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a  b  s  t  r  a  c  t

In hydrogels  of cross-linked  polysaccharides,  the total  amount  of  cross-linker  and  the  degree  of  cross-
linking  influence  the  properties  of  the  hydrogel.  The  substitution  position  of  the  cross-linker  on  the
polysaccharide  is another  parameter  that can  influence  hydrogel  properties;  hence  methods  for  detailed
structural  analysis  of  the  substitution  pattern  are  required.

NMR  and LC–MS  methods  were  developed  to determine  the  positions  and  amounts  of  substitution  of
1,4-butanediol  diglycidyl  ether  (BDDE)  on  hyaluronic  acid  (HA),  and  for the  first  time  it  is shown  that  BDDE
can react  with  any  of the four available  hydroxyl  groups  of the  HA disaccharide  repeating  unit.  This was
achieved  by  studying  di-,  tetra-, and  hexasaccharides  obtained  from  degradation  of BDDE  cross-linked  HA
hydrogel  by  chondroitinase.  Furthermore,  amount  of  linker  substitution  at  each  position  was  shown  to
be dependent  on  the  size  of  the  oligosaccharides.  For  the  disaccharide,  substitutions  were  predominantly
at  �GlcA-OH2  and  GlcNAc-OH6  while  in  the tetra- and  hexasaccharides,  it was  mainly  at  the  reducing
MR
S

end  GlcNAc-OH4.  In  the  disaccharide  there  was no  substitution  at  this  position.  Since chondroitinase  is
able  to completely  hydrolyse  non-substituted  HA into  unsaturated  disaccharides,  these  results  indicate
that  the  enzyme  is  prevented  to  cleave  on  the  non-reducing  side  of an oligosaccharide  substituted  at the
reducing  end  GlcNAc-OH4.  The  procedure  can be adopted  for the  determination  of  substitution  positions
in  other  types  of polymers.

©  2015  The  Authors.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Hydrogels formed by cross-linking of polysaccharides such as

yaluronic acid (HA, also known as hyaluronan) are materials that
an be used for numerous applications, both medical and aesthetic
Burdick & Prestwich, 2011; Fakhari & Berkland, 2013; Gutowska,

Abbreviations: HA, hyaluronic acid/hyaluronan; BDDE, 1,4-butanediol diglycidyl
ther; BDPE, 1,4-butanediol di-(propan-2,3-diolyl)ether; DCM, dichloromethane;
HF, tetrahydrofurane; TOCSY, total correlation spectroscopy; HSQC, heteronuclear
ingle quantum correlation; NOESY, nuclear Overhauser effect spectroscopy; HMBC,
eteronuclear multiple bond correlation; VCD, Vibrational circular dichroism.
∗ Corresponding author.
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J.-G. Boiteau), Anne.HelanderKenne@galderma.com (A.H. Kenne),
orine.sandstrom@slu.se (C. Sandström).

ttp://dx.doi.org/10.1016/j.carbpol.2015.09.112
144-8617/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article 

/).
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Jeong, & Jasionowski, 2001; Kogan, Šoltés, Stern, & Gemeiner,
2007; Schanté, Zuber, Herlin, & Vandamme, 2011). The hydrogels
will have different physical properties depending on the starting
material and the manufacturing process (Edsman, Nord, Öhrlund,
Lärkner, & Kenne, 2012; Lapčík, Lapčík, De Smedt, Demeester, &
Chabreček, 1998; Xu, Jha, Harrington, Farach-Carson, & Jia, 2012)
and characterization of the chemical structure of the cross-linked
network is essential for understanding and differentiating the dif-
ferent materials.

HA is a linear non-sulfated glycosaminoglycan built of the
repeating unit disaccharide �-d-glucuronic acid-(1 → 3)-�-d-N-
acetyl-d-glucosamine-(1 → 4). HA is present in all vertebrates and
the primary structure is preserved through all species, the varia-
tion lying only in the molecular weight and polydispersity index
of the polymer. In humans, HA is abundant in the skin, eyes and

extracellular matrix (Laurent, 1987; Laurent & Fraser, 1992). Due
to its numerous negative charges, HA can retain large amounts of
water and acts therefore as a space filler, lubricant and osmotic
buffer. However, the poor mechanical properties, rapid degradation
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F.J. Wende et al. / Carbohydra

nd clearance in vivo of soluble HA limit its use as a biomaterial.
o improve the mechanical properties and to increase the resis-
ance to degradation by hyaluronidases, HA is chemically modified
r cross-linked to form hydrogels (Lapčík et al., 1998; Segura et al.,
005; Volpi, Schiller, Stern, & Šoltés, 2009).

A common procedure for cross-linking HA into hydrogels is the
eaction with 1,4-butanediol diglycidyl ether (BDDE) under alka-
ine condition which yields a stable covalent ether linkage between
A and the cross-linker (Ågerup, Berg, & Åkermark, 2005). During

he cross-linking process, the epoxide groups of BDDE react with
ucleophiles forming derivatives of 1,4-butanediol di-(propan-2,3-
iolyl)ether (BDPE). Some of the cross-linker molecules form true
ross-links that are connected to HA at both ends while other BDDE
olecules only bind at one end. Definitions of cross-linking param-

ters to describe the resulting HA hydrogels have been described in
etail earlier (Kenne et al., 2013) as: (a) the degree of modification
MoD), which is the stoichiometric ratio between the sum of mono-
nd double-linked BDPE residues and HA disaccharide units; (b) the
egree of substitution (DS) which is the proportion of the HA disac-
harides that are substituted; (c) The degree of cross-linking (CrD),
hich is the stoichiometric ratio between BDPE residues that are
ouble-linked and HA disaccharide units; (d) the effective cross-

inker ratio (CrR), which is the fraction of cross-linker residues that
re double-linked (forming cross-linkages in the polysaccharide
etwork), compared to all linked cross-linkers.

