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Abstract The fine-scale heterogeneity of granular material is characterized by its polydisperse
microstructure with randomness and no periodicity. To predict the mechanical response of the
material as the microstructure evolves, it is demonstrated to develop computational multiscale
methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,
respectively. The computational homogenization method and the bridge scale method along the
concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu–Washizu
variational principle, the mixed finite element procedure of gradient Cosserat continuum in the
frame of the second-order homogenization scheme is developed. The meso-mechanically informed
anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic
mechanisms of macroscopic damage phenomenon are revealed. c© 2013 The Chinese Society of
Theoretical and Applied Mechanics. [doi:10.1063/2.1301101]
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I. INTRODUCTION

Most of granular materials are highly heteroge-
neous, composed of voids and particles with different
sizes and shapes. Geological matter, soil and clay in
nature, geo-structure, concrete, etc. are practical ex-
amples among them. From the microscopic view, a lo-
cal region in the medium is occupied by particles with
small but finite sizes and granular material is naturally
modeled as an assembly of discrete particles in con-
tacts within the frame of micromechanics. On the other
hand, the local region is identified with a material point
in the overall structure and this discontinuous medium
can then be represented by an effective continuum on
the macroscopic level.

As a continuum model is concerned, it should be
noted that conventional Cauchy continuum theories are
based on the local assumption, i.e., the length scale of
the microstructure characterizing material constitutive
behaviors is much less than the wavelength of defor-
mation field occurring in the continuum, which may no
longer hold for granular materials. A non-classical con-
tinuum model, taking into account the discrete nature
of the microstructure of granular materials, should be
adopted.

For granular material modeled as a discrete parti-
cle assembly, each discrete particle possesses finite size
and independent rotational degrees of freedom (DOF)
in addition to translational DOF in the kinematics and
is capable of bearing and transmitting couples from one
particle to the other in contact in the kinetics. Then
it is natural and reasonable to adopt the Cosserat con-
tinuum model for macroscopic description of a mate-
rial point at which a discrete particle assembly within
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the representative microstructure is assigned.1 Indeed,
D’Addetta et al.2 and Ehlers et al.3 pointed out that
granular material should be homogenized as Cosserat
continuum with non-symmetric macroscopic stress ten-
sor and couple stresses. The structure of the derived
meso-mechanically informed degraded isotropic consti-
tutive relations of granular materials also demonstrated
the rationality of adopting Cosserat continuum mod-
els for granular materials.4 The micro-rotations defined
as independent DOF at each mathematical point in
Cosserat continuum play an important role in properly
transiting the effect of rotations of particles within the
representative microstructure via its boundary to the
macroscopic continuum and vice versa. It is remarked
that as the micro-rotations introduced as independent
DOF into Cosserat continuum are constrained to equal
the macro-rotations defined with the derivatives of the
translational displacements, the Cosserat continuum
theory reduces to couple stress theory. On the other
hand, the gradient Cosserat continuum model also in-
cludes the strain gradients and the energy-conjugated
stress moments introduced in the Toupin–Mindlin gra-
dient theory of Cauchy continuum.1,5

The two distinct scale nature and the discrete par-
ticle assembly-continuum modeling of granular mate-
rial leads to the construction of a continuum-based
constitutive model characterizing macroscopic mechan-
ical behavior at a material point in terms of the in-
formation about the properties and responses of the
microstructure attributed to the macroscopic point of
granular material. To establish micromechanically in-
formed macroscopic constitutive relation and to pre-
dict macroscopic response at a material point as its mi-
crostructure evolves are the two main tasks presented
to multi-scale mechanics of granular materials.

The discreteness and discontinuity of granular ma-
terial in its micro-scale are its important characters dis-
tinct from other media. The fine-scale heterogeneity of
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granular material characterized by different microstruc-
tures with no periodicity at different material points
possesses randomness in spatial distribution. In view of
random heterogeneity, polydispersity, non-periodicity of
micro-structural topology, morphology and high nonlin-
earity due to multi-body contacts among a great num-
ber of particles as the microstructure of granular mate-
rial evolves, it is almost impossible to obtain equivalent
constitutive relations and material properties of gran-
ular materials modeled as continua as a result of an-
alytical or semi-analytical homogenization techniques.
Instead, one has to resort to computational multiscale
methods.6–13 In addition, to solve for initial and bound-
ary value problems of granular structures with multi-
scale numerical methods, it is also required to develop
computational multiscale methods for discrete particle
assembly-Cosserat continuum modeling.

Computational multiscale methods attempt to re-
produce real responses of heterogeneous granular mate-
rials at the macroscopic continuum level on the basis of
the information provided by the microscopic modeling
of discrete particle assembly and to further reveal the
micromechanical mechanisms of the macroscopic behav-
iors. Several computational multiscale approaches have
been proposed to achieve these goals.6–8 Among them is
the asymptotic homogenization approach.7 Many con-
tributions have been devoted to the development of
multiscale asymptotic expansion method for periodic
structures along this approach. The method provides
effective overall properties as well as local stress and
strain values. The recent studies have proved multi-
scale asymptotic expansion methods to be more pre-
dictive. They have been used to replace heterogeneous
Cosserat media by an effective one.7 Several schemes are
possible depending on the ratio between the Cosserat
length scale and the size of heterogeneities.14–16 How-
ever, it was also reported that the methods are usu-
ally restricted to very simple microscopic geometries (or
medium with periodic micro structure) and simple ma-
terial models, mostly at small strains.8

Taking into account the microscopic characteristics
of granular materials described above and the complex-
ity and nonlinearity of microstructural behaviors, the
concurrent scale linking approach, instead of the hierar-
chical approach, should be adopted. The two promising
computational multiscale methods along the category of
concurrent methods are introduced in the present paper.
They are the computational homogenization method
(i.e., the global-local nested analysis scheme)11–13,17,18

and the bridge scale method.9,10 Both of them possess
their respective advantages.

