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Abstract

We show that every infinite dimensional Banach space has a closed and bounded convex set that is not
remotal. This settles a problem raised by Sababheh and Khalil in [M. Sababheh, R. Khalil, Remotality of
closed bounded convex sets, Numer. Funct. Anal. Optim. 29 (2008) 1166–1170].
c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a real Banach space and let E ⊂ X be a bounded set. We write ext(E) for the set of
extreme points of E and co(E) for the closed (in the norm topology) convex hull of E . If τ is a
locally convex topology in X , we will write coτ (E) to denote the τ -closed convex hull of E . We
denote by BX the closed unit ball of X .

The set E is said to be remotal from a point x ∈ X , if there exists a point e0 ∈ E such that
D(x, E) = sup{‖x − e‖ : e ∈ E} = ‖x − e0‖. The point e0 is called a farthest point of E from
x . E is said to be remotal (densely remotal) if it is remotal from all (on a dense set) x ∈ X . Let
F(x, E) = {e ∈ E : D(x, E) = ‖x − e‖}. In general, this set can be empty. A well known result
of Lau [5] says that any weakly compact set is densely remotal. The question of whether every
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infinite dimensional Banach space has a closed and bounded convex set that is not remotal seems
to be open. This question was actually raised in [8] and some partial positive answers were given
in [8,7] in the case of reflexive Banach spaces and Banach spaces that fail the Schur property.
The aim of this paper is to give a positive answer to this question. We follow the notation and
terminology of [8,7].

Let us outline the contents of this paper. Let X be an infinite dimensional Banach space and
let X∗ be its topological dual. Using a classical integral representation theorem, we first show
that X∗ has a weak∗-compact convex set K that is not remotal. This should be compared with
[2, Proposition 1] where the authors exhibited a weak∗-compact convex set C ⊂ `1 that has
no farthest points. To prove the general result, we use a stronger form of integral representation
theorem for closed convex bounded sets with the Radon–Nikodým property (RNP for short) due
to Edgar ([4], see [6, Theorem 16.12]). Let E ⊂ X be a weakly closed and bounded set. An
interesting problem that is open is to determine conditions on co(E) so that co(E) is remotal
from x implies that E is remotal from x . We will give an example showing that E being norm
closed in a reflexive space is not enough for the validity of Theorem A in [8].

2. Main result

We first prove a weak∗-version of [8, Theorem A]. In order to produce a weak∗-compact
convex non-remotal set, it is enough to show that if E is a weak∗-compact set having no vector of
maximum length, then the same is true of coweak∗(E) (weak∗-closed convex hull). For a compact
convex set K ⊂ X∗ and for a probability measure µ on K , let γ (µ) ∈ K denote its resultant
(or weak integral) with the property[

γ (µ)
]
(x) =

∫
K

k(x)dµ(x)
(
x ∈ X

)
.

We refer to [3,6] for the results on integral representations we use here.

Theorem 1. Let X be an infinite dimensional Banach space. Let E ⊂ X∗ be a weak∗-closed
and bounded set having no vector of maximum length. Then the weak∗-closed convex hull K of
E has no vector of maximum length. Equivalently, if E is not remotal from a point x ∈ X, then
neither is K .

Proof. Let M = D(0, E) = sup{‖e‖ : e ∈ E} = sup{‖k‖ : k ∈ K }. Suppose that there exists
x∗0 ∈ K such that ‖x∗0‖ = M . Let µ be a probability measure on K with µ(E) = 1 and such
that γ (µ) = x∗0 (see [6, Proposition 1.1]). We fix ε > 0 and take x ∈ X such that ‖x‖ = 1 and
x∗0 (x) > M − ε. Now,

M − ε < x∗0 (x) =
∫

K
x∗(x)dµ(x∗) =

∫
E

x∗(x)dµ(x∗) 6
∫

E
‖x∗‖dµ 6 M.

Letting ε ↓ 0, we get that
∫

E ‖x
∗
‖dµ(x∗) = M and so, M = ‖k‖ µ-a.e. Hence M = ‖e‖ for

some e ∈ E . A contradiction. The last part of the statement is equivalent to the first one just by
translation. �

Corollary 2. Let X be an infinite dimensional Banach space. Then there exists a weak∗-compact
convex set K ⊂ X∗ that is not remotal.
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Proof. Since X is infinite dimensional, by the well-known Josefson–Nissenzweig theorem
(see [3, p. 219]), there exists a sequence {x∗n }n>1 of unit vectors such that x∗n −→ 0 in the
weak∗-topology. Consider the set

E =

{
n

n + 1
x∗n : n ∈ N

}
∪ {0},

which is clearly a weak∗-compact set having no vector of maximum length. Thus, by the above
theorem, the weak∗-closed convex hull K of E does not have vectors of maximum length, so K
is not remotal from 0. �

Remark 3. The arguments in Theorem 1 and Corollary 2 also work in the case of a weakly
compact set E and its closed convex hull K = co(E) (actually, the argument simplifies in this
case and ε is not necessary). Thus, in a Banach space X that fail the Schur property, by taking a
sequence {xn}n>1 of unit vectors which converges to 0 in the weak topology, we get that the set

K = co
({

n

n + 1
xn : n ∈ N

}
∪ {0}

)
is nonremotal from 0 (alternatively, the set does not have any vector of maximal length). This
gives an alternative proof of the main result from [7].

