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Abstract

In this paper, we propose interval algebraic correspondence analysis (IACA), a new correspondence analysis
method for interval contingency tables based on interval algebra. The interval contingency table, which is made by
counting up the observations measured by two multi-valued variables, is an extension of the classical contingency
table.

Correspondence analysis for the interval contingency table has been proposed by Rodríguez[8] (SymCA); this
analysis is based on the centers method in principal component analysis for the interval variables (Cazes, et al.,[2]).
However, his method has the disadvantage that when computing statistical indices, the internal variation of intervals
is lost. To overcome this problem, we propose a new correspondence analysis through which the internal variation of
the interval is retained. A numerical example using IACA is discussed and the usefulness is shown.

Keywords: symbolic data analysis, large and complex data, contingency table analysis, multi-valued variables,
interval contingency table

1. Introduction

Symbolic data analysis (SDA) is a method to analyze large and complex data (Bock and Diday[1], Diday and
Noirhomme[4]). In SDA, we assume that a cell of the data table, which is often observed by n individuals and p
variables or by n×m modalities of two variables, is not a single description but a complex description. The data table
is called a symbolic data table. The main study objectives of SDA is to develop data analysis methods for symbolic
data tables.

An interval contingency table is a type of symbolic data table. In classical data analysis, when we obtain ob-
servations measured by two categorical single variables, we make a contingency table whose cell is described as a
single numerical value (classical contingency table). Then, we generally explain the relations between the modalities
of the two variables using the results of a chi-square test or by performing correspondence analysis (CA), depending

∗Corresponding author
Email addresses: dik0010@mail4.doshisha.ac.jp (Ikufumi Takagi), hyadohis@mail.doshisha.ac.jp (Hiroshi Yadohisa)

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82355348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/


Ikufumi Takagi and Hiroshi Yadohisa / Procedia Computer Science 6 (2011) 352–357 353

on the research objectives. However, when we obtain the observations measured by two multi-valued variables, we
typically encounter difficulties in constructing the table. This is because we do not know the general way to treat such
observations. To treat multi-valued variables, Rodríguez[8] has proposed an interval contingency table whose cell is
represented as an interval.

A cell described as an interval makes it possible to represent the degree of the observations belonging to it. Besides,
we can also treat the uncertainty and the measurement errors by using such cells.

Recently, the data analysis methods for an interval contingency table have been studied. One of the surveys for
the methods is Symbolic Correspondence Analysis (SymCA), which is the extension of classical CA (Rodríguez[8]).
The purpose of SymCA is the visualization and comprehension of the relations between the two modalities of the two
variables in low-dimensional space, as well as classical CA. Unlike classical CA, SymCA reflects the internal variation
of the observation because the result is described as an interval value. However, SymCA sums up an observation into
a single value once when calculating the statistical indices. It is important to note that SymCA cannot reflect the
internal variation of the observation completely.

In this paper, we propose the interval algebraic correspondence analysis (IACA), which is based on interval al-
gebra. By calculating the statistical indices based on the interval algebra, we can obtain values that are described as
interval values. Thus, the proposing the analysis methods based on interval algebra would overcomes the problems.
Studies on the SDA method based on interval algebra have been reported in the past, e.g., Gioia and Lauro[5].

First, we introduce the concept of interval algebra. Next, we define an interval contingency table and show some
situations for obtaining the table in detail. Finally, we describe the IACA and present a numerical example and
interpretations of the results.

2. Interval algebra

We introduce the basic concept of interval algebra. The statistical indices based on this algebra make it possible to
retain the internal variation for the interval. Interval algebra is discussed in the literature, Moore[6] and Neumaier[7].

Definition 2.1. interval, interval matrix
Let xL, xU ∈ R with xL ≤ xU. First, an interval xI is defined as follows:

xI =: [xL, xU] = {x| xL ≤ x ≤ xU},
and let I be the set of all intervals. Second, an interval matrix XI is defined as follows:

XI =: [XL, XU] = {X| XL ≤ X ≤ XU},
where XL(= (xL

i j)) and XU(= (xU
i j )) are (n × p) matrices, and letMnp be the set of all (n × p) interval matrices.