The computational homogenization method has re-
ceived increasing attentions due to its suitability for
modeling the mechanical response of heterogeneous ma-
terials characterized by complex micro-structures vary-
ing with loading history and with no periodicity, for
which to formulate a closed-form macroscopic constitu-
tive relation derived from detailed description of the mi-
crostructures and micromechanical behaviors is usually
unfeasible. The approach is based on the average-field

theory and the concept of a representative volume el-
ement (RVE) assigned at each integration point of the
computational grid of macroscopic continuum.19 The
average-field theory for classical Cauchy continuum has
been well developed and widely applied to multi-scale
analysis and computation of composites. An abundant
literature deals with this subject.19–24

Nevertheless, fewer contributions1,7,13–16,25 have
been devoted to the development of the homogenization
scheme for Cosserat continuum. Among them a micro-
macro computational homogenization scheme for dis-
crete particle assembly-Cosserat continuum modeling of
granular materials is proposed.13 The consistent macro-
scopic modulus tensor and the macroscopic constitutive
relation defined at the sampling point are formulated in
terms of the averaged behavior of associated microstruc-
tures. With the proposed scheme, one enables the in-
corporation of large deformations and arbitrary mate-
rial behaviors including history dependence while does
not need to specify the phenomenological constitutive
relation or to determine macroscopic constitutive pa-
rameters a priori at selected macroscopic points.

However, the main disadvantage of most (the
first-order) existing homogenization methods devel-
oped in the computational homogenization approach
lies in their intrinsic assumption of the uniformity of
the macroscopic stress–strain fields attributed to the
boundaries of each RVE, so that microstructural size
effects and the gradients of macroscopic fields along the
boundaries of the RVE can not be taken into account.
As the absolute sizes of the RVE and the high strain gra-
dients within the RVE have to be considered, the macro-
scopic energy product will be wrongly predicted and
even the Hill–Mandel energy condition will no longer
hold in the homogenization procedure using classical
(the first-order) continuum model in the macroscopic
level.26

Among the different schemes8,14,16–18,27–29 pro-
posed to overcome this disadvantage is the gradient-
enhanced computational homogenization procedure17,18

presented for heterogeneous Cauchy continua, in which
not only the macroscopic deformation tensor but also
its gradient are used to prescribe the essential boundary
conditions on a microstructural RVE. The deficiency of
the homogenization procedure using the classical con-
tinuum model in the macroscopic level can be remedied
in the homogenization procedure using the gradient-
enhanced macroscopic continuum model, in which the
additional macroscopic energy product attributed to the
strain gradients is taken into account.

The adoption of gradient Cosserat continuum model
for the macro-scale modeling in computational multi-
scale methods requires the development of the finite el-
ement procedure of gradient Cosserat continuum. The
key issues arising in the development are the appearance
of strain gradients and how to attain the C1 continuity
of the displacement interpolation for a displacement-
based finite element, i.e., both translational displace-
ments and their first-order derivatives are required to
be continuous across inter-element boundaries.30 The
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direct strategy to achieve the C1 continuity requirement
is to use the Hermitian interpolation. Indeed Hermitian
finite elements are truly C1 continuous, in which the dis-
placement field is the only field needed to be discretized
using a C1 continuity element.31

To circumvent C1 continuity requirement in the de-
velopment of displacement-based finite elements with
high-order displacement interpolations, certain authors
devoted to develop mixed finite elements fulfilling the
C1 continuity requirement only in a weak form for
different strain gradient continua using couple stress
theory32,33 and Toupin–Mindlin theory,18,34–36 respec-
tively. An overview of finite element formulations and
implementations for gradient elasticity in statics and
dynamics was given by Askes and Aifantis.37 To au-
thors’ knowledge, so far there has been no work pub-
lished in the literature for finite element methods of
gradient-enhanced Cosserat continuum and related fi-
nite element procedure, particularly in the frame of
second order computational homogenization. Indeed
a mixed finite element procedure based on the Hu–
Washizu variational principle for gradient Cosserat con-
tinuum in the second-order computational homogeniza-
tion for granular materials is presented and briefly de-
scribed in this paper.

A fundamental problem presented in computa-
tional multiscale methods for discrete particle assembly-
Cosserat continuum modeling of granular materials is
how to identify local damage and elasto-plastic failures
in macroscopic continuum and to reveal micromechani-
cal mechanisms of failure process occurring in the gran-
ular structure. To achieve this objective, it is required
to detect the micro-slip, the loss, the generation and
the re-orientation of contacts38 within a typical meso-
structure consisting of a reference particle and its inter-
mediate neighboring particles as the deformation pro-
ceeds, and then to quantitatively describe their effects
on the mechanical behavior of the meso-structure and
to trace the evolution of force chains leading to the force
chain collapse.