The physical properties of the hydrogels can vary vastly depend-
ng on, e.g. the molecular weight of HA, the MoD  and the
ross-linking efficiency. Thus methods to differentiate HA gels on
he molecular level are important to explain the different prop-
rties of the gels and also to understand the effect of different
anufacturing processes used. Detailed structural analysis of intact
A hydrogels are however difficult due to the viscosity of the poly-
er  and the complex cross-linked polymer network (Barbucci et al.,

006; Guarise, Pavan, Pirrone, & Renier, 2012; Pouyani, Harbison,
 Prestwich, 1994). Recently, an analytical method that allows
uantifying the MoD  and CrD in cross-linked HA hydrogels was
eported (Kenne et al., 2013). Using chondroitinase, a lyase which
y an elimination reaction cleaves all 1,4-linkages between N-
cetylglucosamine and glucuronic acid, HA is completely degraded
nto disaccharides with an unsaturated uronic acid at the non-
educing end (�HA2, Fig. 1). When HA is substituted with BDPE,
he cleavage is not complete and longer BDPE-substituted oligosac-
haride fragments are generated. These oligosaccharides can be
eparated from the main non-substituted disaccharide (�HA2)
roducts by size-exclusion chromatography (SEC) and analyzed by
lectrospray ionization mass spectrometry (ESI-MS), allowing the
etermination of CrR (Kenne et al., 2013). The total amount of BDPE

inked to HA, expressed as the MoD, can be determined by 1H NMR
pectroscopy. From these two parameters which give information
bout the polymer network, the DS and the CrD can be obtained
Kenne et al., 2013).

Besides MoD  and CrD, the substitution positions for the
DPE-molecules on HA could also influence the properties of
he hydrogel. In the reaction, nucleophilic groups of HA react
ith the epoxide groups of BDDE. In theory, six positions in each
A-disaccharide building blocks are available for reaction with
DDE, the hydroxyl groups, the carboxylate group and the amide
roup. The hydroxyl groups are the most likely binding positions as
ny esters formed with the carboxylate group of HA will probably
e cleaved under the alkaline conditions used in the synthesis and
he amide nitrogen has the lowest reactivity. The relative tendency
f binding to the four different hydroxyl groups may  vary due to

teric differences between primary and secondary alcohols, con-
ormational effects of the polymer due to hydrogen bonding and
ydration (Nestor, Kenne, & Sandström, 2010), differences in pKa of
he hydroxyl groups and differences in reaction conditions during
mers 136 (2016) 1348–1357 1349

the manufacturing process. In this work, we have established NMR
and LC–MS based methods to determine the position of substitu-
tion of mono-linked BDPE in oligosaccharides of different lengths
obtained by enzymatic hydrolysis of cross-linked HA hydrogels.

2. Experimental

2.1. Materials

HA hydrogel cross-linked with BDDE was  prepared under alka-
line conditions and the HA concentration was adjusted to 20 mg/ml
after neutralization. The MoD  and CrR determined using the
method by Kenne et al. (2013) were 8% and 0.1%, respectively. Chon-
droitinase ABC from Proteus vulgaris (art. no. C2905) was purchased
from Sigma Aldrich.

2.2. Degradation and separation

The hydrogel (1 g in 100 ml  1 mM sodium phosphate buffer
pH 7.0) was  treated with chondroitinase ABC (10 UN) in a sealed
flask at 37 ◦C for 90 h. The degradation was followed by analysing
the sample on a Superdex Peptide 10/300 GL column (GE Health-
care, Uppsala, Sweden) using analytical HPLC with a diode-array
detector (LC10vp LC system, Shimadzu). The degradation was  con-
sidered complete when the viscosity of the sample was  low, no
remaining gel particles were observed and the sample contained
mostly low-molecular weight oligosaccharides as demonstrated by
HPLC–MS analysis (response for �HA2 more than 70% out of 21
detected modified and unmodified oligosaccharides with size up
to 16 monosaccharides). The enzyme digest was  separated using
preparative HPLC (ÄKTA purifier with UV-detector UV-900, pump
P-900 and sample pump P-960, GE Healthcare, Uppsala, Sweden)
in two  steps. The first separation was performed by injecting
5 ml  of the enzyme digest (sample pump, 5 ml/min) on to an in-
house-packed Q Sepharose High Performance 16/170 column (GE
Healthcare, Uppsala, Sweden) using a gradient of 1 mM sodium
phosphate buffer pH 7.0 and 1 mM sodium phosphate buffer pH
7.0 with 200 mM sodium chloride (0–40% 43 min, 40% 6.5 min,
100% 9.5 min) at 5 ml/min. UV detection (232 nm) was used to
monitor the separation and fractions were collected automatically
according to predetermined limits of the UV-signal. The content
of the collected fractions were analyzed with the Superdex Pep-
tide 10/300 GL on the analytical HPLC. Fractions containing equal
oligosaccharides were pooled and lyophilized. The obtained pow-
der from the fractions containing �HA2-B, �HA4-B, �HA6-B were
dissolved in 10 ml  of 100 mM ammonium acetate pH 7.8 and were
then further purified from salt and other impurities on the ÄKTA
purifier by injecting 1 ml  with a sample loop on a self-packed
Superdex Peptide Prep Grade 16/750 column (GE Healthcare, Upp-
sala, Sweden). Isocratic elution with 100 mM ammonium acetate
pH 7.8 at 1.0 ml/min was used. UV detection (232 nm)  was used to
monitor the separation and fractions were collected automatically
based on the UV-signal. The pure fractions containing �HA2-B,
�HA4-B, �HA6-B were analyzed with Superdex Peptide 10/300 GL
on the analytical HPLC and then lyophilized. The fractions contain-
ing HA oligosaccharides at both ends of BDPE were also collected
but not analyzed further.

