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1. Introduction

This present paper is a direct continuation of [7] and, implicitly, of a series of papers devoted to the
study of arithmetic differential equations [3,5,1,6,8,10]; however, for the convenience of the reader,
the present paper is written so as to be logically independent of [7] and of the other above cited
papers. Rather, we will quickly review the relevant material from some of these papers as needed.

The plan of this Introduction is as follows. We begin by quickly recalling the basic definitions of
this theory following [3,6]. For more details on some of these definitions we refer to the body of the
present paper. Then we will state our main result (Theorem 1.1). Finally we will make some comments
on the larger picture and motivations beyond this theory.

1.1. δ-functions [3,6]

A map δ : A → B from a ring A into a p-torsion free A-algebra B is called a p-derivation if the
map φ : A → B , φ(x) = xp + pδx, is a ring homomorphism. When δ is given φ will always have the
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meaning above. A ring equipped with a p-derivation will be referred to as a δ-ring. Denote by R
the completion of the maximum unramified extension of the ring of p-adic integers. Set k = R/pR ,
K = R[1/p], let φ : R → R be the unique ring automorphism lifting the p-power Frobenius F : k → k,
and denote by δ : R → R the p-derivation δx = φ(x)−xp

p . This makes R a δ-ring and this δ-ring structure
on R is unique. For any affine smooth scheme V ⊂ Am over R a function f : V (R) → R will be called
a δ-function of order r on V [3] if there exists a restricted power series Φ in m(r + 1) variables, with
R-coefficients such that f (a) = Φ(a, δa, . . . , δra), for all a ∈ V (R) ⊂ Rm . (Recall that a power series is
called restricted is its coefficients tend to 0 p-adically.) We denote by Or(V ) the ring of δ-functions of
order r on V . This concept can be naturally extended to the non-affine case [3] but we will not need
this extension in the present paper.

1.2. δ-modular forms [5,6]

Let N > 4 be an integer coprime to p and let X be either the affine modular curve Y1(N) over R
or its ordinary locus Y1(N)ord (i.e. the locus where the Eisentein form E p−1 is invertible). Let L be
the line bundle on the complete modular curve X1(N) over R such that the global sections of the
powers L⊗κ , κ � 0, are the classical modular forms (on Γ1(N)) of weight κ over R and let V → X ,
V := Spec

⊕
κ∈Z L⊗κ , be the natural Gm-torsor associated to the restriction of L to X . A δ-modular

function of order r (on Γ1(N)) [5,6] will mean a δ-function of order r on V , i.e. an element of Or(V ).
Let W = Z[φ] be the polynomial ring in the variable φ. Then the multiplicative monoid W naturally
acts on R×; for w ∈ W and λ ∈ R× we write (w, λ) �→ λw for the action. Evaluation at φ = 1 defines
a ring homomorphism deg : W = Z[φ] → Z. A δ-modular function f ∈ Or(V ) will be called a δ-
modular form of weight w ∈ W if f (λ · a) = λw f (a) for a ∈ V (R) and λ ∈ R× , where λ · a is defined via
the Gm-action on V .

1.3. δ-Fourier expansions

Any δ-modular function of order r has a natural δ-Fourier expansion in the ring of δ-series
R((q))[q′, . . . ,q(r)]ˆ where q,q′, . . . ,q(r) are variables, R((q)) := R[[q]][1/q], and the upper ˆ means
here (and everywhere later) completion in the p-adic topology.

There are unique p-derivations δ from R((q))[q′, . . . ,q(r)]ˆ to R((q))[q′, . . . ,q(r+1)]ˆ extending δ

on R and such that δq = q′ , δq′ = q′′ , etc. The δ-Fourier expansion maps are compatible with the
classical Fourier expansion maps and commute with δ. Recall that for κ ∈ Z�0 the classical Hecke
operators Tκ+2(n) (with n � 1, (n, p) = 1) and Tκ+2(p) act on R((q)). We have an induced action of
Tκ+2(n), Tκ+2(p) on k((q)); clearly Tκ+2(p) on k((q)) coincides with Atkin’s operator U on k((q)),
defined by U (

∑
anqn) =∑anpqn . A series ϕ ∈ k((q)) will called primitive if Uϕ = 0. A δ-series in

k((q))[q′, . . . ,q(r)] will be called primitive if its image in k((q)) under the specialization q′ = · · · =
q(r) = 0 is primitive. One can define Hecke operators Tκ (n), pTκ (p) on R((q))[q′, . . . ,q(r)]ˆ (where
pTκ (p) is only “partially defined” i.e. defined on an appropriate subspace); cf. Sections 2 and 3 below
for all the relevant details. These operators induce operators Tκ (n), “pTκ (p)” on k((q))[q′, . . . ,q(r)]
(where “pTκ (p)” is only “partially defined” i.e. defined on an appropriate subspace; the “ ” signs are
meant to remind us that the operator Tκ (p) itself is not defined mod p).

1.4. Main result

The following is our main result; it is a consequence of Theorems 6.16 and 6.17 in the body of the
paper. Assume X = Y1(N)ord and let κ ∈ Z�0.

Theorem 1.1. There is a one-to-one correspondence between the following sets of objects:

i) Series in qk[[q]] which are eigenvectors of all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, and which
are Fourier expansions of classical modular forms over k of weight ≡ κ + 2 mod p − 1;
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ii) Primitive δ-series in k[[q]][q′] which are eigenvectors of all Hecke operators nTκ (n), “pTκ (p)”, (n, p) = 1,
and which are δ-Fourier expansions of δ-modular forms of some order r � 0 and weight w with
deg(w) = κ .

This correspondence preserves the respective eigenvalues.

Remark 1.2. 1) As Theorems 6.16 and 6.17 will show the correspondence in Theorem 1.1 is given,
on a computational level, by an entirely explicit formula (but note that the proof that this formula
establishes the desired correspondence is not merely computational). The formula is as follows. If
ϕ =∑m�1 amqm ∈ k[[q]] is a series as in i) of the theorem then a1 
= 0 and the corresponding δ-series
in ii) is given by

ϕ	,2 :=
∑

(n,p)=1

an

n
qn − ap

a1
·
(∑

m�1

amqmp
)

q′

qp
+ e ·

(∑
m�1

amqmp2
)

·
(

q′

qp

)p

∈ k[[q]][q′],
where e is 1 or 0 according as κ is 0 or > 0. (The upper index 2 in ϕ	,2 is meant to reflect the
p2 exponent in the right hand side of the above equality; later in the body of the paper we will
encounter a ϕ	,1 series as well. The 	 sign is meant to reflect the link between these objects and the
objects f 	 introduced in [7].)

2) Theorem 1.1 provides a complete description of primitive δ-series mod p of order 1 which
are eigenvectors of all the Hecke operators and which are δ-Fourier expansions of δ-modular forms
of arbitrary order. It would be desirable to have such a description in characteristic zero and/or for
higher order δ-series. However note that all known examples (so far) of δ-modular forms of order
� 2 which are eigenvectors of all Hecke operators have the property that their δ-Fourier expansion
reduced mod p has order 1; by the way some of these forms play a key role in [7–9]. So it is
reasonable to ask if it is true that any δ-modular form of order � 1 which is an eigenvector of all the Hecke
operators must have a δ-Fourier expansion whose reduction mod p has order 1.

3) Note that in ii) of the above theorem one can take the order to be r = 1 and the weight to
be w = κ . Also note that the δ-modular forms in ii) above have, a priori, “singularities” at the cusps
and at the supersingular points. Nevertheless, in the special case when the classical modular forms
in i) above come from newforms on Γ0(N) over Z of weight 2 one can choose the δ-modular forms
in ii) of weight 0, order 2, and without singularities at the cusps or at the supersingular points; this was
done in [7] where the corresponding δ-modular forms were denoted (at least in the “non-CL” case)
by f 	 . These f 	s played, by the way, a key role in the proof of the main results in [9] about linear
dependence relations among Heegner points. It would be interesting to find analogues of the forms
f 	 in higher weights.

4) One of the subtleties of the above theory is related to the fact that the operator “pTκ (p)” is
not everywhere defined. The failure of this operator to be everywhere defined is related to the failure
of “the fundamental theorem of symmetric polynomials” in the context of δ-functions; cf. [7,8]. The
domain of definition of “pTκ (p)” will be the space of all δ-series for which the analogue of “the
fundamental theorem of symmetric polynomials” holds; these δ-series will be called Taylor δ − p-
symmetric. One of our main results will be a complete determination the space of Taylor δ − p-
symmetric δ-series; cf. Theorems 4.1 and 4.2.

1.5. Comments on δ-geometry [6]

The present paper fits into a more general program for which we refer to [6]. Roughly speak-
ing this program proposes to enrich (usual) algebraic geometry by replacing algebraic equations (i.e.
expressions of the form f = 0, f a polynomial function) with arithmetic differential equations (i.e. ex-
pressions of the form f = 0, f a δ-function). This enriched geometry can be referred to as δ-geometry.
One of the main motivations/applications of δ-geometry is the construction of certain quotients of
(usual) algebraic curves by actions of (usual) correspondences. Such quotients fail to exist within
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(usual) algebraic geometry in the sense that the corresponding categorical quotients in (usual) alge-
braic geometry reduce to a point. On the contrary, in δ-geometry, one can construct a number of
interesting such categorical quotients, e.g. the quotient of the modular curve Y1(N) by the action of
the Hecke correspondences. The construction/underdstanding of the latter is based upon the theory
of δ-modular forms.

On a more “philosophical” level note that δ-geometry and, more generally, Λ-geometry (which is
a several prime generalization of δ-geometry) can be viewed as an incarnation of the “geometry over
the field with one element”; cf. the Introduction to [6] for remarks on the single prime case and [2]
for a systematic explanation of this viewpoint in the several prime case.

On the other hand, from a more “pragmatic” point of view, we note that δ-geometry has appli-
cations to (usual) arithmetic geometry such as: matters surrounding the Manin–Mumford conjecture
[4,8], congruences between (usual) modular forms [5,1], and linear dependence relations among Heeg-
ner points [9].

1.6. Plan of the paper

Sections 2 and 3 introduce Hecke operators Tκ (n), (n, p) = 1 and “pTκ (p)” respectively, acting
on δ-series. Section 4 gives the complete determination of the δ-series mod p of order 1 for which
“the analogue of the fundamental theorem of symmetric polynomials” holds. Section 5 gives a multi-
plicity one theorem for δ-series which are eigenvectors of all Hecke operators. Section 6 begins with
an overview of δ-modular forms [5,6] and Serre–Katz p-adic modular forms [15]; then we use the
multiplicity one result plus results in [5,6] and [15] to prove results implying Theorem 1.1.

2. Hecke operators away from p

2.1. Classical Hecke operators

Throughout the paper the divisors of a given non-zero integer are always taken to be positive,
the greatest common divisor of two non-zero integers m,n is denoted by (m,n), and we use the
convention (m,n) = n for m = 0, n 
= 0. Fix throughout the paper an integer N � 4 and let ε : Z>0 →
{0,1} be the “trivial primitive character” mod N defined by ε(A) = 1 if (A, N) = 1 and ε(A) = 0
otherwise.

For each integer n � 1 and each integer N � 4 consider the set{
(A, B, D); A, B, D ∈ Z�0, AD = n, (A, N) = 1, B < D

}
.