We will define the arithmetic operations on I by extending the arithmetic operations on R.

Definition 2.2. interval arithmetic
Let xI , yI ∈ I. An arithmetic operation • ∈ {+, −, ×, /} on I is defined as follows:

xI • yI = {x • y| x ∈ xI , y ∈ yI},
in case that 0 ∈ yI, we do not define xI/yI.

Proposition 2.1. 　
Let xI , yI ∈ I. Then, Definition2.2 is represented as follows:

xI + yI = [xL + yL, xU + yU], xI − yI = [xL − yU , xU − yL],

xI × yI = [min(xLyL, xLyU , xUyL, xUyU), max(xLyL, xLyU , xUyL, xUyU)],

xI/yI = [xL, xU] × [1/yU , 1/yL]. (0 � yI)
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We define arithmetic operations on Mnp. This definition allows us to calculate some statistical indices for an
interval matrix easily. The arithmetic is the basis of the interval algebraic data analysis.

Definition 2.3. interval matrices arithmetic
Let XI = (xI

i j) ∈ Mnp, YI = (yI
i j) ∈ Mnp, ZI = (zI

i j) ∈ Mpq. Then, the sum interval matrix, the difference interval
matrix and the product interval matrix are defined as follows:

XI + YI =
(
xI

i j + yI
i j

)
, XI − YI =

(
xI

i j − yI
i j

)
, XI ZI =

( p∑
k=1

xI
ikzI

k j

)
.

In the classical CA, we solve the eigenvalue problem. Also, in our proposal method, we treat the the eigen-
value problem for the interval matrix. So, we consider the interval eigenvalue problem, which is an extension of the
eigenvalue problem of the classical matrix.

Definition 2.4. interval eigenvalue, interval eigenvector
Let XI ∈ Mnp．The interval eigenvalue problem for the interval matrix XI is as follows:

XIuI = λIuI ,

where λI are called interval eigenvalues of XI and any interval vectors uI satisfying the interval eigenvalue problem
are called interval eigenvectors of XI . The interval eigenvalues λI

α and interval vectors uI
α are represented in more

detail as follows:

λI
α =

[
min
X∈XI
λα(X), max

X∈XI
λα(X)

]
, uI

α =

[(
min
X∈XI

uαi(X)
)
,
(
max
X∈XI

uαi(X)
)]
,

where (λα(X), uα(X)) is the α-th eigenpair of X ∈ XI and uαi(X) is the elements of uα(X). The pair (λI
α, uI

α) is the
α-th interval eigenpair of XI .

Previously, the exact bounds for λI
α were not determinable, but now there can be determined using Deif [3]’s idea.

However, the idea has the problem that the results tend to be oversize interval by calculating unconsidered matrices,
when we analyze an interval data (Gioia and Lauro[5]). The interval eigenvectors are also determined by solving the
linear optimization problem as described in Seif et al.[9], though it comes to be the same problem for calculating the
eigenvalues.

Therefore, in this paper, we estimate the interval eigenvalues and eigenvectors of XI by Monte Carlo simulation
from multivariate uniform distribution.

3. Interval contingency table

We define the interval contingency table and interval contingency table matrix, and then consider the table’s
application to actual situations.

Definition 3.1. interval contingency table, interval contingency table matrix
Let X and Y be two categorical multi-valued variables and each domain is ΩX = {xi| i = 1, 2, . . . , n} and ΩY =

{y j| j = 1, 2, . . . , m}, respectively. Then, a contingency table whose cell of (xi, y j) is described as the interval
f I
i j = [ f L

i j , f U
i j ] is called the (n × m) interval contingency table for the variables X and Y, and we regard it as the

matrix FI
XY , which is called an interval contingency table matrix,

FI
XY =

(
f I
i j

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f I
11 f I

12 . . . f I
1m

f I
21 f I

22 . . . f I
2m

...
...
. . .