2.3. NMR spectroscopy

The freeze dried di-, tetra- and hexasaccharide samples were
dissolved in D2O and transferred into either 5 or 3 mm NMR  sam-

ple tubes. The NMR  spectra were recorded either on a Bruker
AVANCETM III 600 MHz  spectrometer using a 5 mm PABBO BB/19F-
1H/D Z-GRD probe or a 5 mm 1H/13C/15N/31P cryoprobe, both
equipped with a z-gradient. All experiments were performed using
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Fig. 1. �HA2 formed by degrad

2O as solvent and the signals were referenced by adding a small
ortion of acetone-d6 to the sample and setting the acetone-d5 sig-
al to ıH 2.204. The temperatures were set between 280 and 300 K

n order to get as little interference from the residual HDO peak as
ossible. The assignments of 1H and 13C resonances were obtained
rom homonuclear 1H–1H COSY, TOCSY and NOESY and heteronu-
lear 1H–13C HSQC, HSQC–TOCSY and HMBC experiments from the
ruker pulse sequence library. Mixing times from 10 to 120 ms
ere used for TOCSY spectra. Suppression of the water signal was

chieved using the noesy pr1d pulse sequence. For quantification
f amount of substitution by integration of NMR  signals, the 1D
H NMR  spectra were recorded with a recycle delay of 100 s. The
H NMR  spectra of enantiomerically enriched (2′R,2′ ′R)-BDDE were
ecorded on a Bruker Avance 400 MHz.

.4. Mass spectrometry

All LC–MS analyses were performed on a Bruker Maxis Impact
ass spectrometer connected to an Agilent 1100LC system

quipped with a diode-array UV detector. A HypercarbTM column of
imension 100 mm × 4.6 mm and with particle size 3 �m (Thermo
cientific) was used and kept at 60 ◦C. The mobile phases were
ater and acetonitrile with 0.05 or 0.1% trifluoroacetic acid and

he flow rate was 0.5 ml/min. A gradient of acetonitrile from 20
o 40% enabled a reasonable separation of isomers of �HA2-B. UV
bsorbance was measured at 235 nm and the peak areas in the
hromatogram were used to estimate the relative amounts of each
somer assuming that all isomers had the same response factors.
or MS/MS, the technique of multiple reactions monitoring (MRM)
as utilized. Whenever possible, direct infusion or flow injection

nalyses were used to optimize the collision energy to be used in
ID. A collision energy of 45–50 eV was sufficient to give rise to
ross-ring cleavages.

.4.1. Reduction of HA oligomers
Since the column separates the � and � isomers, the hemiacetal

orm of the oligosaccharides were reduced to alditol using sodium
orohydride in order to simplify the chromatographic peak pro-
les. The oligosaccharide fragments were dissolved in 200 �l of

reshly prepared stock solution of 1 M NH4OH containing 4 mg/ml
f NaBH4 and incubated at 40 ◦C for 30 min  in a heating block.
he reaction was quenched by adding 0.5 ml  of 10% acetic acid
n methanol followed by evaporation to dryness at 40 ◦C using a
otary evaporator. Addition of the acetic acid solution and evap-
ration was repeated two more times. The final evaporation was
one using pure methanol. After the final evaporation, the residue
as dissolved in H2O:acetonitrile (80:20) before analysis.

.5. Hydrolytic kinetic resolution of BDDE

To a stirred solution of (1S,2S)-(−)-1,2-cyclohexanediamino-
,N′-bis(3,5-di-t-butylsalicylidene)cobalt(II) (0.60 g; 0.99 mmol;

.01 eq.) in 10 ml  dichloromethane (DCM) at 23 ◦C acetic acid
as added (566 �l; 9.89 mmol; 0.10 eq.) and the reaction mixture

tirred at 23 ◦C under air for 30 min. Once the colour changed from
ed to dark brown (Co(II) to Co(III) oxidation) the reaction mixture
of HA with chondroitinase ABC.

was evaporated to dryness under vacuum. The catalyst was then
dissolved in THF (20.0 ml)  and racemic BDDE (18.2 ml;  98.9 mmol;
1.00 eq.) was  added. The mixture was  cooled down to 0 ◦C and water
(1.43 ml;  79.1 mmol; 0.80 eq.) was  added. The reaction mixture was
allowed to warm up to 23 ◦C and stirred at this temperature for 24 h.
After this time, the reaction mixture was  evaporated to dryness. The
dark red oil was purified two times by column chromatography on
silica gel eluting with DCM and then with DCM/diisopropyl ether
85/15 to yield enantiomerically enriched (2′R,2′ ′R)-BDDE (3.60 g;
18% yield) as a pale brown oil. 1H NMR  (400 MHz, DMSO-d6): ı
3.67 (dd, J = 11.6, 2.8 Hz, 2H), 3.49–3.38 (m,  4H), 3.23 (dd, J = 11.5,
6.3 Hz, 2H), 3.09 (ddt, J = 6.9, 4.3, 2.8 Hz, 2H), 2.72 (dd, J = 5.2, 4.2 Hz,
2H), 2.54 (dd, J = 5.2, 2.7 Hz, 2H), 1.58–1.51 (m, 4H).

2.6. Derivatization of enantiomerically enriched BDDE for
enantiopurity measurement

To a stirred solution of enantiomerically enriched (2′R,2′ ′R)-
BDDE (300 mg;  1.48 mmol; 1.00 eq.) in methanol (3.00 ml)  at 0 ◦C
was added 2-naphthalenethiol (0.48 g; 2.97 mmol; 2.00 eq.) fol-
lowed by triethylamine (411 �l; 2.97 mmol; 2.00 eq.). The reaction
mixture was  stirred at 0 ◦C for 2 h and then allowed to warm up
to 23 ◦C and stirred at this temperature for 18 h. The reaction mix-
ture was  filtered and the filtrate partitioned between DCM (50 mL)
and water (50 mL). Phases were separated and the organic layer was
washed with 1 M aqueous HCl (50 mL), dried over MgSO4 and evap-
orated to dryness to yield the desired product (700 mg;  90% yield)
as a colourless oil. 1H NMR  (400 MHz, DMSO-d6): ı 7.88–7.75 (m,
8H), 7.53–7.38 (m,  6H), 5.18 (d, J = 5.3 Hz, 2H), 3.80 (h, J = 5.4 Hz, 2H),
3.46–3.32 (m,  8H), 3.21 (dd, J = 13.3, 5.2 Hz, 2H), 3.05 (dd, J = 13.3,
6.6 Hz, 2H), 1.57–1.40 (m,  4H). MS  (m/z, ES+): 545.2 ([M+Na]+).