The micromechanically informed macroscopic dam-
age characterization of granular materials is briefly
introduced. The micromechanically informed macro-
scopic damage factor tensor to characterize anisotropic
material damage of effective Cosserat continuum is for-
mulated with no need of specifying macroscopic phe-
nomenological damage criterion and damage evolution
role. In addition, the microscopic mechanisms of macro-
scopic damage phenomenon are revealed.4

The purpose of this paper is to introduce our re-
search work achieved in the past years on developing
computational multiscale methods for granular mate-
rials. The computational homogenization methods us-
ing Cosserat and gradient Cosserat continuum models
in the macro-scale are first reviewed in Section II. The
mixed finite element procedure based on the weak form
of Hu–Washizu variational principle for the gradient
Cosserat continuum in the second-order homogenization
is presented in Section III. Section IV briefly describes
the bridge scale method for discrete particle assembly-

Cosserat continuum modeling. Meso-mechanically in-
formed anisotropic damage characterization of Cosserat
continuum for granular materials is reviewed in Sec-
tion V followed by discussions in Section VI.

II. COMPUTATIONAL HOMOGENIZATION METHODS

The computational homogenization methods for
heterogeneous granular medium described in the paper
are based on the average-field theory and the concept of
RVE. The medium is modeled as classical Cosserat con-
tinuum or gradient Cosserat continuum in the macro-
scale for the 1st or 2nd order computational homoge-
nization procedure, respectively. On the other hand, a
material point in the medium is modeled as a discrete
particle assembly within the RVE representing the mi-
crostructure of the medium in the micro-scale. As soon
as the boundary conditions are imposed to the periph-
eral particles of the discrete particle assembly of the
RVE, the micromechanical behaviors can be evaluated
by means of the existing discrete element model39 based
on the distinct element method.40

To transit mechanical properties and variables be-
tween the macroscopic Cosserat continuum and the mi-
croscopic discrete particle assembly within the RVE in
a manner consistent with the continuum theory, it is
also required to model the RVE as an effective Cosserat
continuum. The link between the discrete particle as-
sembly within the RVE and its effective Cosserat con-
tinuum is achieved via the discrete contacting points of
peripheral particles of the particle assembly with the
boundary of the effective classical Cosserat continuum.
Through those discrete contacting points the boundary
conditions prescribed to the RVE of effective classical
Cosserat continuum are imposed to the discrete par-
ticle assembly. On the other hand, with the help of
the effective Cosserat continuum of the RVE, the dis-
crete element method (DEM) solutions resulting from
the microscopic boundary value problem for the discrete
particle assembly of the RVE can be upscaled to macro-
scopic mechanical measures and micromechanically in-
formed macroscopic constitutive relations can also be
formulated.

To downscale and determine the microscopic bound-
ary value problem for the RVE subjected to macroscopic
strain-stress measures as external loads of the RVE,
the generalized Hill’s lemma derived for heterogeneous
Cosserat continuum in the first-order computational ho-
mogenization is given below13,25

σjiεji + μjiκji − σ̄jiε̄ji − μ̄jiκ̄ji =

1

V

∫
S

(nkσki − nkσ̄ki)(ui − ūi,jxj) dS +

1

V

∫
S

(nkμki − nkμ̄ki)(ωi − ω̄i) dS, (1)

where σ̄ji, μ̄ji and ε̄ji, κ̄ji are denoted as the volume
average Cauchy stresses and couple stresses and the vol-
ume average strains and curvatures over the domain of
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the RVE, prescribed to equal the corresponding macro-
scopic stress and strain measures at the given sample
point. σjiεji, μjiκji are denoted as the volume av-
erages of the microscopic products σjiεji, μjiκji over
the domain of the RVE. σki, μki, ui, ωi at the right
hand side of Eq. (1) are the stress measures, the trans-
lational displacements and the micro-rotations at the
point with the coordinates xj and outward normal nk

on the boundary S of the RVE of effective Cosserat con-
tinuum. ūi,j , ω̄i are regarded as the derivatives of trans-
lational displacements and micro-rotations at the given
macroscopic sample point. To ensure the satisfaction of
the Hill–Mandel energy condition for the homogeniza-
tion procedure, it is required as the downscaling rule
to enforce that the two boundary integrals at the right
hand side of Eq. (1) vanish in a pointwise (strong) or a
integral (weak) manner.

It is found that the periodic boundary conditions
commonly adopted for Cauchy continuum are only ad-
missible to be prescribed on the RVE in the weak form
for the pair of variables ui and σki but not for the pair
of variables ωi and μki for Cosserat continuum.25 In
addition, the microstructure of the RVE for heteroge-
neous granular material does not possess periodicity. It
is interesting to notice that Hill–Mandel energy condi-
tion for Cosserat continuum holds in the strong man-
ner if and only if kinematically admissible translational
displacements and statically admissible couple stresses
given below are prescribed, i.e.

ui|S = ūi,jxj , mi|S = (nkμki)|S = nkμ̄ki. (2)

With the discrete counterpart of the boundary condi-
tions (2) prescribed on the discrete Nc points of the pe-
ripheral particles contacting with the boundary, the rate
constitutive equations for micromechanically informed
macroscopic Cauchy stresses and curvatures were de-
rived and given in the forms13

˙̄σ =DσE : ˙̄Γ +Dσμ : ˙̄μ,

˙̄κ =DκE : ˙̄Γ +Dκμ : ˙̄μ,
(3)

where ˙̄Γ = ˙̄Γji = ˙̄ui,j , DσE , Dσμ, DκE , Dκμ are the
fourth-order constitutive modular tensors, depending
on the microstructure of the discrete particle assembly
within the deformed RVE.