...
f I
n1 f I

n2 . . . f I
nm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[ f L
11, f U

11] [ f L
12, f U

12] . . . [ f L
1m, f U

1m]
[ f L

21, f U
21] [ f L

22, f U
22] . . . [ f L

2m, f U
2m]

...
...

. . .
...

[ f L
n1, f U

n1] [ f L
n2, f U

n2] . . . [ f L
nm, f U

nm]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then, FXY

(
= ( fi j) ∈ FI

XY

)
is called a classical interval contingency table matrix. Since fi j is the element of natural

number in the classical contingency table, we note that f I
i j is regarded as the subset of natural number.

We also introduce an interval row sum f I
i· , an interval column sum f I

· j and an interval total sum f I·· as follows,

f I
i· =

m∑
j=1

f I
i j, f I

· j =
n∑

i=1

f I
i j, f I

·· =
n∑

i=1

m∑
j=1

f I
i j.

Next, we describe the situations for construction of the interval contingency table. These situations are similar to
those used to construct the classical contingency table, and there are two situations. Thus, one situation is to count
up the observations measured by two categorical multi-valued variables, and the other situation is to measure the
observations directly. Now, we discuss each situation in detail.

In the first situation, there are the problems how to get the observations which measured by multi-valued variables,
and three possible ways to get the such observations are as follows:

• The observed objects are the groups (e.g. class, category and concept) which are constituted of the aggregation
of individuals, and all of individuals are described by the categorical single value.

• The observation is described by multi-values for an answer of the multi-selection question directly.

• The observation is described by considering the measurement error and uncertainty.

From the above mentioned situation, we can build an interval contingency table by counting up the observations
that are described by the categorical multi-valued variables . The way where constructs the table from the variables is
described by Rodríguez[8] in details.

In the second situation, we could describe the observation by considering the uncertainty because the accuracy of
the observation is not guaranteed, e.g., when each observed object is always moving. The table is also used for privacy
reasons, because it can prevent the disclosure of confidential information to unauthorized peoples.

This is because there are many cases where we use the interval contingency tables in the real world. So, studies of
the interval contingency table have been meaningful and the development of data analysis methods for the table has
been as expected.

4. Correspondence analysis for interval contingency table

In this section, we explain the IACA for the (n ×m) interval contingency table matrix FI
XY . The purpose of IACA

is similar to that of the CA for the classical tables, thus, visualization and comprehension of the relations between the
modalities of the two categorical multi-valued variables in low-dimensional space.

In IACA, we start with the interval contingency table matrix FI
XY =

(
f I
i j

)
(i = 1, 2, . . . , n; j = 1, 2, . . . , m),

which count up the observation described by the two categorical multi-valued variables X, Y . Next, we apply the
interval principal component analysis (IPCA) proposed by Gioia and Lauro[5] for the interval matrices SI described
as follows:

SI =
(
sI

i j

)
=
(
DI

X

)−1/2
FI

XY

(
DI

Y

)−1/2

where the DI
X is diag( f I

i· ) (i = 1, 2, . . . , n) and the DI
Y is the diag( f I

· j) ( j = 1, 2, . . . , m).
Applying IPCA is equivalent to solving the following interval eigenvalues problems:

SI′SIuI = λIuI , SISI′vI =λIvI ,

where UI =
(
uI

(1), uI
(2), . . . , uI

(m)

)
, uI

(i) = (uI
1i, uI

2i, . . . , uI
mi)
′, VI =

(
vI

(1), vI
(2), . . . , vI

(n)

)
and vI

(i) = (vI
1i, vI

2i, . . . , vI
ni)
′.

If you permit the overestimation of the bounds of eigenvalues and eigenvectors, the bounds can be obtained easily
for using SI′SI and SISI′ by Deif[3] and Seif, et al.[9]’s idea. Otherwise, you should estimate the bounds for running
Monte Carlo simulations.
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After solving each interval eigenvalues problem, we get the ÛI , V̂I and the interval factorial score ẐI and ŴI by
calculating the following equations:

ẐI =
(
DI

X

)−1/2
SIÛI , ŴI =

(
DI

Y

)−1/2
SI′V̂I .