Triples A, B, D will always be assumed to be in the set above. Recall (cf., say, [16]) the action of the
n-th Hecke operator Tκ (n) on classical modular forms f =∑m�0 amqm on Γ0(N) of weight κ � 2
with complex coefficients am ∈ C given by

Tκ (n) f := nκ−1
∑

A,B,D

D−κ f
(
ζ B

D qA/D)
=
∑
m�0

( ∑
A|(n,m)

ε(A)Aκ−1a mn
A2

)
qm.

Here q = e2π
√−1z , ζD := e2π

√−1/D .

2.2. Hecke operators Tκ (n) on δ-series

Now assume n and N are coprime to p and assume q,q′,q′′, . . . ,q(r), . . . are indeterminates.

Definition 2.1. For each integer κ ∈ Z the Hecke operator f �→ Tκ (n) f on R((q))[q′, . . . ,q(r)]ˆ is de-
fined as follows. For f = f (q,q′, . . . ,q(r)),
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Tκ (n) f := nκ−1
∑

A,B,D

D−κ f
(
ζ B

D qA/D , δ
(
ζ B

D qA/D), . . . , δr(ζ B
D qA/D)). (2.1)

Here ζD = ζ
n/D
n ∈ R where ζn ∈ R is a fixed primitive n-th root of unity and the right hand side of

(2.1) is a priori in the ring

R((qn))ˆ
[
q′

n, . . . ,q(r)
n
]ˆ, qn = q1/n. (2.2)

However, by [6] Proposition 3.13,

q′
n, . . . ,q(r)

n ∈ R
[
q,q−1,q′, . . . ,q(r)]ˆ

hence the ring (2.2) equals

R((qn))ˆ
[
q′, . . . ,q(r)]ˆ.

Since Tκ (n) f is invariant under the substitution q(i)
n �→ δi(ζnqn) it follows that Tκ (n) f ∈

R((q))ˆ[q′, . . . ,q(r)]ˆ . So the operators Tκ (n) send R((q))ˆ[q′, . . . ,q(r)]ˆ into itself. As we shall see
below for n � 2 the operators Tκ (n) do not send R[[q]][q′, . . . ,q(r)]ˆ into itself.

The operators Tκ (n) on R((q))[q′, . . . ,q(r)]ˆ induce operators still denoted by Tκ (n) on
k((q))[q′, . . . ,q(r)].

Recall the operator V on R((q))ˆ defined by V (
∑

anqn) =∑anqpn . It induces an operator still
denoted by V on k((q)).

For r = 0, Tκ (n) commute with the operator V on R((q))ˆ .

2.3. Order r = 1

We have the following formula for the Hecke action on δ-series of order 1:

Proposition 2.2. Assume that

f =
∑
m,m′

am,m′qm(q′)m′
(2.3)

where m ∈ Z, m′ ∈ Z�0 . Then we have the following congruence mod (p):

Tκ (n) f ≡
∑
m,m′

( ∑
A|(n,m)

n−m′
ε(A)Aκ+2m′−1a mn

A2 −m′ p,m′

)
qm−m′ p(q′)m′

. (2.4)

Proof. Note that

δ
(
ζ B

D qA/D)= 1

p

[
φ
(
ζ B

D qA/D)− (ζ B
D qA/D)p]

= 1

p

[
ζ

Bp
D

(
qp + pq′)A/D − ζ

Bp
D qAp/D]

≡ A
ζ

Bp
D q(A−D)p/Dq′ mod (p). (2.5)
D
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Then the formula in the statement of the Proposition follows by a simple computation, using the fact
that

D−1∑
B=0

ζ
m+m′ p
D

is D or 0 according as D divides or does not divide m + m′ p. �
Corollary 2.3. Let

f =
∑
m′

f m′(q)

(
q′

qp

)m′

∈ k((q))
[
q′], f m′(q) ∈ k((q)). (2.6)

Then for any integer κ and any integer n � 1 coprime to p we have:

Tκ (n) f =
∑
m′

n−m′(
Tκ+2m′(n) f m′(q)

)( q′

qp

)m′

.

In particular for λn ∈ k we have Tκ (n) f = λn f if and only if

Tκ+2m′(n) f m′ = nm′
λn f m′ for all m′ � 0.

Proof. This follows immediately from Proposition 2.2. �
Let us say that a series in k((q))[q′, . . . ,q(r)] is holomorphic at infinity if it belongs to k[[q]][q′, . . . ,

q(r)]. Also denote by v p the p-adic valuation on Z.

Corollary 2.4. Assume that, for a given κ ∈ Z the series f ∈ k[[q]][q′] has the property that Tκ (n) f is holo-
morphic at infinity for all n � 1 coprime to p. Then f has the form

f
(
q,q′)= ϕ0(q) +

∑
m′�1

(
V v p(m′)+1(ϕm′(q)

))( q′

qp

)m′

, (2.7)

with

ϕ0 ∈ k[[q]], ϕm′(q) ∈ qm′/pv p (m′)
k[[q]] for m′ � 1. (2.8)

Proof. Note that, since Tκ (1) f = f , f is holomorphic at infinity so Eq. (2.8) follows from (2.7). Let f
be the reduction mod p of a series as in (2.3). It is enough to show if two integers m0 � 1 and m′ � 1
satisfy v p(m0) � v p(m′) then am0,m′ = 0. Pick such integers m0,m′ and set i = v p(m0), m0 = piμ,

m′ = piμ′ , n = μ + pμ′ . Clearly n is coprime to p. Picking out the coefficient of qpi−pi+1μ′
(q′)piμ′

in
the equation in Proposition 2.2 we get

am0,m′ = apin−pi+1μ′,piμ′ = 0

and we are done. �
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Corollary 2.5. Let κ be an integer, let f ∈ k[[q]][q′] be holomorphic at infinity, and assume that for any integer
n � 1 coprime to p we are given a λn ∈ k. Then Tκ (n) f = λn f for all (n, p) = 1 if and only if f has the form
(2.7) and

Tκ+2m′(n)ϕm′(q) = nm′
λnϕm′(q) for all m′ � 0.

Proof. This follows directly from the previous corollaries plus the commutation of Tκ (n) and V on
k[[q]]. �
2.4. Order r = 2

Let us record the formula giving the Hecke action on δ-series of order 2. This formula will not be
used in the sequel.

Proposition 2.6. If f =∑m,m,m′′ am,m′,m′′qm(q′)m′
(q′′)m′′ ∈ R((q))[q′,q′′]ˆ then we have the following con-

gruence mod p:

Tκ (n) f ≡
∑

Aκ−1
(

A

D

)m′+m′′

× am,m′,m′′ × qA(m+m′ p+m′′ p2)/D ×
(

q′

qp

)m′

×
[

q′′

qp2 + δ(A/D)

A/D
·
(

q′

qp

)p

+ 1

2

(
A

D
− 1

)
·
(

q′

qp

)2p]m′′

where the sum in the right hand side runs through all m,m′,m′′, A, D with A � 1, AD = n, (A, N) = 1,
D|m + m′ p + m′′ p2 .

Proof. A computation similar to the one in the proof of Proposition 2.2. �
Note that the formula in Proposition 2.6 acquires a simpler form for special ns. Indeed assume

n = � is a prime. If � ≡ 1 mod p then A
D − 1 = 0 in k. If � ≡ 1 mod p2 then δ(A/D) = 0 in k. Finally if

� ≡ 1 mod p but � 
≡ 1 mod p2 then δ(A/D) 
= 0 in k.

2.5. Frobenii

Consider the ring endomorphisms F , Fk, F/k of k((q))[q′, . . . ,q(r)] defined as follows: F is the p-
power Frobenius (the “absolute Frobenius”); Fk is the ring automorphism that acts as the p-power
Frobenius on k and is the identity on the variables q,q′, . . . ,q(r); F/k is the ring endomorphism that
is the identity on k and sends q,q′, . . . ,q(r) into qp, (q′)p, . . . , (q(r))p respectively (the “relative Frobe-
nius”). So we have F = Fk ◦ F/k = F/k ◦ Fk . Of course V = F/k on k((q)). Also clearly Tκ (n) commute
with F . By Proposition 2.2 Tκ (n) also commute with Fk on k((q))[q′]; so Tκ (n) commute with F/k on
k((q))[q′].

3. Hecke operator at p

3.1. Taylor and Laurent δ-symmetry

Following [7] we consider the R-algebras

A := R[[s1, . . . , sp]][s−1
p

]ˆ[s′
1, . . . , s′

p, . . . , s(r)
1 , . . . , s(r)

p
]ˆ,

B := R[[q1, . . . ,qp]][q−1
1 . . .q−1

p

]ˆ[q′
1, . . . ,q′

p, . . . ,q(r)
1 , . . . ,q(r)

p
]ˆ,
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where s1, . . . , sp, s′
1, . . . , s′

p, . . . and q1, . . . ,qp,q′
1, . . . ,q′

p, . . . are indeterminates. In [7], Lemma 9.10
we proved that the natural algebra map

A → B, s(i)
j �→ δi S j,

where S1, . . . , S p are the fundamental symmetric polynomials in q1, . . . ,qp , is injective with torsion
free cokernel. We will view this algebra map as an inclusion.

Definition 3.1. An element G ∈ B is called Laurent δ-symmetric [7] if it is the image of some element
G(p) ∈ A (which is then unique). An element f ∈ R((q))ˆ[q′, . . . ,q(r)]ˆ will be called Laurent δ − p-
symmetric if

Σp f :=
p∑

j=1

f
(
q j, . . . ,q(r)

j

) ∈ B

is Laurent δ-symmetric.

In the same way one can consider the algebras

A := R[[s1, . . . , sp]][s′
1, . . . , s′

p, . . . , s(r)
1 , . . . , s(r)

p
]ˆ,

B := R[[q1, . . . ,qp]][q′
1, . . . ,q′

p, . . . ,q(r)
1 , . . . ,q(r)

p
]ˆ.

As before the natural algebra map

A → B, s(i)
j �→ δi S j,

is injective with torsion free cokernel.

Definition 3.2. An element G ∈ B will be called Taylor δ-symmetric if it is the image of some el-
ement G(p) ∈ A (which is then unique). An element f ∈ R[[q]][q′, . . . ,q(r)]ˆ will be called Taylor
δ − p-symmetric if

Σp f :=
p∑

j=1

f
(
q j, . . . ,q(r)

j

) ∈ B

is Taylor δ-symmetric.

Clearly a Taylor δ − p-symmetric series is also Laurent δ − p-symmetric.

Remark 3.3. 1) Any element of R[[q]] (respectively R((q))) is Taylor (respectively Laurent) δ − p-
symmetric.

2) The Taylor (respectively Laurent) δ − p-symmetric elements in R[[q]][q′, . . . ,q(r)]ˆ (respectively
R((q))ˆ[q′, . . . ,q(r)]ˆ) form a p-adically closed R-submodule.

3) If f is Taylor (respectively Laurent) δ − p-symmetric then φ( f ) is Taylor (respectively Laurent)
δ − p-symmetric.