To overcome the deficiency of the first-order homog-
enization procedure using classical continuum model in
the macro-scale described above, the gradient-enhanced
computational homogenization procedure for discrete
particle assembly-gradient Cosserat continuum model-
ing of granular material was proposed.26,41 The gener-
alized Hill’s lemma for heterogeneous gradient Cosserat
continuum in the second-order computational homoge-
nization is given below

σjiεji + μjiκji − σ̄jiε̄ji − μ̄jiκ̄ji − Σ̄ljiĒlji =

1

V

∫
S

(nkσki − nkσ̄ki)(ui − ūi,jxj −

1

2
ūi,jlxjxl) dS +

1

V

∫
S

(nkμki − nkμ̄ki) ·
(ωi − ω̄i − ω̄i,lxl) dS, (4)

where Σ̄lji, Ēlji are denoted as the stress moment and
strain gradient, ūi,jl, ω̄i,l are the second-order deriva-
tive of translational displacements and the curvature
defined at the sample point in the macroscopic gradient
Cosserat continuum. Satisfaction of Hill–Mandel en-
ergy condition for gradient Cosserat continuum can be
achieved by enforcing the following boundary conditions
on the boundary of the RVE, i.e.

ui|S = ūi,jxj +
1

2
ūi,jlxjxl, ωi|S = ω̄i + ω̄i,lxl. (5)

The macroscopic stress measures can be expressed
in the forms of boundary integrals along the bound-
ary of the RVE and further discretized into the discrete
quantities assigned at the Nc contacting points of the
peripheral particles of the particle assembly with the
boundary of the RVE. With the discrete counterpart of
the boundary conditions (5) prescribed on the discrete
Nc contacting points and the formulae for macroscopic

stress measures σ̄ji, T̄k,
ˆ̄Σjlk, μ̄

0
ji expressed in terms of

boundary integrals along the boundary of the effective
Cosserat continuum of the RVE, and then discretized
into the microscopic discrete quantities assigned at the
Nc contacting points of the peripheral particles with the
boundary of the RVE, the micromechanically informed
macroscopic constitutive relations linking rate macro-
stress and strain measures for macroscopic gradient
Cosserat continuum of heterogeneous granular materi-
als are given by41

˙̄σ =DσΓ : ˙̄Γ +DσÊ

...
˙̄̂
E +Dσω · ˙̄ω +Dσκ : ˙̄κ. (6)

˙̄T =DTΓ : ˙̄Γ +DTÊ

...
˙̄̂
E +DTω · ˙̄ω +DTκ : ˙̄κ. (7)

˙̄̂
Σ =DΣ̂Γ : ˙̄Γ +DΣ̂Ê

...
˙̄̂
E +DΣ̂ω · ˙̄ω +DΣ̂κ : ˙̄κ. (8)

˙̄μ
0
=DμΓ : ˙̄Γ +DμÊ

...
˙̄̂
E +Dμω · ˙̄ω +Dμκ : ˙̄κ. (9)

where ˙̄σ, ˙̄T ,
˙̄̂
Σ, ˙̄μ

0
are the boldfaced forms of macro-

scopic rate stress measures, i.e., rate Cauchy stress,
symmetric part of rate stress moment, rate internal
torque, generalized rate couple stress ˙̄μ0

ji defined as

˙̄μ0
ji = ˙̄μji−eikl

˙̄̃
Σjkl with

˙̄̃
Σjkl being the skew-symmetric

part of rate stress moment, eikl being the permutation

tensor.
˙̄̂
E is the boldfaced form of macroscopic strain

gradient
˙̄̂
Eljk = ˙̄uk,jl. All of the sixteen constitutive

modular tensors shown in Eqs. (6)–(9) depend on the
microstructure and its evolution of the discrete particle
assembly within the deformed RVE.

The capability of the second-order computational
homogenization approach proposed for granular mate-
rials in accounting for the size effect is demonstrated
by an example with a set of six RVEs. The six RVEs
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Fig. 1. Curves for RVE averaged low- (a) and high- (b) order
energy indexes versus the characteristic microstructural size

possess the same micro-structural topology and mor-
phology composed of 40 uniform round particles but
with different particle radii increasing form 0.005 m
to 0.160 m. Figure 1 plots low and high order en-
ergy density products J1, J2 versus the radius of par-
ticle in the macroscopic Cosserat and gradient Cosserat
continua obtained by the first-order and the proposed
second-order homogenization schemes respectively as
the RVEs are subjected to varying macroscopic strain
gradient u1,12 = 0.1 m−1, 0.2 m−1, 0.3 m−1 in addition
to u1,1 = −0.015 m−1 and u2,2 = −0.005 m−1. Both
the size effect and the effect of the high-order defor-
mation mode u1,12 imposed to the RVE boundary are
illustrated.