HPLC with a chiral column was recorded on an Agilent 1100
Series system using the following parameters: Column: Chiralpak
ID 5 �m,  250 mm × 4.6 mm;  Flow rate = 1.0 mL/min; 30.0 min  runs;
solvent system: heptane 65%, iPrOH 35%; isocratic flow. Chiral HPLC
showed the following ratio: enantiomer 1 (tR = 19.9 min): 5%; meso
isomer (tR = 22.8 min): 7%; enantiomer 2 (tR = 26.2 min): 86%.

2.7. Determination of absolute configuration

A FTIR spectrometer (Vertex 70, Bruker) equipped with a vibra-
tional circular dichroism (VCD) module (PMA 50, Bruker) for VCD
measurements was  used.

2.8. Computational methods

The density functional theory (DFT) calculations were carried
out at 298 K in gas phase with Gaussian 09.

3. Results and discussion

3.1. Isolation of HA-BDPE fragments
The HA hydrogel formed by reaction with BDDE was  degraded as
previously described (Kenne et al., 2013), but using chondroitinase
ABC instead of chondroitinase AC. The product mixture obtained
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Fig. 2. Structures for the six oligosaccharides (A–F) identified from fractions �HA2-B, �HA4-B and �HA6-B. �ı values (ppm) show chemical shift differences compared to
t n. See

a
c
c
c
s

3

d

he  unsubstituted oligosaccharides for the atoms closest to the substitution positio

fter the enzymatic degradation was separated by anion exchange
hromatography (Fig. 1 of supplementary material). The fractions
orresponding to the monosubstituted di-, tetra- and hexasac-
harides were collected for further analysis of the position of
ubstitution by BDPE.
.2. Nomenclature

The fragments obtained from enzymatic digestion with chon-
roitinase ABC are unsaturated HA oligosaccharides which are
 Tables 1–3 for 1H and 13C chemical shifts.

abbreviated �HAx where x refers to the length of the oligosaccha-
ride. The fragments with mono-linked BDPE which are investigated
in this work are abbreviated as �HAx-B. The monosaccharide
residues within the chain are named �GlcA (unsaturated glu-
curonic acid), GlcAy (glucuronic acid), and GlcNAcy (N-acetyl
glucosamine) where “y” indicates the position of the residue

starting from the reducing end. The substitution positions are
referred to as the monosaccharide residue together with the
suffix -OHZ where “Z” is the position on the ring which is
substituted.
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Table 1
1H and 13C chemical shifts (ppm) of the resonances for the three substituted disaccharides (A–C) in �HA2-B. Values in bold face indicate the position of substitution.

Sugar residue 1H/13C

1 2 3 4 5 6 6′ Me

A

�-d-�GlcA-(1→ 5.18 3.88 4.05 5.94 – – – –
100.4 67.4 74.6 104.7 144.3 169.1 – –

→3)-�-GlcNAc1 5.16 4.05 4.05 3.53 3.90 3.83 3.83 2.13
90.8 53.3 78.9 68.2 71.4 60.4 60.4 22.1

→3)-�-GlcNAc1 4.76 3.83 3.85 3.51 3.51 3.91 3.76 2.13
94.4 55.9 81.1 68.2 75.6 60.6 60.6 22.1

B

�-d-�GlcA-(1→ 5.34 3.60 4.24 5.89 – – – –
98.9 78.3 64.1 107.1 144.3 169.1 – –

→3)-�-GlcNAc1 5.16 4.05 4.05 3.53 3.90 3.83 3.83 2.13
90.8 53.3 78.9 68.2 71.4 60.4 60.4 22.1

→3)-�-GlcNAc1 4.76 3.83 3.85 3.51 3.51 3.91 3.76 2.13
94.4 55.9 81.1 68.2 75.6 60.6 60.6 22.1

C

�-d-�GlcA-(1→ 5.20 3.77 4.16 5.87 – – – –
100.5 69.7 66.0 107.1 144.3 169.1 – –

→3)-�-GlcNAc1 5.16 4.07 4.01 3.58 4.02 3.80 3.80 2.13
90.8 53.1 79.3 68.4 70.2 69.7 69.7 22.1
4.76 3.83 3.84 3.55 3.63 nda nda 2.13
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in position 2′, resulting from the sugar-reacted epoxide, is close
enough to permit separation of the corresponding diastereoisomers
on column chromatography and modify the NMR spectra.
→3)-�-GlcNAc1

94.4 55.8 8

a Could not be determined due to overlapping signals.

.3. NMR  analysis of fractions �HA2-B, �HA4-B and �HA6-B

The 1H and 13C resonances were assigned from a combination
f 1D and 2D NMR  experiments including TOCSY, HSQC, HSQC-
OCSY, NOESY and HMBC and by comparison with the NMR  spectra
f HA oligosaccharides (Blundell, Reed, & Almond, 2006; Nestor
t al., 2010). The substitution positions were determined based
n changes in 1H and 13C chemical shifts (�ı) in the substituted
ligosaccharides when compared to those in the unsubstituted
ligosaccharides. Substitutions by BDPE cause an upfield shift of
he proton signal attached to the carbon whose hydroxyl group is
ubstituted by BDPE while the carbon experience a large downfield
hift. Adjacent proton and carbon signals are also affected but in the
pposite direction and to lesser extent.

.3.1. Substitution positions in fraction �HA2-B
In the fraction �HA2-B, three types of disaccharides (named

–C, Fig. 2) with substitution by BDPE at three different posi-
ions, �GlcA-OH3 (A), �GlcA-OH2 (B) and GlcNAc1-OH6 (C) were
dentified. Comparison of the 1H and 13C chemical shifts in �HA2-

 with those in the unsubstituted disaccharide �HA2 showed
arge �ı  for H2/C2 and H3/C3 of �GlcA and for H6/C6 of GlcNAc
Fig. 2, Table 1). For example, the upfield shifts of H2 by ∼0.17 ppm
ogether with the downfield shift of C2 by ∼8.5 ppm proved substi-
ution by BDPE at this position. The neighbouring C1/H1 and C3/H3
howed opposite behaviour with C1 and C3 being slightly shielded
hile H1 and H3 were deshielded in good agreement with what

s expected upon substitution on sugar rings. The same trends in
hemical shift changes were observed for substitution at �GlcA-
H3 and at GlcNAc1-OH6. A disaccharide with substitution by BDPE
t GlcNAc1-OH4 was not identified in the �HA2-B fraction. The
argest changes in chemical shifts compared to the unsubstituted
isaccharide are shown in Fig. 2.