4) If f ∈ R[[q]][q′, . . . ,q(r)]ˆ (respectively f ∈ R((q))ˆ[q′, . . . ,q(r)]ˆ) and pf is Taylor (respectively
Laurent) δ − p-symmetric then f is Taylor (respectively Laurent) δ − p-symmetric.
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5) By 1)–4) any element f in R[[q]][q′, . . . ,q(r)]ˆ (respectively in R((q))ˆ[q′, . . . ,q(r)]ˆ) of the form

f =
∑m

i=0 φi(gi)

pν

where gi are in R[[q]] (respectively in R((q))) is Taylor (respectively Laurent) δ − p-symmetric. In
particular for any g in R[[q]] (respectively in R((q))) we have that δg = φ(g)−g p

p , and more generally
φi(g)−g pi

p are Taylor (respectively Laurent) δ − p-symmetric.

6) Let F ∈ R[[T1, T2]]g be a formal group law, and let ψ ∈ R[[T ]][T , . . . , T (r)]ˆ be such that

ψ
(
F(T1, T2), . . . , δ

rF(T1, T2)
)= ψ

(
T1, . . . , T (r)

1

)+ ψ
(
T2, . . . , T (r)

2

)
in the ring

R[[T1, T2]]
[
T ′

1, T ′
2, , . . . , T (r)

1 , T (r)
2

]ˆ.
(Such a ψ is called a δ-character of F .) Let ϕ(q) ∈ qR[[q]] and let

f := ψ
(
ϕ(q), . . . , δr(ϕ(q)

)) ∈ R[[q]][q′, . . . ,q(r)]ˆ.
Then f is Taylor δ − p-symmetric. Cf the argument in [8].

Note that if F is defined over Zp then F posses a δ-character ψ of order r at most the height of
F mod p such that

ψ(T ,0, . . . ,0) ∈ T + T pZp[[T ]];

cf. [6], proof of Proposition 4.26.
Applying the above considerations to the multiplicative formal group we get that for any ϕ(q) ∈

qR((q)) the series

1

p
log

(
φ(ϕ(q) + 1)

(ϕ(q) + 1)p

)

is Taylor δ − p-symmetric. (Here, as usual, log(1 + T ) = T − T 2/2 + T 3/3 − · · · .)
7) The series

Ψ = 1

p
log

(
φ(q)

qp

)
(3.1)

is Laurent δ − p-symmetric; cf. [7], proof of Proposition 9.13.
8) In [7] we also defined the concept of δ-symmetric element in

R
[[

q1, . . . ,qp, . . . ,q(r)
1 , . . . ,q(p)

p
]]

(without the qualification “Taylor” or “Laurent”). We will not use this concept in the present paper.
But note that if a series is Taylor δ-symmetric then it is also δ-symmetric in the sense of [7] (and
Laurent δ-symmetric in the sense of the present paper).
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Definition 3.4. For any Taylor (respectively Laurent) δ − p-symmetric

f ∈ R[[q]][q′, . . . ,q(r)]ˆ (
respectively f ∈ R((q))ˆ[q′, . . . ,q(r)]ˆ)

we define

U f := p−1(Σp f )(p)

(
0, . . . ,0,q, . . . ,0, . . . ,0,q(r))

which is an element in p−1 R[[q]][q′, . . . ,q(r)]ˆ (respectively in p−1 R((q))ˆ[q′, . . . ,q(r)]ˆ).

The operator pU takes R[[q]][q′, . . . ,q(r)]ˆ (respectively in R((q))ˆ[q′, . . . ,q(r)]ˆ) into
R[[q]][q′, . . . ,q(r)]ˆ (respectively in R((q))ˆ[q′, . . . ,q(r)]ˆ). On the other hand the restriction of U to
R((q))ˆ (respectively R[[q]]) takes values in R((q))ˆ (respectively R[[q]]) and is equal to the classical
U -operator

U
(∑

amqm
)

=
∑

ampqm.

Definition 3.5. Define for any f ∈ R((q))ˆ[q′, . . . ,q(r)]ˆ the series

V f := f
(
qp, . . . , δr(qp)) ∈ R((q))ˆ[q′, . . . ,q(r)]ˆ.

So for any Taylor (respectively Laurent) δ − p-symmetric f in R[[q]][q′, . . . ,q(r)]ˆ (respectively in
R((q))ˆ[q′, . . . ,q(r)]ˆ) and any κ ∈ Z we may define

pTκ (p) f = pU f + pκ V f

which is an element in pκ R[[q]][q′, . . . ,q(r)]ˆ (respectively in pκ R((q))ˆ[q′, . . . ,q(r)]ˆ).

The restriction of pTκ (p) to R((q)) is, of course, p times the “classical” Hecke operator Tκ (p) on
R((q)) defined by

Tκ (p)
(∑

amqm
)

=
∑

apmqm + pκ−1
∑

amqpm.

Recall:

Proposition 3.6. (See [7].) The series Ψ in (3.1) satisfies

pUΨ = Ψ, V Ψ = pΨ.

For the next definition recall that the homomorphism

A := A ⊗R k → B := B ⊗R k

is injective (in both situations described in the beginning of the section).

Definition 3.7. An element G ∈ B is called Taylor δ-symmetric mod p (respectively Laurent δ-symmetric
mod p) if it is the image of some element G(p) ∈ A (which is then unique). An element f ∈
k[[q]][q′, . . . ,q(r)]ˆ (respectively f ∈ k((q))[q′, . . . ,q(r)]) will be called Taylor (respectively Laurent)
δ − p-symmetric if



976 A. Buium, A. Saha / Journal of Number Theory 132 (2012) 966–997
Σp f :=
p∑

j=1

f
(
q j, . . . ,q(r)

j

) ∈ B

is Taylor δ-symmetric mod p (respectively Laurent δ-symmetric mod p).

Clearly any Taylor δ − p-symmetric series is Laurent δ − p-symmetric.

Remark 3.8. 1) The Taylor (respectively Laurent) δ − p-symmetric elements in k[[q]][q′, . . . ,q(r)] (re-
spectively in k((q))[q′, . . . ,q(r)]) form a k-subspace closed under Fk and F (hence also under F/k).

2) If f ∈ R[[q]][q′, . . . ,q(r)]ˆ (respectively f ∈ R((q))ˆ[q′, . . . ,q(r)]ˆ) is congruent mod p to a Tay-
lor (respectively Laurent) δ − p-symmetric element then the image of f of f in k[[q]][q′, . . . ,q(r)]
(respectively in k((q))[q′, . . . ,q(r)]) Taylor (respectively Laurent) δ − p-symmetric.

Definition 3.9. For any Taylor (respectively Laurent) δ − p-symmetric

f ∈ k[[q]][q′, . . . ,q(r)]ˆ (
respectively k((q))

[
q′, . . . ,q(r)])

we may define

“pU ” f := (Σp f )(p)

(
0, . . . ,0,q, . . . ,0, . . . ,0,q(r))

which is an element of k[[q]][q′, . . . ,q(r)]ˆ (respectively k((q))[q′, . . . ,q(r)]).

The operator “pU ” clearly commutes with the operators F and Fk and hence it also commutes
with the operator F/k (cf. Section 2.5). If

f ∈ R[[q]][q′, . . . ,q(r)]ˆ (
respectively f ∈ R((q))ˆ [q′, . . . ,q(r)]ˆ)

is Taylor (respectively Laurent) δ − p-symmetric and f is the reduction mod p of f viewed as an
element in k[[q]][q′, . . . ,q(r)] (respectively in k((q))[q′, . . . ,q(r)]) then “pU ” f is the reduction mod p
of pU f ; this justifies the notation in “pU ” f .

Note that the operator U : R((q))ˆ → R((q))ˆ induces an operator still denoted by U , U : k((q)) →
k((q)) (which is, of course, the classical U -operator U f =∑ampqm , for f =∑amqm ∈ k((q))). On the
other hand note that “pU ” f = 0 for all f ∈ k((q)). Finally note that if κ � 1 then the operator Tκ (p)

on R((q)) induces an operator Tκ (p) on k((q)); if κ � 2 then Tκ (p) on k((q)) coincides with U on
k((q)).

Definition 3.10. Define the ring endomorphism V of

k[[q]][q′, . . . ,q(r)] (
respectively k((q))

[
q′, . . . ,q(r)])

as the reduction mod p of the operator V over R . (Note that V (q′) = 0 and F/k(q′) = (q′)p so in
particular V 
= F/k on k((q))[q′].) As in the case of characteristic zero, for any κ ∈ Z�0 and any Taylor
(respectively Laurent) δ − p-symmetric series f in k[[q]][q′, . . . ,q(r)] (respectively k((q))[q′, . . . ,q(r)])
we define

“pTκ (p)” f = “pU ” f + pκ · V f

which is again an element of k[[q]][q′, . . . ,q(r)] (respectively k((q))[q′, . . . ,q(r)]). (Note that pκ is 0 or
1 according as κ is > 0 or 0.)
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The operator V clearly commutes with F and Fk (and hence also with F/k). So the operators
“pTκ (p)” commute with F , Fk, F/k .

Also for f any Taylor (respectively Laurent) δ − p-symmetric series in R[[q]][q′, . . . ,q(r)]ˆ (respec-
tively R((q))ˆ[q′, . . . ,q(r)]ˆ) with reduction mod p f we have that “pTκ (p)” f is the reduction mod p
of pTκ (p) f which, again, justifies our notation.

4. Structure of Laurent and Taylor δ − p-symmetric series

In what follows we address the problem of determining what series are Laurent (respectively Tay-
lor) δ − p-symmetric and determining the action of our operators “pU ” on them. We will use the
following notation: for all ϕ =∑anqn ∈ k((q)) we define

ϕ(−1) := θ p−2ϕ =
∑

(n,p)=1

an

n
qn ∈ k((q)) (4.1)

where θ = q d
dq is the Serre theta operator.

Theorem 4.1. If an element f ∈ k[[q]][q′] is Taylor δ − p-symmetric then it has the form

f = ϕ0(q) +
∑
s�0

(
V s+1(ϕps (q)

))( q′

qp

)ps

∈ k((q))
[
q′] (4.2)

with ϕ0(q) ∈ k[[q]], ϕ1(q),ϕp(q),ϕp2 (q), . . . ∈ qk[[q]].

Conversely we will prove:

Theorem 4.2. Any element of the form

f = ϕ0(q) +
∑
s�0

(
V s+1(ϕps (q)

))( q′

qp

)ps

∈ k((q))
[
q′]

with ϕ0(q),ϕ1(q),ϕp(q),ϕp2 (q), . . . ∈ k((q)) is Laurent δ − p-symmetric and

“pU ” f = −
∑
s�0

V s(ϕ(−1)
ps (q)

)+∑
s�0

(
V s+1(U(ϕps (q)

)))( q′

qp

)ps

.

If in addition f ∈ k[[q]][q′] (i.e. if ϕ0(q) ∈ k[[q]] and ϕ1(q),ϕp(q),ϕp2 (q), . . . ∈ qk[[q]])) then f is Taylor
δ − p-symmetric.

Corollary 4.3. Let f ∈ k((q))[q′] be Laurent δ − p-symmetric and let λp ∈ k. Then “pTκ (p)” f = λp · f if and
only if :

1) U (ϕps (q)) = λp · ϕps (q) for all s � 0, and

2) pκ · V (ϕ0(q)) −∑s�0 V s(ϕ
(−1)
ps (q)) = λp · ϕ0(q).

Corollary 4.4. If f ∈ k[[q]][q′] is Taylor δ − p-symmetric then the series “pU ” f and “pTκ (p)” f are again
Taylor δ − p-symmetric.
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Remark 4.5. It is tempting to conjecture that any Taylor δ − p-symmetric series in k[[q]][q′, . . . ,q(r)]
must belong to k[[q]][q′].