III. MIXED FINITE ELEMENT PROCEDURE FOR
GRADIENT COSSERAT CONTINUUM IN SECOND-
ORDER COMPUTATIONAL HOMOGENIZATION

The weak form of the Hu–Washizu variational prin-
ciple for gradient Cosserat continuum in the frame of
micro-macro computational homogenization of hetero-

geneous granular materials can be written as∫
Ω

δui[(σji −Σkji,k),j − bfi] dΩ +

∫
Ω

δωi[μji,j +

eijk(σjk −Σljk,l)− bmi ] dΩ −∫
Ω

δρji(Ψji − ui,j) dΩ = 0, (10)

with the weak form of rate stress–strain constitutive
relations, in addition to the micromechanically informed
constitutive relations (6)–(9), given by

∫
Ω
δΓjiD

σÊ
jinml(

˙̂
Enml − η̇nml) dΩ = 0,∫

Ω
δηkjiD

Σ̂Ê
kjinml(

˙̂
Enml − η̇nml) dΩ = 0,∫

Ω
δωiD

TÊ
inml(

˙̂
Enml − η̇nml) dΩ = 0,∫

Ω
δκjiD

μÊ
jinml(

˙̂
Enml − η̇nml) dΩ = 0,

(11)

where and hereafter the over-bars applied to denote
macroscopic variables in the frame of computational ho-
mogenization in Section II are dropped for clarity. Ω
is the domain of macroscopic gradient Cosserat contin-
uum, bfi and bmi are the body force and body moment
per unit volume of the medium. A second-order tensor
Ψ as a field function is introduced to express the strain
gradient defined as a third-order tensor η such that at
any point in the domain Ω one may have

ηkji =
1

2
(ψki,j + ψji,k). (12)

The strain gradient will no longer be defined as
the second derivative of assumed displacement field in
the frame of proposed mixed finite element (FE) pro-
cedure. Instead with the Hu–Washizu variational prin-
ciple, the relation between the strain gradients and the
2nd order derivatives of the displacements in gradi-
ent Cosserat continuum is enforced in the weak form
given by

∫
Ω
δΣ̂kji(ηkji − Êkji) dΩ = 0, which can be

transformed into the constraint imposed to the equality
ψji = ui,j in the weak form given by

∫
Ω

δρji(Ψji − ui,j) dΩ = 0, (13)

in which ρji is defined and termed as Lagrange multi-
pliers to be determined in the proposed mixed FE pro-
cedure. Equation (10) can be re-expressed as

∫
Ω

δεjiσji dΩ +

∫
Ω

δκjiμji dΩ +

∫
Ω

δEkjiΣkji dΩ +

∫
Ω

δρji(Ψji − Γji) dΩ =

∫
S

(δuiti + δωimi + δui,jgji) dS +

∫
Ω

(δuib
f
i + δωib

m
i ) dΩ, (14)

in which ti,mi, gji are the surface traction, the surface
couple and the surface high-order generalized traction.
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The introduction of incompatible strain gradient ηkji
into Eq. (14) leads to

∫
Ω

δΓjiσji dΩ +

∫
Ω

δωkTk dΩ +

∫
Ω

δκji(μ
0
ji − eiklΣ̂jkl) dΩ +

∫
Ω

δηkjiΣ̂kji dΩ +

∫
Ω

(δΨji − δΓji)ρji dΩ +

∫
Ω

δρji(Ψji − Γji) dΩ =

∫
S

(δuiti + δωimi + δΨjigji) dS +

∫
Ω

(δuib
f
i + δωib

m
i ) dΩ. (15)

As an incremental procedure is concerned, with
omission of rate virtual kinematic quantities such as
δΓji, δωk, δκji, δηkji, δΨji, δρji, δui in the derivation of
tangent stiffness matrices, the rate form of Eq. (15) can
be written in the boldfaced vector-matrix form below
for convenience of its implementation in the FE proce-
dure∫

Ω

δΓTσ̇ dΩ +

∫
Ω

δωTṪ dΩ +

∫
Ω

δηT ˙̂
Σ dΩ +

∫
Ω

δκT(μ̇0 −H
˙̂
Σ) dΩ +

∫
Ω

(δΨT − δΓT)ρ̇ dΩ +

∫
Ω

δρT(Ψ̇ − Γ̇ ) dΩ =

∫
S

(δuTṫ+ δωTṁ+ δΨTġ) dS +

∫
Ω

(δuTḃf + δωTḃm) dΩ. (16)

The translational displacements u, the microrota-
tions ω, the displacement gradients Ψ and the La-
grange multipliers ρ are taken as the primary variables
in interpolation approximations of proposed mixed FE
procedure. Denoting their nodal values with ŪT =[
ūT ω̄T Ψ̄T ρ̄T

]
, one may interpolate u,ω,Ψ ,ρ at

any point within the FE mesh with their nodal values
in the forms

u =Nuū, ω =Nωω̄, Ψ =NΨ Ψ̄ , ρ =Nρρ̄, (17)

where Nu,Nω,NΨ ,Nρ are interpolation functions for
u,ω,Ψ ,ρ, respectively. The spatial derivatives of pri-
mary variables u,ω,Ψ at any point within the FE mesh
can be expressed in terms of ū, ω̄, Ψ̄ respectively by

Γ = Buū, η = BΨ Ψ̄ , κ = Bωω̄, (18)

where Bu,BΨ ,Bω are the spatial derivatives of shape
functions Nu,NΨ ,Nω, respectively.