In solution, the GlcNAc sugar at the reducing end exists in
quilibrium between the �- and �-anomeric forms in a 65/35%
atio. Thus, in the NMR  spectra of �HA2-B, two signals should be
bserved for all the protons on the reducing sugar as well as for
ll the protons on the non-reducing sugar due to the two  anomeric

orms of the reducing rings. However, because the anomeric con-
guration usually has a negligible influence on the conformation,
he proton chemical shifts of the non-reducing units are very
imilar, and due to limited spectral resolution, only the protons
68.3 74.3 69.9 69.9 22.1

on the reducing residue as well as the anomeric protons on the
neighbouring sugars are usually clearly differentiated. Besides the
observation of anomeric pairs of isomers, the oligosaccharides
present in fraction �HA2-B were also shown to exist as a mixture
of diastereoisomers as demonstrated by the doubling of the signals
in the NMR  spectra (Fig. 3) and of the peaks in the LC–MS chro-
matograms (vide infra) originating from the use of racemic BDDE
in the synthesis of the HA cross-linked gel.

The origin of the different types of isomers observed for
�HA2-B is clarified in Fig. 4. In fact, four diastereoisomers are
expected to be formed after the reaction of HA with racemic
BDDE: HA-(2′R,9′R)-BDPE, HA-(2′S,9′S)-BDPE, HA-(2′S,9′R)-BDPE
and HA-(2′R,9′S)-BDPE (see Fig. 2 for BDPE atom numbering). The
asymmetric carbon in position 9′, resulting from hydrolysis of the
epoxide, is on a very flexible chain having minimal impact on col-
umn separation and NMR  properties. Only the asymmetric carbon
Fig. 3. Portion of the 1H NMR  spectra of (top) �HA2 and (bottom) �HA2-B showing
the H4, H1 of �GlcA and the H1 of GlcNAc(�).
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substitution on �GlcA-OH2, �GlcA-OH3 and GlcNAc1-OH6 were
present in very small amounts (Table 4). Hexasaccharides with

T
1

s

MR  and LC–MS spectra of �HA2-B.

Once the 1H and 13C chemical shifts of the different types of
ubstituted disaccharides have been assigned from a combination
f 2D NMR  experiments, the position and amount of substitu-
ion at each position can be determined directly from the 1D 1H
MR  spectra. Indeed, it can be seen in Fig. 3 that the H1 and H4

ignals of �GlcA experience a downfield shift upon substitution
t the 2- and 3-position respectively and can be used as chem-
cal shift reporters of substitution at these positions. Integration
f these signals gave ∼52% substitution at �GlcA-OH2 and ∼13%
t �GlcA-OH3. Since there is no substitution at GlcNAc1-OH4,
he anomeric signal of GlcNAc1 integrates for the disaccharides
ith BDPE at �GlcA-OH2, �GlcA-OH3 and �GlcNAc1-OH6. Thus,
ntegration of this signal gave ∼35% of BDPE substitution at
lcNAc1-OH6.

able 2
H and 13C chemical shifts (ppm) of the resonances for the two most abundant substitute
ubstitution.

Sugar residue

1 2 3 

D

�-�GlcA-(1→ 5.17 3.76 4.16 

100.6  69.6 66.0 

→3)-�-GlcNAc3-(1→ 4.62 3.86 3.84 

100.5  54.5 81.7 

→4)-�-GlcA2-(1→a 4.56 3.34 3.59 

103.4 72.5 73.4 

→4)-�-GlcA2-(1→b 4.52 3.35 3.59 

103.4 72.4 73.5 

→3)-�-GlcNAc1 5.11 4.06 4.09 

90.8  53.5 77.5 

→3)-�-GlcNAc1 4.68 3.86 3.91 

94.5  56.0 79.7 

E

�-�GlcA-(1→ 5.17 3.75 4.16 

100.6  69.6 66.0 

→3)-�-GlcNAc3-(1→ 4.59 3.86 3.84 

100.2  54.5 81.9 

→4)-�-GlcA2-(1→a 4.52 3.38 3.59 

102.9 72.4 73.4 

→4)-�-GlcA2-(1→b 4.48 3.38 3.59 

102.9 72.2 73.4 

→3)-�-GlcNAc1 5.16 4.06 3.92 

90.8  52.8 79.5 

→3)-�-GlcNAc1 4.72 3.84 3.73 

94.6  55.3 82.0 

a Connecting to reducing end GlcNAc in � configuration.
b Connecting to reducing end GlcNAc in � configuration.
c Could not be determined due to overlapping signals.
mers 136 (2016) 1348–1357 1353

3.3.2. Substitution positions in fraction �HA4-B
In the �HA4-B fraction, four different types of tetrasaccharides

were identified (the two  most abundant are presented in Table 2,
Fig. 2). The signals at ıH 5.94 and ıH 5.34 corresponding to H4
and H1 of �GlcA showed, by comparison with the assignments
for �HA2-B, that small amounts of tetrasaccharides substituted
in positions �GlcA-OH2 and �GlcA-OH3 were present. The two
other substituted tetrasaccharides (D and E) were present in larger
amount and the 1H and 13C chemical shift values revealed that
in both compounds, substitution occurred on the GlcNAc residue
at the reducing end, one on GlcNAc1-OH4 (D) and the other one
on GlcNAc1-OH6 (E) (Fig. 2). Tetrasaccharides with substitution by
BDPE on the internal GlcNAc or GlcA sugars were not identified in
the �HA4-B fraction.

