- HQ(y t x ) (A.2) 

where H is the entropy function. 
Suppose that  the code words of a given code (n, M, ~) are 

(X11, X12, ' ' "  , Xln), (X21, X22, " ' " ,  X2n) , ' '* ,  (XM1, XM2 , ' ' ' ,  XMn). 
For any real number x, let 

Qo(x) - 1 (the number of components xi~, i = 1, 2, . . .  M ,  
M n  

j = 1, 2, . - -  , n, which are <= x) 

For each j = 1, 2, . - -  , n, let 

1 
Q(~) ( x ) = -~  ( the number of components x , ,  i = 1, 2, • • • , M, 

which are < x) 

We may write I(Qu) as 

I(Q~) -- HQ~(X) -- HQ~(x I Y) = log M -- HQ~(X Iy) (A.7) 

I t  follows that  

1 ~ Q(J)(x) (A.3) Qo(x) = n j=l 

By the concavity of the information rate (Fano, 1961, p. 131) 

1 ~ I(Q(~) ) (A.4) I(Qo) >= n j=l 

Since, ( 1 / M n ) ~ M 1  ~.~'%lx~j _--_ P, it follows that  the variance of 
Q0 is -< P.  Thus I(Qo) cannot exceed the information rate corresponding 
to a Gaussian input with variance P, i.e., 

I(Qo) < C (A.5) 

Let  Qu(x) be the n-dimensional distribution function which assigns 
equal probability to each code word. i t  follows from Fano (1961, p. 
125) tha t  

n 

I(Q~) <- ~ ' ~ I ( Q  (j)) ( i . 6 )  
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By Fano's inequality (F~no, 1961, p. 187) 

HQ~(x I Y) < log 2 + ~ log M (A.8) 

The results (A.3) through (A.8) yield the desired result (A.1). 
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