The particular forms of interpolation functions
Nu,Nω,NΨ ,Nρ depend on construction of the multi-
variable mixed FE in consideration. A particular mul-
tivariable mixed FE is designed. It is termed as the
quadrilateral element QU38L4 with 36 nodal DOFs and
4 Lagrange multipliers, i.e., 18 DOFs for translational
displacements defined at 9 nodes, 4 DOFs for microrota-
tions and 16 DOFs for displacement gradients defined at
4 corner nodes, 4 Lagrange multipliers defined at the el-
ement center. With Eqs. (16)–(18) the tangent stiffness
matrices of the mixed FE QU38L4 can be derived and
numerically integrated with the 2×2 Gauss quadrature
scheme. The presented mixed FE passes the four typical
patch tests, i.e., constant biaxial tension- compression
strain, constant shear strain, constant strain gradient,
constant microcurvature and shear strain tests.

IV. THE BRIDGE SCALE METHOD

Base on the bridging scale method (BSM) initially
presented for molecular dynamics-Cauchy continuum
modeling in nano mechanics,9 a new version of the BSM
that couples the discrete particle assembly modeling us-
ing DEM and the Cosserat continuum modeling using
FEM at both micro-macro scale levels was proposed for
multiscale analysis of granular materials. The whole
computational domain is decomposed into two nested
regions. The coarse scale region denoted by macroscopic
(MS), which is modeled with Cosserat continuum and
numerically simulated by the FEM, covers the whole
medium for the simulation. While the fine scale region
modeled with the discrete particle assembly and numer-
ically simulated by the DEM is limited to a localized re-
gion denoted by DEM region for accurately simulating
plasticity, crushing and discontinuous failure phenom-
ena in microscopic scale.

With the bridging scale projection operator, the
total displacement (including translations and micro-
rotations) field is decomposed into coarse and fine
scales. Based on the virtual work principle applied to
the FEM nodes of the Cosserat continuum and the par-
ticle centers of the discrete particle assembly respec-
tively, two decoupling sets of equations of motion of
the combined coarse-fine scale system, resulting a mul-
tiscale DEM–FEM solution scheme, are formulated. As
a consequence, different time step sizes for the time inte-
gration schemes in coarse and fine scales are permitted
to be adopted, and both computational accuracy and
efficiency of the proposed BSM are greatly enhanced.

One crucial issue of the BSM is how to properly
present a multiscale interfacial condition between MS
and DEM regions, which can appropriately embody
the interaction and transition of kinematic and kinetic
quantities at the interface. To impose the interfacial
condition applied to the DEM region by the MS region,
a layer of virtual interfacial particles in the MS region
are fictitiously collocated and appended to the periph-
eral particles of the DEM region along the interface be-
tween the MS and DEM regions.
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In the case of quasi-static loading, there exists no
propagation of high frequent waves and the wave propa-
gation effect in the DEM region can be neglected. Then
it is desired to provide a simplified but efficient inter-
face condition between the MS and DEM regions. It is
assumed that the fine scale displacements defined at the
virtual interfacial particles in the MS region are assigned
to be zero, i.e., the displacements of peripheral particles
of the DEM region along the interface are entirely de-
termined in terms of the FE nodal displacements in the
MS region.

As dynamic response problems with high and/or
medium frequencies are concerned, it is necessary to
taken into account the effect of wave propagation in
granular media. To properly simulate the propagation
of the waves with high frequencies originated from the
DEM region, which should be allowed to pass through
the interface and traveling into the medium outside the
DEM region in the numerical simulation. Then the ef-
fects of those fine scale DOFs defined at the virtual
discrete particles on the proximate peripheral particles
of the DEM region have to be kept. It is achieved by
taking into account the external force acting upon the
proximate peripheral particles of the DEM region due to
the fine scale DOFs of the virtual discrete particles. In-
deed an effective and efficient scheme for non-reflecting
boundary condition prescribed on the interface between
the MS and DEM regions is developed for the proposed
BSM using discrete particle assembly-Cosserat contin-
uum concurrent modeling with the coupled DEM–FEM
method.10

The good performance of the developed non-
reflecting boundary condition in eliminating spurious
reflected waves at the interfaces between the MS and
DEM regions is demonstrated by a soil-foundation prob-
lem (Fig. 2) subjected to a uniformly distributed peri-
odic pressure load normal to the surface of the cylin-
drical pit with the loading history qn = qn,0 cos (ωt)
(qn,0 = 1.0 MPa, ω = 2πf , f = 200 Hz) in Fig. 3.

V. MESO-MECHANICALLY INFORMED ANISOTROPIC
DAMAGE CHARACTERIZATION

The study of micromechanical behaviors for granu-
lar material modeled as a discrete particle assembly is
carried out from three distinct scales. In the micro-scale
study one is concentrated on a typical contacting point
and inter-particle contact behavior of two typical par-
ticles in contact. While in the macro-scale study, one
focuses on the overall mechanical behavior of a granular
structure consisting of a huge number of discrete par-
ticles as a boundary value problem performed by DEM
solvers and its numerical solution.