As for �HA2-B, the positions of substitution by BDPE in �HA4-B
can be determined from the 1D 1H NMR  spectra and the amount
quantified by integration of characteristic signals (Fig. 5): The H1
and H4 signals of �GlcA are used for determination of amount of
substitution at �GlcA-OH2 and -OH3. The H1 signals of GlcNAc1 in
the �-anomeric form allow obtaining the amount of substitution at
GlcNAc1-OH4 while the H1 signals of GlcNAc1 in the �-anomeric
form give the sum of substitution at the GlcNAc1-OH4 and -OH6
positions. Integration of these signals gave 72% substitution by
BDPE at GlcNAc1-OH4 and 21% at GlcNAc1-OH6. The remaining two
substitution positions contributed with less than 1% for �GlcA-OH3
and ca. 5–6% for �GlcA-OH2.

3.3.3. Substitution positions in the fraction �HA6-B
Analysis of the NMR  spectra of the �HA6-B fraction showed that

substitution by BDPE occurred almost exclusively at GlcNAc1-OH4
on the reducing end (Table 3, Fig. 2). Hexasaccharides with BDPE
BDPE substitution on the internal sugars were not present in the
�HA6-B fraction.

d tetrasaccharides (D and E) in �HA4-B. Values in bold face indicate the position of

1H/13C

4 5 6 6′ Me

5.86 – – – –
107.1 144.3 169.1 – –
3.53 3.53 3.80 3.93 2.07
68.1 75.3 60.3 60.3 22.3
3.77 3.66 – – –
80.4 76.5 173.7 – –
3.77 3.66 – – –
80.4 76.5 173.7 – –
3.49 3.92 3.84 3.84 2.03
76.9 70.5 60.1 60.1 21.8
3.46 3.51 3.79 3.89 2.03
76.8 74.6 60.1 60.1 22.2

5.86 – – – –
107.1 144.3 169.1 – –
3.52 3.52 3.80 3.93 2.07
68.1 75.4 60.3 60.3 22.3
3.76 3.72 – – –
79.8 76.2 174.0 – –
3.75 3.72 – – –
79.8 76.2 174.0 – –
3.60 4.01 3.79 3.79 2.03
72.1 68.4 69.7 69.7 21.8
3.56 3.61 ndc ndc 2.03
68.2 73.2 69.7 69.7 22.2
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Table 3
1H and 13C chemical shifts (ppm) of the resonances for the most abundant substituted hexasaccharide (F) in �HA6-B. Values in bold face indicate the position of substitution.

Sugar residue 1H/13C

1 2 3 4 5 6 6′ Me

F

�-�GlcA-(1→ 5.17 3.76 4.15 5.86 – – – –
100.5  69.6 65.8 107.0 144.3 169.2 – –

→3)-�-GlcNAc5-(1→ 4.58 3.86 3.83 3.51 3.51 3.79 3.93 2.07
100.2  54.5 81.8 68.0 75.3 60.2 60.2 22.2

→4)-�-GlcA4-(1→ 4.47 3.35 3.59 3.74 3.72 – – –
103.0  72.2 73.3 79.7 76.0 174.2 – –

→3)-�-GlcNAc3-(1→ 4.58 3.85 3.72 3.54 3.49 3.79 3.92 2.03
100.7  54.1 82.1 68.1 75.0 60.2 60.2 22.2

→4)-�-GlcA2-(1→a 4.56 3.34 3.58 3.76 3.65 – – –
103.3  72.5 73.4 80.3 76.5 173.7 – –

→4)-�-GlcA2-(1→b 4.51 3.33 3.58 3.75 3.64 – – –
103.4  72.4 73.4 80.3 76.4 173.7 – –

→3)-�-GlcNAc1 5.11 4.05 4.08 3.48 3.92 3.83 3.83 2.03
90.8  53.5 77.5 76.9 70.3 60.0 60.0 21.8

→3)-�-GlcNAc1 4.67 3.84 3.89 3.46 3.51 3.78 3.92 2.03
94.5  55.9 79.6 76.8 74.6 60.1 60.1 22.2

a Connecting to reducing end GlcNAc in � configuration.
b Connecting to reducing end GlcNAc in � configuration.

Fig. 5. Anomeric and H4 (�GlcA) region of the 1H NMR  spectra of (a) �HA2-B,
(b)  �HA4-B and (c) �HA6-B. The NMR  signals that can be used as reporters for
identification and quantification of the position of substitution of BDPE on the sugars
are  indicated. *Residual HDO signal after water suppression.

Table 4
Amount (%) of substitution at the different positions in �HA2-B, �HA4-B and �HA6-
B  obtained from integration of 1H signals in NMR  spectra and from areas of UV
chromatograms.

Substitution position �HA2-B �HA4-B �HA6-B

�GlcA-OH2 52a/55b 6a/–b ∼1a

�GlcA-OH3 13a/11b <1a/–b ∼1a

GlcNAc1-OH4 –a/–b 72a/78b 92a

GlcNAc1-OH6 35a/34b 21a/22b ∼6a

a NMR.
b LC-UV; “–” not observed.
As for �HA4-B, reporter signals that can be used for determina-
tion of amounts of substitution in �HA6-B at the different positions
are H1 and H4 of �GlcA for C2 and C3 substitution respectively, H1
of GlcNAc(�) for C4 substitution and H1 of GlcNAc(�) for C4 and
C6 substitution (Fig. 5). Integration of the 1D 1H NMR  spectrum
showed that more than 90% of the substitution occurs at GlcNAc1-
OH4.

3.3.4. Total distribution of BDPE in the oligosaccharides
Size-exclusion chromatography and NMR  analysis revealed the

distribution and position of BDPE in the oligosaccharide fractions
obtained by enzymatic hydrolysis of the HA hydrogel. In the present
example, �HA6-B was the most abundant fraction (59%) collected
by SEC followed by the �HA4-B (26%) and �HA2-B (15%) fractions
(Table 5). In total in these three fractions, ca. 90% of substitution
occurred on the GlcNAc residue at the reducing end and only 10%
on the unsaturated non-reducing end �GlcA.