We will first prove Theorem 4.2. The plan will be to first prove this theorem in case f is a mono-
mial in k[q,q′]; cf. Lemma 4.6 below. This will imply, of course, that Theorem 4.2 holds in case f is
a finite sum of monomials. The rest of the proof will be devoted to extending the result from finite
to infinite sums of monomials; this will require an analysis of (s1, . . . , sp)-adic convergence of certain
series.

Lemma 4.6. For any n ∈ Z and s ∈ Z�0 the element

f = qnps+1(
q′)ps = q(n+1)ps+1

(
q′

qp

)ps

∈ k((q))
[
q′]

is Laurent δ − p-symmetric (and actually Taylor δ − p-symmetric if n � 0). Moreover

“pU ′′ f =
⎧⎨⎩q(n+1)ps

(
q′
qp )ps

if p|n + 1,

− q(n+1)ps

n+1 if p � n + 1.

Proof. It is enough to consider the case s = 0; the general case follows by applying the p-power
Frobenius.

For n = −1 note that

q−pq′ ≡ Ψ mod (p)

and so q−pq′ is Laurent δ − p-symmetric because Ψ is Laurent δ − p-symmetric. Also “pU ” f = f
because pUΨ = Ψ .

Assume now n 
= −1. We have

δ
(
qn+1)= 1

p

[(
qp + pq′)n+1 − qp(n+1)

]
= 1

p

[
p(n + 1)qpnq′ +

∑
j�2

p j

j! (n + 1) . . . (n − j + 2)qp(n+1− j)(q′) j
]
.

For j � 2 (and since p � 5) we have

v p

(
p j

j!
)
� j − v p( j!)� j − j

p − 1
> 1.

It follows that

δ
(
qn+1)= (n + 1)

[
qpnq′ + pFn+1

(
q,q′)], Fn+1

(
q,q′) ∈ R

[
q,q−1,q′]. (4.3)

In particular δ(qn+1) is divisible by n + 1 in R((q))ˆ[q′]ˆ and we have the following congruence in
R((q))ˆ[q′]ˆ:

1
δ
(
qn+1)≡ qnpq′ mod (p). (4.4)
n + 1
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By Remark 3.8, assertions 4) and 5), the left hand side of the latter congruence is Laurent δ − p-
symmetric (and also Taylor δ − p-symmetric if n � 0) and hence qpnq′ is Laurent δ − p-symmetric
(and also Taylor δ − p-symmetric if n � 0).

To compute “pU ” f start with the following computation in R((q))ˆ[q′]ˆ:

p2(n + 1)U

(
δ(qn+1)

n + 1

)
= pU

(
pδ
(
qn+1))

= pU
(
φ
(
qn+1))− pU

(
qp(n+1)

)
= φ

(
pU
(
qn+1))− pU

(
qp(n+1)

)
=
{−pqn+1 if p � n + 1,

pφ(q
n+1

p ) − pqn+1 if p|n + 1

=
{−pqn+1 if p � n + 1,

p2δ(q
n+1

p ) if p|n + 1

=
⎧⎨⎩−pqn+1 if p � n + 1,

p2 n+1
p [qp( n+1

p −1)q′ + pF n+1
p

(q,q′)] if p|n + 1

from which we get the following congruences mod p in R((q))ˆ[q′]ˆ:

pU
(
qpnq′)≡ pU

(
δ(qn+1)

n + 1

)
≡
{

− qn+1

n+1 if p � n + 1,

qn+1−pq′ if p|n + 1.

and we are done. �
Lemma 4.7. Consider the polynomials

s1, . . . , sp, s′
1, . . . , s′

p, D ∈ k
[
q1, . . . ,qp,q′

1, . . . ,qp
]
, D :=

∏
i< j

(qi − q j).

Then the polynomials

D pq′
1, . . . , D pq′

p

are linear combinations of

1, s′
1, . . . , s′

p

with coefficients in k[q1, . . . ,qp].

Proof. For j = 1, . . . , p let si j be obtained from si by setting q j = 0; so si j is the i-th fundamental
symmetric polynomial in {q1, . . . ,qp}\{q j}. Taking δ in the equalities

q1 + · · · + qp = s1, . . . , q1 . . .qp = sp

in R[q1, . . . ,qp,q′
1, . . . ,q′

p] and reducing mod p we get the following equalities in k[q1, . . . ,qp,

q′
1, . . . ,q′

p]:
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q′
1 + · · · + q′

p = s′
1 − γ1,

sp
11q′

1 + · · · + sp
1pq′

p = s′
2 − γ2,

...

sp
p−1,1q′

1 + · · · + sp
p−1,pq′

p = s′
p − γp

for some γ1, . . . , γp ∈ k[q1, . . . ,qp]. View this as a linear system of equations with unknowns
q′

1, . . . ,q′
p . We shall be done if we prove that the determinant of the matrix of this system is ±D p .

This follows by taking determinants in the obvious identity of matrices⎛⎜⎜⎜⎝
qp−1

1 −qp−2
1 . . . 1

qp−1
2 −qp−2

2 . . . 1
...

...
. . .

...

qp−1
p −qp−2

p . . . 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

1 1 . . . 1
s11 s12 . . . s1p
...

...
. . .

...

sp−1,1 sp−1,2 . . . sp−1,p

⎞⎟⎟⎠= (Dij)

where

Dij =
∏
s 
= j

(qi − qs)

and noting that (Dij) is a diagonal matrix with determinant D2. �
Lemma 4.8. Assume the notation of Lemma 4.7 and n � 0. Then the element

p∑
i=1

qnp
i q′

i ∈ k[[q1, . . . ,qp]][q′
1, . . . ,q′

p

]
is a linear combination of

1, s′
1, . . . , s′

p

with coefficients in the ideal

(s1, . . . , sp)[(n+1)/p]−1k[s1, . . . , sp].

Proof. By Lemma 4.7 we can write

p∑
i=1

qnp
i q′

i = A0 +
p∑

j=1

A j s
′
j

where A j ∈ k[q1, . . . ,qp, D−1] for j = 0, . . . , p. On the other hand, by (4.4)
∑p

i=1 qnp
i q′

i is the reduction
mod p of

1

n + 1

p∑
δ
(
qn+1

i

) ∈ R
[
q1, . . . ,qp,q′

1, . . . ,qp
]
.

i=1
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We claim that the following holds:

p∑
i=1

δ
(
qn+1

i

) ∈ (s1, . . . , sp, s′
1, . . . , s′

p

)[(n+1)/p]
R
[
s1, . . . , sp, s′

1, . . . , s′
p

]
. (4.5)

Assuming (4.5) is true let us show how to conclude the proof of the lemma. By (4.5) we get that

p∑
i=1

qnp
i q′

i ∈ (s1, . . . , sp, s′
1, . . . , sp

)[(n+1)/p]
k
[
s1, . . . , sp, s′

1, . . . , s′
p

]
.

So we have

p∑
i=1

qnp
i q′

i =
∑

Bi1...ip

(
s′

1

)i1
. . .
(
s′

p

)ip

where

Bi1...ip ∈ (s1, . . . , sp)[(n+1)/p]−i1−···−ip k[s1, . . . , sp].

Since s′
1, . . . , s′

p are algebraically independent over k[q1, . . . ,qp] we get

A0 = B0...0,

A1 = B10...0,

A2 = B010...0, etc.

hence

A j ∈ (s1, . . . , sp)[(n+1)/p]−1k[s1, . . . , sp], j = 0, . . . , p

which ends the proof of the lemma.
To check (4.5) above note that

p∑
i=1

δ
(
qn+1

i

)= δ

( p∑
i=1

qn+1
i

)
+ (
∑p

i=1 qn+1
i )p −∑p

i=1 q(n+1)p
i

p
.

The second term in the right hand side of the above equation is a homogeneous polynomial in
q1, . . . ,qp of degree (n + 1)p hence it is a weighted homogeneous polynomial in s1, . . . , sp of weight
(n + 1)p where s1, . . . , sp are given weights 1, . . . , p respectively. Hence this polynomial is a sum of
monomials in s1, . . . , sp of degree � n + 1. Similarly

∑p
i=1 qn+1

i is a sum of monomials in s1, . . . , sp

of degree � [(n + 1)/p]. This implies that δ(
∑p

i=1 qn+1
i ) is a sum of monomials in s1, . . . , sp, s′

1, . . . , s′
p

of degree � [(n + 1)/p] which proves (4.5). �
Proof of Theorem 4.2. In view of Lemma 4.6 (which treats the case of monomials) we see that in
order to prove that f in the statement of the theorem is Laurent (respectively Taylor) δ− p-symmetric
it is enough to show that any series of the form

f =
∞∑

cnqpnq′ ∈ k[[q]][q′]

n=0
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is Taylor δ − p-symmetric. By Lemma 4.8 we may write

p∑
i=1

qnp
i q′

i = G0n +
p∑

j=1

G jns′
j

where

G jn ∈ (s1, . . . , sp)[(n+1)/p]−1k[s1, . . . , sp], j = 0, . . . , p.

Since G j :=∑∞
n=0 cnG jn are convergent in k[[s1, . . . , sp]] we have

p∑
i=1

f (qi) = G0 +
p∑

j=1

G j s
′
j ∈ k[[s1, . . . , sp]][s′

1, . . . , s′
p

]
which proves that f is Taylor δ − p-symmetric. The assertion about “pU ” f follows from Lemma 2.4
by taking limits. �

Next we proceed to proving Theorem 4.1. We need a preparation. Let C p(q1,q2) := qp
1 +qp

2 −(q1+q2)p

p ∈
Z[q1,q2]. We start with a version of Lemma 4.7:

Lemma 4.9. Consider the elements σ = q1 +q2 ∈ k[q1,q2] and π = q1q2 ∈ k[q1,q2] and let γ ∈ k[q1,q2] be
the image of C p(q1,q2) ∈ Z[q1,q2]. Then

q′
1 = π ′ − qp

1σ ′ + qp
1γ

(q2 − q1)p
, q′

2 = −π ′ − qp
2σ ′ + qp

2γ

(q2 − q1)p

in the ring

k

[
q1,q2,q′

1,q′
2,

1

q2 − q1

]
.

Proof. Applying δ to the defining equations of σ and π we get

q′
1 + q′

2 = σ ′ − γ ,

qp
2 q′

1 + qp
1 q′

2 = π ′

and solve for q′
1,q′

2. �
For the next lemma let us denote by vq2−q1 : k((q1,q2))

× → Z the normalized valuation on the
fraction field k((q1,q2)) of k[[q1,q2]] attached to the irreducible series q2 − q1 ∈ k[[q1,q2]]; in other
words, if 0 
= F (q1,q2) ∈ k[[q1,q2]] then vq2−q1 (F ) is the maximum integer i such that (q2 − q1)

i

divides F in k[[q1,q2]].

Lemma 4.10. Let Φ(q) =∑∞
m=0 βmqm ∈ k[[q]], Φ /∈ k, SuppΦ := {m ∈ Z�0;βm 
= 0}. Then

vq2−q1

(
Φ(q2) − Φ(q1)

)= pmin{v p(m);0 
=m∈SuppΦ}.
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Proof. We have

Φ(q2) − Φ(q1) =
∑

(n,p)=1

∞∑
i=0

βnpi

(
qnpi

2 − qnpi

1

)

=
∞∑

i=0

(q2 − q1)
pi

G(q1,q2)

where

Gi(q1,q2) =
∑

(n,p)=1

βnpi

(
q(n−1)pi

2 + q(n−2)pi

2 qpi

1 + · · · + q(n−1)pi

1

)
.