It is remarked that the micro-scale and the macro-
scale studies termed above do not relate to the mi-
crostructure and its evolution and their effects on the
micro-structural constitutive behaviors leading to the
local material failure. To reveal micromechanical mech-
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anisms of failure process occurring in the granular struc-
ture, it is required to detect the micro-slip, the loss, the
generation and the re-orientation of contacts42 among a
small group of particles consisting of a reference parti-
cle and its neighboring particles within the microstruc-
ture as the deformation proceeds, and then to quantita-
tively describe their effects on the mechanical behavior
of the microstructure and to further trace the evolu-
tion of force chains leading to the force chain collapse.
One has to perceive the local character of material fail-
ure and avoid smearing out intrinsic heterogeneity and
anisotropy of granular material, in order to accurately
capture the real weakened location where failure process
is triggered and then to correctly trace and characterize
the real failure process.

The study of meso-mechanical behavior of the small
group of particles, with the help of homogenization
procedure, is the foundation to establish the meso-
mechanically informed macroscopic constitutive model
of the effective Cosserat continuum and to identify the
macroscopic plastic and damage variables in the contin-
uum in terms of microscopic material parameters char-
acterizing the microstructure and its evolution and mi-
croscopic response variables characterizing microscopic
local failure process.

To perform the meso-scale study for granular mate-
rial, based on the concept of Voronoi cell,43,44 a Voronoi
cell model which is capable of representing typical mi-
crostructure of granular material and is generated with
a Voronoi tessellation of discrete particle assembly was
presented.4 The Voronoi cell termed in this paper rep-
resents an effective porous Cosserat continuum element,
in which voids and discontinuities exist, with the volume
of the Voronoi cell assigned to the reference particle.
Nevertheless, it is remarked that a Voronoi cell model
includes not only the reference particle laid inside the
Voronoi cell but also its intermediate neighboring parti-
cles. The contacting forces and moments acting on the
reference particle via the contacting points depend on
not only the movements of the reference particle itself
but also its neighboring particles in contacts. As the
mechanical behaviors for the effective continuum ele-
ment, i.e., the reference Voronoi cell, are concerned, the
motions of the intermediate neighboring particles of the
reference particle have to be taken into account in the
modeling of the constitutive behaviors of the reference
Voronoi cell.

With the proposed Voronoi cell model the meso-
mechanically informed macroscopic non-linear consti-
tutive relations and constitutive modular tensors of ef-
fective Cosserat continuum are formulated. The aver-
aged Cauchy stresses and coupled stresses exerted on
the Voronoi cell in the two dimensional case can be ex-
pressed in the forms

σ̄A
ji = σ̄Ae

ji − σ̄Ae
ji , μ̄

A
j3 = μ̄Ae

j3 − μ̄Ae
j3 (i, j = 1, 2) (19)

where σ̄Ae
ji and μ̄Ae

j3 stand for reductions of average
Cauchy stresses and couple stresses due to relative
plastic displacements between the reference particle A

and its neighboring particles in contact. The elastic
parts σ̄Ae

ji and μ̄Ae
ji are given in terms of the average

strains and curvatures ε̄Alk, κ̄
A
l of the Voronoi cell A of

anisotropic Cosserat continuum, i.e.

σ̄Ae
ji = Deσε

jilkε̄
A
lk +Deσκ

jil κ̄A
l ,

μ̄Ae
j3 = Deμε

j3miε̄
A
mi +Deμκ

j3i κ̄
A
i , (20)

with the definition of strain tensor ε̄Alk = ūA
k,l + e3klω̄

A.
Then the meso-mechanically informed elastic secant
modular tensors depending on the current status of the
microstructure are given by

Deσε
jilk =

rA
VA

m∑
c=1

h(uCAt
n )[−(kcA + kcB)t

c
in

c
jt

c
kn

c
l +

kcn(rA + rB)n
c
in

c
jn

c
kn

c
l ], (21)

Deσκ
jil =

−rA
VA

m∑
c=1

h(uCAt
n )kcB(rA + rB)t

c
in

c
jn

c
l ,

Deμε
j3mi =

−r2A
VA

m∑
c=1

h(uCAt
n )(kcA + kcB)t

c
in

c
mnc

j , (22)

Deμκ
j3i =

rA
VA

m∑
c=1

h(uCAt
n )[rArB(rA + rB)(k

c
s − kcr) +

kcθ(rA + rB)]n
c
jn

c
i , (23)

where h(uCAt
n ) is the Heaviside unit function depending

on the value of current overlap uCAt
n between the refer-

ence particle A with its intermediate neighboring parti-
cle B, rA, rB are the radii of the two particles, VA is the
volume of the Voronoi cell A, tci , n

c
j(i, j = 1, 2) are com-

ponents of the local Cartesian coordinate axes tcA and
nc

A assigned to the particle A, and kcA = −kcsrA− kcrrA,
kcB = −kcsrB+kcrrB, k

c
n, k

c
s, k

c
r, k

c
θ are stiffness coefficients

for repulsive normal compression, sliding and rolling
frictions, rolling friction moment between two particles
in contact.