The fact that substitution occurred predominantly at GlcNAc1-
OH4 in �HA6-B, while in �HA4-B substitution was also found
at GlcNAc1-OH6 suggest that hydrolysis of the hexasaccharide by
the enzyme did not proceed to completion during degradation of
the gel. Indeed, addition of chondroitinase ABC in the NMR  tube
containing �HA6-B followed by incubation at 37 ◦C resulted in
further degradation of the hexasaccharide into the unsubstituted
disaccharide �HA2 and the tetrasaccharide �HA4-B with BDPE
at GlcNAc1-OH4. No further hydrolysis of �HA4-B was  observed.
Since the �HA2-B fraction contains disaccharides substituted at

�GlcA-OH2, �GlcA-OH3 and GlcNAc1-OH6 but not at GlcNAc1-
OH4, it can be concluded that �HA4-B with BDPE at GlcNAc1-OH4
is not a substrate for the enzyme while the tetrasaccharides with

Table 5
Total distribution (%) of monosubstituted BDPE calculated from SEC and NMR  data.
The  proportion of monosubstituted oligosaccharides (fraction of fragment) was
obtained from SEC.

Fragment Fraction of
fragment (%)

�GlcA GlcNAc1

-OH2 -OH3 -OH4 -OH6

�HA2-B 15 52 13 0 35
�HA4-B 26 6 1 72 21
�HA6-B 59 1 1 92 6
Total distribution of
monosubstituted BDPE (%)

10 3 73 14
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Fig. 6. LC-ESI–MS/MS of �HA2-B in the negative ion mode: (a) UV chromatogram
showing the 12 isomers that could be partially separated; (b) and (c) extracted ion
chromatograms (EIC) of the glycosidic cleavage ions C1, i.e. m/z 395 and m/z  175
indicating an attachment of BDPE on the �GlcA, and GlcNAc, respectively.

Fig. 7. ESI–MS/MS [M+Na]+ spectra of peaks 1, 9 and 3 (from chromatogram a, Fig. 6)
respectively. The fragments are described using the nomenclature of Domon and Cost
annotations above and in the text.
mers 136 (2016) 1348–1357 1355

BDPE at other sugar positions can be further hydrolyzed by the
enzyme.

3.4. LC–MS analysis of fractions �HA2-B and �HA4-B

3.4.1. Fraction �HA2-B
A good separation of the disaccharides constituting the �HA2-B

fraction was achieved within a run time of 40 min  using a porous
graphite carbon based HPLC column. Analysis by LC-ESI–MS/MS
in the negative ion mode showed the presence of twelve isobaric
peaks (Fig. 6a). Since porous graphite carbon based columns are
often able to resolve �- and �-anomers of carbohydrates, these
twelve peaks were fractionated on an analytical scale and the par-
tially pure fractions were, after lyophilization, injected once again
into the LC–MS, one at a time. This caused additional peaks to
appear in the chromatograms (data not shown) due to mutarota-
tion occurring at the reducing-end GlcNAc1 revealing the retention
time of the other anomer. Hence the twelve peaks in Fig. 6a were
confirmed to belong to six different isomers each one resolved as �-
and �-anomeric pairs, namely peaks 1–2, 5–7, 3–6, 4–8, 9–9* and
10–10*, the anomers 9* and 10* being hidden under other peaks.

The MS/MS  spectra of peaks 1 and 2 were, as expected, identical

since these two peaks correspond to the � and �-anomeric pair.
The MS/MS  spectra of peaks 1 and 5 were also identical (see Fig. 2
of supplementary material) to the spectra of peaks 2 and 7 showing
that substitution by BDPE at one position on the disaccharide gave

 corresponding to BDDE at (a) �GlcA-OH2, (b) �GlcA-OH3 and (c) GlcNAc-OH6,
ello (1988). All the fragments are sodiated but Na is purposely excluded in the
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Fig. 8. (a) UV chromatogram (235 nm)  from the LC–MS analysis of �HA4-B. (b) UV chromatogram (235 nm)  from the LC–MS analysis of borohydride reduced �HA4-B
s ereois
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howing the major substitutions at GlcNAc1-OH4 and GlcNAc1-OH6 of the two diast
hromatogram of m/z 981, [M+H]+, (data not shown). These peaks probably corresp
pprox.  5% of the total substitution.

ise to four peaks in the HPLC chromatogram, two  of them origi-
ating from the �- and �-anomers. Reduction of fraction �HA2-B
sing sodium borohydride in 0.1 M NH4OH (see Section 2) followed
y LC–MS analysis showed that the number of peaks decreased
rom twelve to six (see Fig. 3a of supplementary material), further
onfirming the existence of six �-,�-anomeric pairs of isomers in
he fraction �HA2-B.

The extracted ion chromatograms (EIC) of the glycosidic bond
leavage ion C1, i.e. m/z  395 indicated that peaks 1, 2, 5 and 7 as well
s peaks 9, 9*, 10 and 10* correspond to disaccharides with BDPE
inked on �GlcA while m/z  175 indicated that peaks 3, 4, 6 and 8
epresent a disaccharide with BDPE linked on GlcNAc (Fig. 6b and
).

From the peaks 1, 3 and 9 shown in the UV chromatogram
Fig. 6a), the position of substitution by BDPE was determined from

S/MS  analysis in the positive ion mode of the precursor ion at m/z
22 ([M+Na]+) (Fig. 7). The glycosidic cleavage fragments B and Y

ndicated on which sugars the BDPE molecule is attached while the
ross-ring fragmentations, that involve rupturing two  bonds on the
ame sugar residue, provided information on the linkage position
f BDPE.