Let i0 = min{v p(m); 0 
= m ∈ SuppΦ}. Then βnpi = 0 for all (n, p) = 1 and i < i0 and there exists n0,
(n0, p) = 1 such that βn0 pi0 
= 0. It is enough to show that Gi0 (q1,q2) is not divisible by q2 − q1 in
k[[q1,q2]] equivalently that G(q,q) 
= 0. But

Gi0(q,q) =
∑

(n,p)=1

nβnpi0 q(n−1)pi0 
= 0. �

Proof of Theorem 4.1. We proceed by induction on the degree deg( f ) of f viewed as a polynomial
in q′ with coefficients in k[[q]]. If this degree is 0 we are done. Assume now the degree is � 1. We
may assume f (0,0) = 0.

By hypothesis,

f
(
q1,q′

1

)+ · · · + f
(
qp,q′

p

)= G

in k[[q1, . . . ,qp]][q′
1, . . . ,q′

p], where G ∈ k[[s1, . . . , sp]][s′
1, . . . , s′

p]. Setting q3 = · · · = qp = 0 and q′
3 =

· · · = q′
p = 0 we get

f
(
q1,q′

1

)+ f
(
q2,q′

2

)= G
(
σ ,π,0, . . . ,0,σ ′,π ′,0, . . . ,0

)
. (4.6)

Note that k[[q1,q2]] is a finite k[[σ ,π ]]-algebra so σ ′,π ′ are algebraically independent over
k((q1,q2)). By Lemma 4.9 the left hand side of (4.6) is a polynomial H in σ ′,π ′ with coefficients
in k((q1,q2)). On the other hand since H is in the right hand side of (4.6) H has coefficients in
k[[q1,q2]]. Hence each non-zero coefficient of the polynomial H has vq2−q1 -adic valuation � 0. Now
write

f
(
q,q′)=∑

m′
Φm′(q)

(
q′)m′

, Φm′ ∈ k[[q]].

Also write each m′ as m′ = n′ pi′ with n′ not divisible by p. Using Lemma 4.9 we have H =∑m′ Hm′
where

Hm′ = Fm′

(q2 − q1)n′ pi′+1
(4.7)

where Fm′ ∈ k((q1,q2))[σ ′,π ′] is given by
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Fm′ = Φm′(q1)
((

π ′)pi′ − qpi′+1

1

(
σ ′)pi′ + qpi′+1

1 γ pi′ )n′

+ (−1)n′
Φm′(q2)

((
π ′)pi′ − qpi′+1

2

(
σ ′)pi′ + qpi′+1

2 γ pi′ )n′
.

Note that the coefficient of (π ′)m′
in Fm′ is

Φm′(q1) + (−1)n′
Φm′(q2) (4.8)

while the coefficient of (π ′)m′−pi′
(σ ′)pi′

in Fm′ is

−n′(qpi′+1

1 Φm′(q1) + (−1)n′
qpi′+1

2 Φm′(q2)
)
. (4.9)

Let now m′ = deg( f ). If n′ is even the polynomial (4.8) has vq2−q1 -adic valuation 0 which contra-
dicts the fact that the non-zero coefficients of H have vq2−q1 -adic valuation � 0. So n′ is odd. By
Lemma 4.10 the vq2−q1 -adic valuation of (4.8) equals

pmin{v p(m);0 
=m∈SuppΦm′ }, if Φm′ /∈ k.

Also the vq2−q1 -adic valuation of (4.9) equals

pmin{v p(m);m∈Supp(qpi′+1
Φm′ )} = pmin{v p(m+pi′+1);m∈Supp Φm′ }.

By the fact that the non-zero coefficients of H have vq2−q1 -adic valuation � 0 we get that

pmin{v p(m);0 
=m∈SuppΦm′ } � n′ pi′+1 if Φm′ /∈ k (4.10)

and

pmin{v p(m+pi′+1);m∈SuppΦm′ } � n′pi′+1. (4.11)

From (4.10) we get

v p(m) � i′ + 1 for all 0 
= m ∈ SuppΦm′ , if Φm′ /∈ k. (4.12)

We claim now that n′ = 1. Assume n′ � 2. By (4.10)

v p(m) > i′ + 1 for all 0 
= m ∈ SuppΦm′ , if Φm′ /∈ k.

Hence

v p
(
m + pi′+1)= i′ + 1 for all m ∈ SuppΦm′ .

By (4.11) pi′+1 � 2pi′+1, a contradiction. This ends the proof that n′ = 1.
By (4.12)

Φm′(q)
(
q′)m′ = (V i′+1ϕ

)(
q′)pi′

for some ϕ ∈ k[[q]]. By Lemma 4.6 Φm′ (q)(q′)m′
is Taylor δ− p-symmetric hence so is f −Φm′ (q)(q′)m′

which has smaller degree than f . We conclude by the induction hypothesis. �
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5. Multiplicity one

We begin by recalling the well known situation for series in k[[q]]. Then we proceed with our
main results about δ-series in k[[q]][q′].

Throughout this section we fix κ ∈ Z�0.

Definition 5.1. A series ϕ ∈ qk[[q]] is said to be an eigenvector of all Hecke operators Tκ+2(n), Tκ+2(p),
(n, p) = 1, with eigenvalues λn, λp ∈ k if ϕ 
= 0 and the following hold:{

Tκ+2(n)ϕ = λn · ϕ, (n, p) = 1,

Tκ+2(p)ϕ = λp · ϕ.
(5.1)

Of course the last equation in (5.1) is equivalent to

Uϕ = λp · ϕ.

Proposition 5.2. Assume ϕ ∈ qk[[q]] is an eigenvector of all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1,
with eigenvalues λn, λp ∈ k Then there exists γ ∈ k× such that

ϕ(q) := γ ·
∑

(n,p)=1

∑
i�0

λnλ
i
p · qnpi

. (5.2)

Proof. Pick out coefficient of q in the first equation (5.1) and the coefficient of qm , m � 1 in the
second equation (5.1). (Here we use the convention that 00 = 1.) �
Definition 5.3. A δ-series f = f (q,q′) ∈ k[[q]][q′] is said to be an eigenvector of all Hecke operators
nTκ (n), “pTκ (p)”, (n, p) = 1, with eigenvalues λn, λp ∈ k if f is Taylor δ − p-symmetric and satisfies{

nTκ (n) f = λn · f , (n, p) = 1;
“pTκ (p)” f = λp · f .

(5.3)

Theorem 5.4. Assume f = f (q,q′) ∈ k[[q]][q′], f /∈ k, is an eigenvector of all Hecke operators nTκ (n),
“pTκ (p)”, (n, p) = 1, with eigenvalues λn, λp ∈ k. Then there exists ϕ = ϕ(q) ∈ qk[[q]] and c, ci ∈ k, i � 0,
with pκ · ci−1 = λp · ci for i � 0, such that ϕ is an eigenvector of all Hecke operators Tκ+2(n), Tκ+2(p),
(n, p) = 1, with the same eigenvalues λn, λp and such that

f = c +
(∑

i�0

ci F i
/k

)
ϕ	,2,

ϕ	,2 := ϕ(−1) − λp · V (ϕ)
q′

qp
+ pκ · V 2(ϕ)

(
q′

qp

)p

. (5.4)

Remark 5.5. One can also write f in (5.4) as

f = c +
∑
i�0

ci

[
V i(ϕ(−1)

)− λp · V i+1(ϕ)

(
q′

qp

)pi

+ pκ · V i+2(ϕ)

(
q′

qp

)pi+1]

= c +
(∑

i�0

ci V i
)
ϕ(−1) +

∑
i�0

(
pκci−1 − λpci

)
V i+1(ϕ)

(
q′

qp

)pi

,
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where c−1 := 0. Note that the condition that pκ · ci−1 = λp · ci for i � 0 insures that the right hand
side of the first equation in (5.4) is a polynomial in the variable q′ .

Remark 5.6. Looking at the constant terms in (5.3) one sees that if c 
= 0 then{
λn = n ·∑A|n ε(A)Aκ−1, (n, p) = 1;
λp = pκ .

(5.5)

Conversely we will prove:

Theorem 5.7. Let κ ∈ Z�0 . Assume ϕ = ϕ(q) ∈ qk[[q]] is an eigenvector of all Hecke operators Tκ+2(n),
Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp ∈ k. Let ci ∈ k for i � 0 with pκ · ci−1 = λp · ci for i � 0. Also
let c be an arbitrary element in k or 0 according as Eqs. (5.5) hold or fail respectively. Let f ∈ k[[q]][q′] be
defined by Eq. (5.4). Then f an eigenvector of all Hecke operators nTκ (n), “pTκ (p)”, (n, p) = 1, with the same
eigenvalues λn, λp .

Let k[F/k] be the k-algebra generated by F/k which is a commutative polynomial ring in one vari-
able. Note that k[[q]][q′] is a k[F/k]-module and the k-linear space of series f (q,q′) ∈ k[[q]][q′] with
f (0,0) = 0 is a torsion free k[F/k]-submodule. Note also that the ideal qk[[q]] is a torsion free module
over the ring k[[F/k]] of power series in F/k . Finally recall that a δ-series f (q,q′) ∈ k[[q]][q′] is called
primitive if U ( f (q,0)) = 0. Theorems 5.4 and 5.7 immediately imply:

Corollary 5.8. Fix λn ∈ k for (n, p) = 1 and λp ∈ k. Let F be the k-linear space of all the δ-series f = f (q,q′) ∈
k[[q]][q′] with f (0,0) = 0 which are either 0 or are eigenvectors of all Hecke operators nTκ (n), “pTκ (p)”,
(n, p) = 1, with eigenvalues λn, λp ∈ k. We have F 
= 0 if and only if there exists an eigenvector ϕ ∈ qk[[q]] of
all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with eigenvalues λn, λp . Assume furthermore that this is the
case and let ϕ	,2 be defined as in (5.4). Then ϕ	,2 belongs to F and is a primitive δ-series; also any primitive
δ-series in F is a k-multiple of ϕ	,2 . Furthermore the following hold:

1) If κ > 0, λp = 0 then F is a free k[[F/k]]-submodule of k[[q]] of rank 1 with basis ϕ	,2 = ϕ(−1) .
2) If either κ > 0, λp 
= 0 or κ = 0, λp = 0 then F is a free k[F/k]-submodule of k[[q]][q′] of rank one with

basis ϕ	,2 .
3) If κ = 0, λp 
= 0 then F is a free k[F/k]-submodule of k[[q]][q′] of rank 1 with basis

ϕ	,1 :=
(∑

i�0

(λp)−i F i
/k

)
ϕ	,2. (5.6)

Remark 5.9. Note that

ϕ	,1 =
(∑

i�0

(λp)−i V i
)
ϕ(−1) − λp · V (ϕ) · q′

qp

and also that ϕ	,1 is the unique element of qk[[q]] satisfying the equation

V
(
ϕ	,1)− λpϕ

	,1 + λpϕ
	,2 = 0.