The derived meso-mechanically informed macro-
scopic constitutive relation (20) of effective Cosserat
continuum reveals that the Cauchy stresses are not only
constitutively related to the strains but also to the cur-
vatures defined in Cosserat continuum, likewise, the
couple stresses are not only constitutively related to
the curvatures but also to the strains. As the derived
meso-mechanically informed anisotropic constitutive re-
lations (20)–(23) are degraded to the isotropic ones, it is
found that the structure of the degraded isotropic con-
stitutive relations agrees with that of the macroscopic
constitutive relations directly given in the classical the-
ory of Cosserat continuum. It also demonstrates the
rationality of adopting Cosserat continuum models for
granular materials. In addition, the isotropic elastic
modular tensors degraded from Eqs. (21)–(23) are veri-
fied by comparisons of them with those given by classi-
cal Cosserat continuum theory and are used to identify
the elastic constitutive parameters of isotropic Cosserat
continuum.

According to the concept of continuum damage
mechanics45 and the elastic damage models,45,46 the
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Fig. 4. Damage characterizations at the end of loading history.

material damage can be defined as a reduction in the
elastic stiffness of material identified with the elastic
modular tensor. It is appropriate to note that macro-
scopic effective Cosserat continuum for granular mate-
rial with its microstructure represented by the present
Voronoi cell model is anisotropic generally in its intrin-
sic nature. It implies that not only undamaged (initial)
elastic modular tensor, but also the material damage of
the effective Cosserat continuum for granular material
are anisotropic.

In the frame of macroscopic phenomenological the-
ory of continuum damage mechanics, with given undam-
aged elastic modular tensor D0 and the damage factor
tensor d determined by the assumed damage criterion
and damage evolution law at damaged (current) ma-
terial state for a material point, the damaged elastic
modular tensor Dt =Dt(D0,d) is then determined.

Whereas in the frame of micromechanically based
macroscopic damage mechanics, the damaged elastic
modular tensor is directly determined and evaluated ac-
cording to the current meso-structure associated to the
reference Voronoi cell. One does need specifying neither
macroscopic (phenomenological) damage criterion nor
damage evolution law to determine the damage factor
tensor. Contrarily the damaged elastic modular ten-
sor Dt is first determined according to the current con-
tact state of the reference particle with its intermediate
neighboring particles in the frame of micromechanics
of granular materials. The meso-mechanically informed
macroscopic damage factor tensor d = d(Dt,D0) to
characterize anisotropic material damage of effective
Cosserat continuum is formulated and determined with
given undamaged and damaged elastic modular tensors
for the reference Voronoi cell assigned at a material
point. The symmetry of the damaged elastic modular
matrix Dt is fully determined by Eqs. (21)–(23) and is
independent of whether the hypothesis of elastic strain
equivalence or the hypothesis of elastic energy equiva-
lence being employed.

A rectangular panel example subjected to a uni-
axial compression between two rigid plates applied by
a vertical displacement control is performed to demon-
strate the proposed micromechanically informed dam-
age characterization. Figure 4 illustrates deformed
Voronoi cell grid, the distribution of maximum prin-
cipal damage directions, the distribution of maximum
principal damage value, and the distribution of “number
of loss of contacts” revealing the main meso-mechanical
mechanism of macroscopic damage, at the end of load-
ing history when the panel fully collapses. It is inter-
esting to notice that the shear bands in the panel only
fully develop at the end of loading history (i.e., the panel
collapses), when the damage simultaneously fully devel-
ops along the shear bands. The principal directions and
values of the derived damage factor tensor along with
numerical results reveal the microscopic mechanisms of
macroscopic damage phenomenon, i.e., loss of contacts,
re-orientation of contacts of the reference particle with
its intermediate neighboring particles and concomitant
volumetirc dilatation of the Voronoi cell.

VI. DISCUSSIONS

The micromechanically informed macroscopic dam-
age factor tensor d at the current configuration of the
Voronoi cell is defined on the bases of its initial mi-
crostructure characterized by D0. However, D0 is not
certainly most stiff among all of possible particle col-
location patterns describing the meso-structure for the
reference particle.

Therefore, it is possible to result in a negative defi-
nite damage matrix d for a Voronoi cell with a deformed
particle collocation pattern as it is subjected to certain
external conditions and interactions with its neighbor-
ing particles. Physically, a negative definite damage
matrix d implies a re-collocation of the particles for the
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Voronoi cell resulting in a reinforced current microstruc-
ture as compared with its initial microstructure assigned
at the local material point in the macroscopic contin-
uum. This can be regarded as a microscopic mechanism
of self-healing process of granular materials.

It is cognized from the developed micromechanically
informed constitutive model for granular materials that
the microscopic mechanisms of progressive macroscopic
elastic damage-healing and elastoplastic processes are
interrelated, i.e., the loss and generation of contact be-
tween each two intermediate neighboring particles, the
change in the volume of the RVE (Voronoi cell), the
change in the orientation of contact will be simulta-
neously accompanied with the slips between each two
particles in contact governed by Coulomb law of fric-
tion. A further study for micromechanically informed
coupled elastoplastic and damage-healing characteriza-
tion of Cosserat continuum for granular materials is re-
quired.
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