�GlcA-OH2 substitution was deduced from the diagnostic gly-
osidic cleavage ions B1 at m/z 401 and Y1 at m/z 244, Y1–H2O at
/z  226 indicating BDPE substitution on �GlcA and from the cross-

ing ion 0,2X1 at m/z 506 indicating BDPE substitution at �GlcA-OH2
Fig. 7a). �GlcA-OH3 substitution was deduced from the diagnostic
lycosidic cleavage ions B1 at m/z  401 and Y1 at m/z 244 indicating
DPE substitution on �GlcA and from the diagnostic cross-ring ions
,2X1 at m/z  286 and 0,2A1 at m/z  359 indicating BDPE attachment
n �GlcA-OH3 (Fig. 7b). �GlcNAc-OH6 substitution was deduced
rom the diagnostic glycosidic cleavage ions Y1–H2O at m/z 446 and
rom the diagnostic cross-ring ion 0,4A2 at m/z  303 (Fig. 7c).
The relative amount of each isomer was obtained from the area
nder the peaks in the UV chromatogram of the reduced isomers
nd the data were in very good agreement with the data obtained
y NMR  (Table 4).
omers. X denote minor components that appear as weak peaks in the extracted ion
o minor isomers with substitutions on �GlcA-OH2 and �GlcA-OH3 and represent

3.4.2. Fraction �HA4-B
A total of eight peaks were detected for the �HA4-B fraction

(Fig. 8a) although not all of them could be resolved. As with �HA2-
B, when LC–MS was  run on the reduced sample, only half the
numbers of signals were present indicating the presence of two
major diastereoisomers (Fig. 8b). These peaks were assigned as
tetrasaccharides with BDPE substitution at C4 and C6 of GlcNAc1
at the reducing end.

Since fraction �HA6-B was  shown by NMR  to be further
degraded by the enzyme into �HA2 and �HA4-B, it was  not inves-
tigated by LC–MS.

3.5. Preparation of HA gel using enantiomerically enriched BDDE

NMR  and LC–MS showed that the oligosaccharides present in
fractions �HA2-B, �HA4-B and �HA6-B exist as a mixture of
diastereoisomers. To demonstrate that the diastereoisomers orig-
inated from the use of racemic BDDE in the synthesis of the HA
cross-linked gel, enantiomerically enriched BDDE was  prepared.

Hydrolytic kinetic resolution was used for the preparation of
enantiomerically enriched BDDE from racemic BDDE (see Fig. 4
of supplementary material) (Schaus et al., 2002). Enantiomeric
excess (ee) was  determined using a chiral HPLC column after
derivatization of enantiomerically enriched BDDE (see Fig. 5 of
supplementary material) while the absolute configuration was
obtained using VCD associated with density functional theory (DFT)
calculations. The absolute configuration of this enantiomerically
enriched BDDE was established to be (2′R,2′ ′R). (2′R,2′ ′R)-BDDE was
then used to produce a HA hydrogel which was degraded and sep-
arated using the same experimental procedure as the one obtained
with racemic BDDE.

LC–MS analysis of the �HA2-B fraction obtained from the HA gel

prepared with enantiomerically enriched BDDE showed that one
of the two isomers of �GlcA-OH2, �GlcA-OH3 and GlcNAc-OH6
had decreased considerably in amount (see Fig. 3 of supplementary
material). Similarly, the 1H NMR  spectra of the �HA2-B fraction
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btained with (2′R,2′ ′R)-BDDE clearly showed that H1 of �GlcA-
H2 now appeared as two doublets of relative intensities 65/35

epresenting the �- and �-anomeric forms of the disaccharide,
hus consisting of only one HA-BDPE diastereoisomer (see Fig. 6 of
upplementary material). The other two doublets that were slightly
pfield shifted in the �HA2-B fraction obtained from gel prepared
ith racemic BDDE were not present.

These data thus confirm that the additional signals observed
n the NMR  (see Fig. 6a of supplementary material) and LC–MS
pectra (Fig. 6a) of �HA2-B originating from HA-gel cross-linked
ith racemic BDDE are due to the diastereomeric mixture. Peaks 1

nd 4 (Fig. 6) obtained from LC–MS analysis of �HA2-B were col-
ected and 1D 1H NMR  spectra were obtained for both of them.
eak 1 was shown to contain one diastereoisomer of the disaccha-
ide substituted at �GlcA-OH2 (B) while peak 4 contained the other
iastereoisomer (see Fig. 6 of supplementary material). As observed
or the �HA2-B fraction, the NMR  spectrum of the �HA4-B frac-
ion from (2′R,2′′R)-BDDE showed that only one diastereoisomer
f the substituted tetrasaccharides was present (see Fig. 7 of
upplementary material).

. Conclusion

In this study, the position and amount of BDPE substitution
n di-, tetra- and hexasaccharides from enzyme degraded hydro-
el of cross-linked hyaluronic acid have been determined by NMR
nd LC–MS. The data obtained from both methods are in excel-
ent agreement. In �HA2-B, �HA4-B and �HA6-B, the substitution

ith BDPE is located on the hydroxyl group at the terminal reducing
r non-reducing sugar residue. Substitution is either on GlcNAc1-
H4/6 or on �GlcA-OH2/3 but does not occur on the internal

ugar residues. In the �HA2-B fraction, substitution in three of the
our possible substitution positions is found. Substitution occurs
redominantly at �GlcA-OH2 (>50%) and GlcNAc1-OH6 (>30%).
o disaccharide with substitution at GlcNAc1-OH4 was identi-
ed. In the �HA4-B and �HA6-B fractions, substitution with BDPE
as predominantly at GlcNAc1-OH4 at the reducing end (>70% in
HA4-B and >90% in �HA6-B). The fact that the larger oligosaccha-

ides are predominantly substituted at GlcNAc1-OH4 while such
ubstitution is not observed in the disaccharide indicates that
etrasaccharides with GlcNAc1-OH4 substitution are not substrates
or chondroitinase ABC. Diagnostic glycosidic cleavage and cross-
ing ions that established the position of substitution in �HA2-B
y LC–MS and 1H and 13C NMR  signals that can be used as chem-

cal shifts reporters of the position of substitution of BDPE on the
ugars of HA were also identified. The NMR  and LC–MS method-
logies presented in this work are not restricted to the study of
A gels made by reaction with BDDE but could also be adopted for
ther types of cross-linked HA hydrogels as well as other types of
ubstituted polysaccharides that can be degraded enzymatically.
cknowledgement
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Appendix A. Supplementary data

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.carbpol.2015.09.112.
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