Proof of Theorem 5.4. For any series β(q) ∈ k[[q]] write

β(q) =
∑
m�0

am(β)qm.
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By Theorem 4.1 and Corollaries 2.5 and 4.3 f has the form (4.2) and

Tκ (n)ϕ0 = λn

n
· ϕ0, (n, p) = 1,

Tκ+2ps (n)ϕps = λn · ϕps , (n, p) = 1, s � 0,

U (ϕps ) = λp · ϕps , s � 0,

pκ · V (ϕ0) −
∑
s�0

V s(ϕ(−1)
ps

)= λp · ϕ0. (5.7)

In particular the following equalities hold:

anps (ϕ0) = λn

n
· aps (ϕ0), (n, p) = 1, s � 0,

an(ϕps ) = λn · a1(ϕps ), (n, p) = 1, s � 0,

amp(ϕps ) = λp · am(ϕps ), m � 1, s � 0,

pκ · aps−1(ϕ0) − a1(ϕps ) = λp · aps (ϕ0), s � 0, (5.8)

where by convention we set aps−1(ϕ0) = 0 if s = 0. Let c = a0(ϕ0) and ci = api (ϕ0) for i � 0. By (5.8)
we get

anpi (ϕ0) = λn

n
· ci, (n, p) = 1, i � 0,

anpi (ϕps ) = λnλ
i
p · (pκ · cs−1 − λpcs

)
, (n, p) = 1, i � 0, s � 0, (5.9)

where c−1 := 0. Define ϕ by the equality (5.2) with γ = 1.
Assume first that there is an s � 0 such that a1(ϕps ) 
= 0. Then ϕps is a non-zero multiple of ϕ

so (5.1) follows from (5.7) and (5.4) follows from (5.9). Since f is a polynomial in q′ we get that
pκ · cs−1 − λpcs = 0 for s � 0.

Assume now that a1(ϕps ) = 0 for all s � 0. Then ϕps = 0 for all s � 0 hence f = ϕ0. By the last
equation in (5.7) and since ϕ0 /∈ k we get pκ = λp = 0. Then the right hand side of (5.4) becomes

c +
∑
i�0

∑
(n,p)=1

ci
λn

n
qnpi

. (5.10)

By the first equation in (5.9) we get that (5.10) equals ϕ0 = f ; so Eq. (5.4) holds. Clearly Uϕ = 0
so the second equality in (5.1) holds. Finally, since ϕ0 /∈ k we may write ϕ0 = F d

/kϕ̃0 with ϕ̃0 ∈ k[[q]]
and d maximal with this property; in particular cd 
= 0. Note that θϕ̃0 = cdϕ . Also by (5.7) we have

Tκ (n)ϕ̃0 = λn
n ϕ̃0 for (n, p) = 1. Hence

Tκ+2(n)ϕ = c−1
d Tκ+2(n)θϕ̃0 = c−1

d nθ
(
Tκ (n)ϕ̃0

)= c−1
d λnθϕ̃0 = λnϕ

and so the first equality in (5.1) holds. This ends the proof. �
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Proof of Theorem 5.7. This follows directly from Corollary 2.3 and Theorem 4.2 using the follow-
ing facts (which are direct consequences of the formulas for the Hecke operators acting on Fourier
coefficients (2.4)):

Tκ+2pi (n)ϕ = λn · ϕ, (n, p) = 1, i � 0,

Tκ (n)
(
ϕ(−1)

)= λn

n
· ϕ, (n, p) = 1. �

6. δ-modular forms

6.1. Review of classical modular forms

Start by recalling some basic facts about modular forms; cf. [11]. Let N > 4 be an integer and let
B be a Z[1/N, ζN ]-algebra. Let Y = Y1(N) be the affine modular curve over B classifying pairs (E,α)

consisting of elliptic curves E over B-algebras plus a level Γ1(N) structure α : Z/NZ → E . Let Yord be
the ordinary locus in Y (i.e. the locus where the Eisenstein form E p−1 is invertible). Let X be Y or
Yord. Let L be the line bundle on X , direct image of the sheaf of relative differentials on the universal
elliptic curve over X , and let

V = Spec

(⊕
κ∈Z

L⊗κ

)
→ X (6.1)

be the Gm-torsor associated to L.
Set M =O(V ) =⊕κ∈Z L⊗κ . Recall that there is a Fourier expansion map

E : M → B((q))

defined by the cusp Γ1(N) · ∞ [11], p. 112. Recall also that Y has a natural compactification, X1(N),
equipped with a natural line bundle, still denoted by L, extending the line bundle L on Y , such that
the space of classical modular forms, M(Γ1(N), B, κ) ⊂ L⊗κ , on Γ1(N) of weight κ , defined over B
identifies with H0(X1(N), L⊗κ ). Recall that the diamond operators act on M(Γ1(N), B, κ); the invari-
ant elements form the space M(Γ0(N), B, κ) of classical modular forms on Γ0(N) of weight κ defined
over B . Recall the q-expansion principle: for any B as above there is an induced injective Fourier
expansion map E : M(Γ1(N), B, κ) → B[[q]] and if B ′ ⊂ B then M(Γ1(N), B ′, κ) identifies with the
group of all f ∈ M(Γ1(N), B, κ) such that E( f ) ∈ B ′[[q]]. Recall also the following base change prop-
erty: if B ′ is any B-algebra and either B ′ is flat over B or κ � 2 and N is invertible in B ′ then the
map M(Γ1(N), B, κ) ⊗B B ′ → M(Γ1(N), B ′, κ) is an isomorphism; cf. [11], p. 111.

6.2. δ-series from classical modular forms

Theorem 6.1. Let κ ∈ Z�0 and let f (q) =∑m�1 amqm ∈ qZp[[q]] be a series satisfying a1 = 1 and

{
apin = api an for (n, p) = 1, i � 0,

api−1ap = api + pκ+1api−1 for i � 2.
(6.2)

Let ϕ := f =∑m�1 amqm ∈ qFp[[q]] be the reduction mod p of f (q). Then the series

f 	,2 = f 	,2(q,q′,q′′) := 1

p
·
∑
n�1

an

n

(
pκφ2(q)n − apφ(q)n + pqn) ∈Qp

[[
q,q′,q′′]] (6.3)
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belongs to Zp[[q]][q′,q′′]ˆ and its reduction mod p equals

f 	,2 = f 	,2
(
q,q′,q′′)= ϕ(−1) − ap V (ϕ)

q′

qp
+ pκ · V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q′]. (6.4)

Proof. For κ = 0 the argument is in [9]; the case κ > 0 is entirely similar. (Note that the form f (0)
[ap ]

in [9] is congruent mod p to f itself.) �
Remark 6.2. Note that conditions (6.2) imply that Uϕ = ap · ϕ .

Example 6.3. Let κ ∈ Z�0 and let F ⊂ C be a number field with ring of integers OF . Let

f (q) =
∑
m�1

amqm ∈ qOF [[q]] (6.5)

be the Fourier expansion of a cusp form

f ∈ M
(
Γ0(N),OF , κ + 2

)
.

Assume a1 = 1 and assume f (q) is an eigenvector for all the Hecke operators Tκ+2(n) with n � 1.
Assume p is a rational prime that splits completely in F , consider an embedding OF ⊂ Zp , view f (q)

as an element of qZp[[q]], and let ϕ := f =∑m�1 amqm ∈ qFp[[q]] is the reduction mod p of f (q).
Then the equalities (6.2) hold. So by Theorem 6.1 the series

f 	,2 = f 	,2(q,q′,q′′) := 1

p
·
∑
n�1

an

n

(
pκφ2(q)n − apφ(q)n + pqn) ∈Qp

[[
q,q′,q′′]] (6.6)

belongs to Zp[[q]][q′,q′′]ˆ and its reduction mod p equals

f 	,2 := f 	,2
(
q,q′,q′′)= ϕ(−1) − ap V (ϕ)

q′

qp
+ pκ · V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q′]. (6.7)

Note also that Tκ+2(n)ϕ = an · ϕ for (n, p) = 1 and Uϕ = ap · ϕ . So by Theorem 5.7 f 	,2 = ϕ	,2 is an
eigenvector of the Hecke operators nTκ (n), “pTκ (p)”, (n, p) = 1, with eigenvalues an,ap . Also, by the
same theorem, if in addition ap 
= 0 and κ = 0, then the series ϕ	,1 in (5.6) is also an eigenvector of
the Hecke operators nTκ (n), “pTκ (p)”, (n, p) = 1, with eigenvalues an,ap .

Example 6.4. Consider the Ramanujan series

P (q) := E2(q) := 1 − 24
∑
m�1

(∑
d|m

d

)
qm

and assume N is prime. Consider the series

g(q) := − 1 (
P (q) − N P

(
qN))= N − 1 + f (q) ∈ Z(p)[[q]],
24 24
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where

f (q) =
∑
m�1

(∑
A|m

ε(A)A

)
qm. (6.8)

Then g(q) is the Fourier expansion of a classical modular form in M(Γ0(N),Z(p),2) which is an
eigenvector of the Hecke operators T2(n) for all n � 1 with eigenvalues an :=∑A|n ε(A)A; cf. [11],

Example 2.2.6, Proposition 3.5.1, and Remark 3.5.2. Let ϕ := f =∑m�1 amqm ∈ qFp[[q]] be the reduc-
tion mod p of f (q). By [16], Theorem 9.17, the equalities (6.2) hold with κ = 0. So by Theorem 6.1
the series

f 	,2 = f 	,2(q,q′,q′′) := 1

p
·
∑
n�1

an

n

(
φ2(q)n − apφ(q)n + pqn) ∈Qp

[[
q,q′,q′′]] (6.9)

belongs to Zp[[q]][q′,q′′]ˆ and its reduction mod p equals

f 	,2 := f 	,2
(
q,q′,q′′)= ϕ(−1) − ap V (ϕ)

q′

qp
+ V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q′]. (6.10)

Note also that T2(n)ϕ = an · ϕ for (n, p) = 1 and Uϕ = ap · ϕ . So by Theorem 5.7 f 	,2 = ϕ	,2 is an
eigenvector of the Hecke operators nT0(n), “pT0(p)”, (n, p) = 1, with eigenvalues an,ap . Also, by the
same theorem, if in addition ap 
= 0 and κ = 0, then the series ϕ	,1 in (5.6) is also an eigenvector of
the Hecke operators nTκ (n), “pTκ (p)”, (n, p) = 1, with eigenvalues an,ap . Note that if N ≡ 1 mod p
then Eqs. (5.5) hold because⎧⎪⎪⎪⎨⎪⎪⎪⎩

an =
∑
A|n

ε(A)A ≡ n
∑
A|n

ε(A)A−1 mod p for (n, p) = 1,

ap =
∑
A|p

ε(A)A ≡ 1 mod p.

Note also that if N ≡ 1 mod p it follows that f (q) ≡ g(q) mod p so ϕ(q) is the Fourier expansion of
a modular form in M(Γ0(N),Fp,2)

6.3. Review of δ-modular forms [7,10]

Let V be an affine smooth scheme over R and fix a closed embedding V ⊂Am into an affine space
over R .

Definition 6.5. A map f : V (R) → R is called a δ-function of order r on X [3] if there exists a restricted
power series Φ in m(r + 1) variables, with R-coefficients such that

f (a) = Φ
(
a, δa, . . . , δra

)
,

for all a ∈ V (R) ⊂ Rm . We denote by Or(V ) the ring of δ-functions of order r on V .