Then, the two eigenvectors ûI
(α)(∈ ûI

(α)) and v̂(α)(∈ v̂I
(α)) of the α-th eigenvalue λα(∈ λI

α) have the following relations:

v̂(α) =
1√
λα

Sû(α), û(α) =
1√
λα

S′v̂(α),

We can derive the one factorial score ẑ(α) from the other factorial score ŵ(α) or the one factorial score ŵ(α) from the
other factorial score ẑ(α) by the above relations and the following equations:

ẑ(α) =
1√
λα

(DX)−1 FXY ŵ(α), ŵ(α) =
1√
λα

(DY )−1 (FXY )′ ẑ(α),

where the DX is diag( fi·) (i = 1, 2, . . . , n) and the DY is diag( f· j) ( j = 1, 2, . . . , m) of the contingency table matrix
FXY .

From these relations, we constitute the interval factorial scores matrix ẐI′ (or ŴI′) and represent the modalities of
the two categorical multi-valued variables in low-dimensional space. As the result of the plot, we can recognize the
relative dissimilarities among the modalities. The advantage of these methods, in contradiction to the classical CA, is
the fact that the internal variations can be represented as boxes.

Finally, we introduce the interval contribution ratio γI
α, which measures the degree of the variation which the

original interval data matrix has.

Definition 4.1. interval contribution ratio
Let the interval eigenvalues of the interval matrix XI be λI

α = [λL
α, λ

U
α ] (α = 2, 3, . . . , min(n, m)). γI

α is defined as,

γI
α =

⎡⎢⎢⎢⎢⎢⎢⎣λL
α

/ ⎛⎜⎜⎜⎜⎜⎜⎝λL
α +

min(n, m)∑
k=2, k�α

λU
k

⎞⎟⎟⎟⎟⎟⎟⎠ , λU
α

/ ⎛⎜⎜⎜⎜⎜⎜⎝λU
α +

min(n, m)∑
k=2, k�α

λL
k

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ ,

and is called the interval contribution ratio for the α-th factorial axis.

The reason why we expect λI
1 is λI

1 = 1 inevitably. So, we start with the second factorial axis, when we put the
factorial scores on the plain.

5. Numerical example

We discuss a numerical example and the results of IACA as applied to the hair color and eye color data (Rodríguez[8]
First, we show the hair color and eye color data (Table.1).

Table 1: hair color and eyes color data

color of the hair
black-hair brown-hair red-hair blond-hair

color black-eye [60, 60] [119, 123] [20, 28] [4, 7]
of brown-eye [15, 15] [50, 58] [14, 20] [5, 11]
the green-eye [5, 5] [24, 26] [10, 12] [11, 12]

eyes blue-eye [20, 20] [70, 84] [16, 17] [90, 100]

This contingency table is consists of two categorical multi-valued variables for “eye color” and “hair color”. Here,
the variable “eye color” takes the four modalities; black, green, red and blue and the variable “hair color” takes the
four modalities, black, brown, red and gold.
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Figure 1: plot of interval factorial score

From this result (Fig.1), we recognize the relations between eye color and hair color. For example, people with
red-hair tend to have green-eye or brown-eye, and people with blond-hair tend not to have black-hair. Besides the
results of previous work, we recognize the internal variation of a modality as the box size. The box size is represented
as the frequency of response under multi-selection. For example, people with red-hair have more modalities than
people with blue-eye.

6. Conclusion

In this paper, we proposed the correspondence analysis for the interval contingency table based on interval al-
gebra (IACA). The advantage of this method is that it can retain the internal variation of interval values, unlike the
SymCA which loses the internal variations when calculating the statistical indices. However, this method needs some
improvements. For example, the results of calculations based on interval algebra tend to produce interval data which
is too oversized. Therefore, when we interpret the results, we should compare the results to the other symbolic cor-
respondence analysis results. Finally, as a future work we want to propose another correspondence analysis for the
interval contingency table.
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