(Recall that restricted means with coefficients converging p-adically to 0; also the definition above
does not depend on the embedding V ⊂ Am .) Composition with δ defines p-derivations δ : Or(V ) →
Or+1(V ). The rings Or(V ) have the following universality property: for any R-algebra homomorphism
u :O(V ) → A where A is a p-adically complete δ-ring there are unique R-algebra maps ur :Or(V ) →
A that commute in the obvious sense with δ and prolong u.

Let now V be as in (6.1) with B = R and Z[1/N, ζN ] ⊂ R a fixed embedding.
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Definition 6.6. (See [10].) A δ-modular function of order r (on Γ1(N), holomorphic on X ) is a δ-function
f : V (R) → R of order r.

Let W := Z[φ] be the ring generated by φ. For w =∑aiφ
i ∈ W (ai ∈ Z) set deg(w) =∑ai ∈ Z;

for λ ∈ R× we set λw :=∏φi(λ)ai .

Definition 6.7. A δ-modular form of weight w (of order r, on Γ1(N), holomorphic on X ) is a δ-modular
function f : V (R) → R of order r such that

f (λ · a) = λw f (a),

for all λ ∈ R× and a ∈ V (R), where (λ,a) �→ λ · a is the natural action R× × V (R) → V (R).

We denote by Mr := Or(V ) the ring of all δ-modular functions of order r and we set M∞ :=⋃
r�0 Mr . We denote by Mr(w) the R-module of δ-modular forms of order r and weight w; cf. [10].

(In [7] the space Mr(w) was denoted by Mr(Γ1(N), R, w) or Mr
ord(Γ1(N), R, w) according as X is Y

or Yord.) Note that Mr(0) identifies with Or(X) which, in its turn, embeds into Or(X1(N)).
By the universality property of the rings Mr =Or(V ) there exists a unique δ-ring homomorphism

(the δ-Fourier expansion map)

E : M∞ → S∞
for :=

⋃
r�0

R((q))
[
q′, . . . ,q(n)

]ˆ, E( f ) = f
(
q,q′,q′′, . . .

)
,

extending the Fourier expansion map E : M → R((q))ˆ . We may also consider the composition

M∞ → S∞
for

π−→ R((q))ˆ, f �→ f (q),

where the map π sends q′,q′′, . . . into 0; we refer to this composition as the Fourier expansion map.
Recall the “δ-expansion principle”:

Proposition 6.8. (See [7].) The maps E : Mr(w) → R((q))[q′, . . . ,q(r)]ˆ are injective with torsion free coker-
nel; hence the induced maps E : Mr(w) ⊗ k → k((q))[q′, . . . ,q(r)] are injective.

Proof. This is [7], Lemma 6.1. �
Recall also the following result:

Theorem 6.9. (See [7].) If in Example 6.3 κ = 0, F = Q, and p � 0 then the series f 	,2(q,q′,q′′) ∈
R[[q]][q′,q′′]ˆ in (6.6) is the image of a (unique) δ-modular form (still denoted by) f 	,2 ∈ O2(X1(N)) ⊂
M2(0). If in addition f in Example 6.3 is of “CL type” then the series ϕ	,1 ∈ k[[q]][q′] in that example is the
image of a δ-modular form f 	,1 ∈O1(X1(N)) ⊂ M1(0).

Here by f being of CL type we mean that the Neron model of the elliptic curve over Q associated
to f via the Eichler–Shimura construction has good ordinary reduction and its base change to R is
the canonical lift of this reduction; cf. [7,9] for more details.

Proof. Let f 	 ∈Or(X1(N)) be as in [7], Theorems 6.3 and 6.5; cf. also [9], Lemma 4.18. So r is 1 or 2
according as f is or is not of CL type. Then Theorem 6.9 follows from [7], Theorems 6.3 and 6.5, by
letting the δ-modular form f 	,2 be defined by

f 	,2 :=
{

f 	, if f is not of CL type,

φ( f 	) − a f 	, if f is of CL type,
p
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and by letting

f 	,1 := f 	 if f is of CL type. �
Remark 6.10. It is tempting to conjecture that if in Example 6.3 κ � 0 is arbitrary, F = Q, and p � 0
then the series f 	,2(q,q′,q′′) is the δ-Fourier expansion of a δ-modular form f 	,2 ∈ Mr(κ) for some
r � 2. An appropriate variant of this should also hold for arbitrary F . As we shall see, however, the
situation is drastically different with Example 6.4; cf. Theorem 6.20.

Recall the Serre derivation operator ∂ : M → M introduced by Serre and Katz [15]. (Cf. also [6],
p. 254 for a review.) Recall that ∂(L⊗n) ⊂ L⊗(n+2) . Recall also that if X is contained in Yord then
one has the Ramanujan form P ∈ M0(2). By [6], Propositions 3.43, 3.45, 3.56, there exists a unique
sequence of R-derivations ∂ j : M∞ → M∞ , j � 0, such that

{
∂ j ◦ φs = 0 on M for j 
= s,

∂ j ◦ φ j = p j · φ j ◦ ∂ on M for j � 0.
(6.11)

These derivations then also have the property that{
∂ j = 0 on M j−1 for j � 1,

∂ j ◦ δ j = φ j ◦ ∂ on M for j � 0
(6.12)

and that

∂ j
(
Mr(w)

)⊂ Mr(w + 2φ j). (6.13)

Recall the Ramanujan theta operator θ = q d
dq : R((q)) → R((q)). Then by [6], Lemma 4.18, there is a

unique sequence of R-derivations θ j : S∞
for → S∞

for such that

{
θ j ◦ φs = 0 on R((q)) for j 
= s,

θ j ◦ φ j = p j · φ j ◦ θ on R((q)) for j � 0; (6.14)

and such that {
θ j = 0 on R((q))[q′, . . . ,q( j−1)]ˆ for j � 1,

θ j ◦ δ j = φ j ◦ θ on R((q)) for j � 0.
(6.15)

Proposition 6.11. For any w =∑r
i=0 aiφ

i ∈ W , any j � 0, and any f ∈ Mr(w) the following formula holds
in S∞

for:

E(∂ j f ) = θ j
(

E( f )
)− a j p j E( f )E(P )φ

j
.

Proof. This was proved in [6], Proposition 8.42 in the case of “δ-Serre–Tate expansions”; the case of
δ-Fourier expansions is entirely similar. (The level 1 case of this Proposition was proved in [1] using
the structure of the ring of modular forms of level 1.) �

Finally we recall the δ-modular forms f 1 and f ∂ introduced in [5] and [1] respectively:
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Proposition 6.12. (See [5,1,6].) For each r � 1 there exists a unique form f r ∈ Mr(−1 − φr) such that

E
(

f r)= Ψ φr−1 + pΨ φr−2 + · · · + pr−1Ψ.

In particular

E
(

f r)≡ ( q′

qp

)pr−1

mod p.

Proposition 6.13. (See [1,6].) Assume X = Yord . Then there exists a unique form f ∂ ∈ M1(φ − 1) such that
E( f ∂ ) = 1. The form f ∂ is invertible in the ring M1 and its inverse belongs to M1(1 − φ). Furthermore the
image of f ∂ in M1 ⊗ k, coincides with the image of the Eisenstein series E p−1 ∈ M(Γ1(N), R, p − 1).

Remark 6.14. Note that Proposition 6.12 holds, in particular for X = Y = Y1(N). However Proposi-
tion 6.13 fails for X = Y : the form f ∂ has “singularities” at the supersingular points.

6.4. Review of Katz’ generalized p-adic modular forms [15,13]

Let B be a p-adically complete ring, p � 5, and let N be an integer coprime to p. Consider the
functor

{p-adically complete B-algebras} → {sets} (6.16)

that attaches to any A the set of isomorphism classes of triples (E/A,ϕ,α), where E is an ellip-
tic curve over A, ϕ is a trivialization, and α is an arithmetic level Γ1(N) structure. Recall that a
trivialization is an isomorphism between the formal group of E and the formal group of the multi-
plicative group; an arithmetic level N structure is defined as an inclusion of flat group schemes over
B , α : μN → E . So if B contains a primitive N-th root of unity (which we fix) then an arithmetic
level Γ1(N) structure is the same as a level Γ1(N) structure. The functor (6.16) is representable by a
p-adically complete ring W(B, N). The elements of this ring are called by Katz [15] generalized p-adic
modular forms; an element f ∈ W(B, N) can be identified with a rule that naturally attaches to any
test object (E/A,ϕ,α) an element f (E,ϕ,α) ∈ A. Note that W(B, N) = W(Zp, N)⊗̂ B . Moreover there
is a Z×

p -action on W(B, N), (λ, f ) �→ λ · f , coming from the action of Z×
p on the formal group of the

multiplicative group.
There is a natural Fourier expansion map E : W(B, N) → B((q))ˆ which is injective and has a flat

cokernel over B coming from evaluation on the Tate curve. From now on we shall view W(B, N) as a
subring of B((q))ˆ via the Fourier expansion map.

For X = Y or Yord note that the image of O(V ) =⊕ L⊗κ → R((q))ˆ is contained in W and the
morphism O(V ) →W is Z×

p -equivariant with λ ∈ Z×
p acting on η ∈ L⊗κ via (λ,η) �→ λκη.

Also W(Zp, N) possesses a natural ring endomorphism Frob which reduces modulo p to the
p-power Frobenius endomorphism of W(Zp, N) ⊗ Z/pZ. So if R = Ẑur

p , as usual, and if φ is the
automorphism of R lifting Frobenius then Frob ⊗̂ φ is a lift of Frobenius on

W := W(R, N) = W(Zp, N) ⊗̂ R

which we denote by φ0. Moreover the homomorphism W(R, N) → R((q))ˆ commutes with the action
of φ0 where φ0 on R((q))ˆ is defined by φ0(

∑
anqn) :=∑φ(an)qnp . Finally φ0 commutes with the

action of Z×
p .

Let χ : Z×
p → Z×

p be a continuous character. An element f ∈ W is said to have weight χ if λ · f =
χ(λ) f for all λ ∈ Z×

p ; cf. [17,13]. We view integers m ∈ Z as identified with continuous characters by
attaching to m the character χ(λ) = λm . Recall from [13], p. 21 that the set of all f ∈W(B, N)∩ B[[q]]
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that have weight χ identifies with the set of p-adic modular forms of weight χ defined over B in the
sense of Serre [17] i.e. the set of series in B[[q]] which are p-adic limits of classical modular forms
over B of weights κn ∈ Z and level N where κn → χ . Note that since φ0 commutes with the action
of Z×

p on W it follows that if f ∈W has weight χ then so does φ0( f ) ∈W.

6.5. Application to δ-eigenforms

As noted in [10] the image of the Fourier expansion map M∞ → R((q))ˆ is contained in W; this
is by the universality property of Or(V ) and by the fact that W possesses a lift of Frobenius φ0 and
hence it is naturally a δ-subring of R((q))ˆ .

Proposition 6.15. The image of Mr(w) in W consists of elements of weight deg(w).

Proof. It is easy to see that one may replace X in the statement above by an open set of it. So one
may assume L is free on X . Let x be a basis of L. Then any element f ∈ Mr(w) can be written as
f = f0 · xw where f0 ∈ Or(X). Now the image of x in W has weight 1. Since φ0 on W preserves the
elements of a given weight it follows that the image of xw in W has weight deg(w). On the other
hand f0 is a p-adic limit of polynomials with R-coefficients in elements of the form δi g0, where
g0 ∈ O(X). Again, since φ0 sends elements of weight 0 in W into elements of weight 0 the same is
true for δ : W → W. Since the image of g0 in W has weight 0 so does the image of δi g0 in W and
hence so does the image of f . �

Next we state our main applications to “δ-eigenforms” (i.e. δ-modular forms whose δ-Fourier ex-
pansions are “δ-eigenseries”). First we will prove:

Theorem 6.16. Assume f = f (q,q′) ∈ k[[q]][q′] is not a p-th power in k[[q]][q′] and assume f is the re-
duction mod p of the δ-Fourier expansion of a δ-modular form in Mr(w) with r � 0, κ := deg(w) � 0.
Assume furthermore that f is an eigenvector of all Hecke operators nTκ (n), “pTκ (p)”, (n, p) = 1, with eigen-
values λn, λp ∈ k. Then there exists ϕ = ϕ(q) ∈ qk[[q]] which is the Fourier expansion of a modular form in
M(Γ1(N),k, κ ′), κ ′ � 0, κ ′ ≡ κ +2 mod p −1, and there exist c, ci ∈ k, i � 0, with pκ ·ci−1 = λpci for i � 0,
such that ϕ is an eigenvector of all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with the same eigenvalues
λn, λp and such that f satisfies (5.4).

Conversely we will prove:

Theorem 6.17. Assume ϕ ∈ qk[[q]] is the Fourier expansion of a modular form in M(Γ1(N),k, κ ′), κ ′ � 0,
κ ′ ≡ κ + 2 mod p − 1, and that ϕ is an eigenvector of all Hecke operators Tκ+2(n), Tκ+2(p), (n, p) = 1, with
eigenvalues λn, λp ∈ k. Assume X = Yord . Consider the series f = f (q,q′) ∈ k[[q]][q′] defined by the formula
(5.4) with c = 0, ci ∈ k for i � 0, and ci = 0 for i � 0. Then f is the δ-Fourier expansion of a δ-modular form
f ∈ M1(κ) and (by Theorem 5.7) is an eigenvector of all Hecke operators nTκ (n), “Tκ (p)”, (n, p) = 1, with
the same eigenvalues λn, λp .

Note that Theorems 6.16 and 6.17 imply Theorem 1.1 in the Introduction. The one-to-one corre-
spondence in Theorem 1.1 is given by ϕ �→ ϕ	,2 with ϕ	,2 defined by (5.4).

Proof of Theorem 6.16. By Theorem 5.4 all we have to show is that ϕ in that theorem is the Fourier
expansion of a modular form in M(Γ1(N),k, κ ′), κ ′ ≡ κ + 2 mod p − 1. Since f is not a p-th power
we may assume c0 = 1. Now if f (q,q′) is the reduction mod p of the δ-Fourier expansion

E( f ) = f
(
q,q′, . . . ,q(r)) ∈ S∞

for

of a δ-modular form f ∈ Mr(w) then, by Proposition 6.11, and Eqs. (5.4) and (6.15) we have the
following congruences mod p in S∞

for:
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E(∂1 f ) ≡ θ1
(

E( f )
)

≡ −λp V (ϕ)q−pθ1(δq)

≡ −λp V (ϕ)q−pφ(θq)

≡ −λp V (ϕ).

By Eq. (6.13) we have that ∂1 f ∈ Mr(w + 2φ). So by Proposition 6.15 the image E(∂1 f )(q,0, . . . ,0)

of E(∂1 f ) in R((q))ˆ is an element of weight κ + 2 in W. So E(∂1 f )(q,0, . . . ,0) is congruent mod p
to the Fourier expansion of a classical modular form of weight κ ′ ≡ κ + 2 mod p − 1. So λp V (ϕ) is
the Fourier expansion of a modular form in M(Γ1(N),k, κ ′).

If λp 
= 0 then V (ϕ) is the Fourier expansion of a modular form in M(Γ1(N),k, κ ′) hence so is
ϕ = U V ϕ (because U preserves the weight [14], p. 458).

If λp = 0 then, by (5.2) we have ϕ =∑(n,p)=1 λnqn so ϕ = θ(ϕ(−1)) = θ(ϕ0). Now ϕ0 is the image
of E( f ) in k[[q]] so, as above, by Proposition 6.15, ϕ0 is the Fourier expansion of a modular form in
M(Γ1(N),k, κ ′′) where κ ′′ ≡ κ mod p −1. But θ sends Fourier expansions of modular forms of weight
κ ′′ into Fourier expansions of modular forms of weight κ ′′ + p + 1; cf. [14], p. 458. So ϕ is the Fourier
expansion of a modular form in M(Γ1(N),k, κ ′′ + p + 1), and we are done because κ ′′ + p + 1 ≡ κ + 2
mod p − 1. �
Proof of Theorem 6.17. Set κ ′ = κ + 2 + (p − 1)ν , ν � 0. Since ϕ(−1)(q) = θ p−2ϕ(q) by get that
ϕ(−1)(q) is the Fourier expansion of a modular form over k of weight κ ′ + (p − 2)(p + 1) = κ +
(p − 1)(p +ν) hence V i(ϕ(−1)(q)) is the Fourier expansion of a modular form over k of weight κ0,i :=
pi(κ + (p −1)(p +ν)); the latter lifts to a modular form Φ0,i ∈ M(Γ1(N), R, κ0,i) which can be viewed
as an element in M0(κ0,i). Also V i+1(ϕ) and V i+2(ϕ) are Fourier expansions of modular forms over k
of weights κ1,i := pi+1κ ′ and κ2,i := pi+2κ ′ so they lift to modular forms Φi,1 ∈ M(Γ1(N), R, κ1,i) and
Φ2,i ∈ M(Γ1(N), R, κ2,i) respectively. The latter can be viewed as elements of M0(κ1,i) and M0(κ2,i)

respectively. Finally note that f 1 · f ∂ ∈ M1(−2) and the Eisenstein form E p−1 can be viewed as an
element in M0(p − 1); its inverse is an element in M0(1 − p). Let λp ∈ R be a lift of λp . Note that
κ0,i ≡ κ mod p−1; set e0,i := κ−κ0,i

p−1 . Similarly κ1,i ≡ κ +2 mod p−1 and κ2,i ≡ κ +2p mod p−1; set

e1,i := κ+2−κ1,i
p−1 and e2,i := κ+2p−κ2,i

p−1 . Then, by Propositions 6.12 and 6.13 f is the δ-Fourier expansion
of the δ-modular form

∑
i�0

ci
[

E
e0,i
p−1 · Φ0,i − λp · E

e1,i
p−1 · Φ1,i · ( f 1 · f ∂

)+ pκ · E
e2,i
p−1 · Φ2,i · ( f 1 · f ∂

)p]
(6.17)

which is an element of M1(κ). This ends the proof. �
Example 6.18. We consider a special case of Example 6.3. Let

f (q) =
∑
m�1

amqm ∈ qZ[[q]] (6.18)

be the Fourier expansion of a cusp form f ∈ M(Γ0(N),Z,2). Assume a1 = 1 and assume f (q) is an
eigenvector for all the Hecke operators T2(n) with n � 1. Assume p is a prime and let ϕ := f =∑

m�1 amqm ∈ qFp[[q]] be the reduction mod p of f (q). Then the equalities (6.2) hold with κ = 0. So
by Theorem 6.1 the series

f 	,2 = f 	,2(q,q′,q′′) := 1

p
·
∑
n�1

an

n

(
pκφ2(q)n − apφ(q)n + pqn) ∈Qp

[[
q,q′,q′′]] (6.19)
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belongs to Zp[[q]][q′,q′′]ˆ and its reduction mod p equals

f 	,2 := f 	,2
(
q,q′,q′′)= ϕ(−1) − ap V (ϕ)

q′

qp
+ V 2(ϕ)

(
q′

qp

)p

∈ Fp[[q]][q′]. (6.20)

Note also that T2(n)ϕ = an ·ϕ for (n, p) = 1 and Uϕ = ap ·ϕ . So by Theorem 5.7 f 	,2 is an eigenvector
of the Hecke operators nT0(n), “pT0(p)”, (n, p) = 1, with eigenvalues an,ap . In addition, if p � 0,
by Theorem 6.9, the series f 	,2(q,q′,q′′) in (6.19) is the δ-Fourier expansion of a δ-modular form
f 	,2 ∈O2(X1(N)) ⊂ M2(0).

On the other hand, as in the proof, of Theorem 6.17, ϕ(−1)(q) is the Fourier expansion of a modu-
lar form over k of weight p2 − p; the latter lifts to a modular form Φ0 ∈ M(Γ1(N), R, p2 − p) which
can be viewed as an element in M0(p2 − p). Also V (ϕ) and V 2(ϕ) are Fourier expansions of mod-
ular forms over k of weights 2p and 2p2 so they lift to modular forms Φ1 ∈ M(Γ1(N), R,2p) and
Φ2 ∈ M(Γ1(N), R,2p2) respectively. The latter can be viewed as elements of M0(2p) and M0(2p2)

respectively. Then f 	,2(q,q′,q′′) is the δ-Fourier expansion of the δ-modular form

f ! := E−p
p−1 · Φ0 − ap · E−2

p−1 · Φ1 · ( f 1 · f ∂
)+ ·E−2p

p−1 · Φ2 · ( f 1 · f ∂
)p ∈ M1(0). (6.21)

Note now that f 	,2 ∈ M2(0) and f ! ∈ M1(0) have the same δ-Fourier expansion and the same
weight. By Proposition 6.8 (the “δ-expansion principle”) we get the following:

Corollary 6.19. In the notation of Example 6.18 we have the congruence f 	,2 ≡ f ! mod p in M2(0).

Note that the right hand side of this congruence has order 1 and has a priori “singularities” both
at the cusps of X1(N) and at the supersingular points. In stark contrast with that, the left hand side
of the above congruence has no “singularity” at either the cusps or the supersingular points.

Also in stark contrast with Theorem 6.9 we have the following consequence of Theorem 6.16.

Theorem 6.20. Let f (q) be as in Example 6.4 and assume N 
≡ 1 mod p (for instance p � 0). Then the series
f 	(q,q′,q′′) in (6.10) is not the image of any element in any space Mr(w) with r � 0, deg(w) = 0.

Proof. Assume the notation of Example 6.4. By Theorem 6.16 it follows that the image of f (q) in
Fp[[q]] is the Fourier expansion of some modular form f̂ ∈ M(Γ1(N),Fp,2 + (p − 1)ν), ν � 0. On the
other hand, by Example 6.4 we know that the image of g(q) in Fp[[q]] is the Fourier expansion of a
modular form ĝ ∈ M(Γ0(N),Fp,2). It follows that the modular form

ĥ := Eν
p−1 · ĝ − f̂ ∈ M

(
Γ1(N),Fp,2 + (p − 1)ν

)
has Fourier expansion a constant γ := N−1

24 ∈ F×
p . On the other hand γ , viewed as an element in

M(Γ0(N),Fp,0) has Fourier expansion γ . By the Serre and Swinnerton–Dyer theorem [12], p. 140,

the difference ĥ − γ is divisible by E p−1 − 1 in the ring
⊕

κ∈Z M(Γ1(N),Fp, κ). It follows that the
weights 2 + (p − 1)ν and 0 are congruent mod p − 1, a contradiction. �
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