Remark 4. From the above arguments it is easy to see that for a weak∗-compact set E ⊂ X∗ and
for any x∗ ∈ X∗, if the set F(x∗, K ) of farthest points in the weak∗-closed convex hull K of E to
x∗ is non-empty, then it has a point of E . However the method of proof in [7] has the advantage
that it shows that there is an extreme point of K in F(x∗, K ). Then by Milman’s theorem
[3, p. 151], such an extreme point is also in E .

The following easy example shows that the hypothesis of weak∗-closedness can not be omitted
on the set E in Theorem 1 (weak-compactness in the case of Remark 3).

Example 5. Let {en}n>1 denote the canonical vector basis in `2. Let X = K⊕∞ `2, where
K = R or K = C is the base field and ⊕∞ means the `∞-direct sum. Consider the set

E =

{(
n

n + 1
,

n

n + 1
en

)
: n ∈ N

}
.

Then E is a norm closed set which is not remotal from 0. Since co(E) = coweak(E) by Mazur’s
theorem and {en}n>1 −→ 0 in the weak topology, (1, 0) ∈ co(E) and so, co(E) is remotal
from 0.

Remark 6. Let X be a Banach space and let E ⊂ X be a weakly closed and bounded set. We do
not know if remotality of K = co(E) from a point always implies that of E . Since any strongly
exposed point of K clearly lies in E , the answer is affirmative if the farthest point in K is actually
strongly exposed. We may also ask whether the above question has a positive answer for RNP
sets (see [1, Section 3] for these concepts).

We are now able to present the main result of our paper.

Theorem 7. Let X be an infinite dimensional Banach space. Then, there exists a closed and
bounded convex set K that is not remotal.
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Proof. As before, we will construct a closed and bounded set E which is not remotal from 0 and
show that K = co(E) is also not remotal from 0.

In view of Remark 3 (or of [7]), we may assume without loss of generality that X has the Schur
property. Since X is infinite dimensional, by Rosenthal’s `1 Theorem (see [3, Section XI]), X
contains an isomorphic copy of `1. Let ||| · ||| denote the norm on X∗. Now we will be done if we
can construct in every Banach space Y = (`1, ||| · |||) isomorphic to `1, a closed convex bounded
set K ⊆ Y which is not remotal from 0. Let us write τ for the weak∗-topology of `1 as dual of
c0 inherited in Y . This is a locally convex topology on Y weaker than the norm topology and any
τ -closed norm-bounded set is compact in this topology. Observe now that ||| · ||| is not necessarily
weak∗-lower semi-continuous (i.e. Y may not be a dual space) so, on the one hand, Corollary 2
does not apply and, on the other hand, BY may not be τ -closed.

Let {en}n>1 be the canonical basis of `1. Consider the set

E =

{
n

n + 1
en

|||en|||
: n ∈ N

}
∪ {0} ⊆ BY

which is τ -compact since {en}n>1 τ -converges to 0 and ||| · ||| is equivalent to the usual norm of
`1. We consider the set K = coτ (E) ⊂ Y , which is τ -compact since it is τ -closed and norm-
bounded (indeed, E is contained in the τ -closed set M B`1 for some M > 0, so K ⊂ M B`1 ).

Claim. K ⊆ BY . Indeed, since `1 (and so Y ) has the RNP, K is a set with the RNP. Therefore,
we have K = co

(
ext(K )

)
(closure in norm, see [1, Section 3]). As K and E are τ -compact,

Milman’s theorem gives us that ext(K ) ⊆ E (see [3, p. 151]). Therefore, we have

K = co
(
ext(K )

)
⊆ co(E) ⊆ coτ (E) = K ,

so K = co(E) ⊆ BY as claimed.
Suppose K is remotal from 0 in Y . As D(0, E) = 1 and K ⊆ BY , we also have D(0, K ) = 1.

Therefore, there is a vector y0 ∈ K with |||y0||| = 1, and we may pick a functional y∗0 ∈ Y ∗ with

|||y∗0 ||| = 1 and y∗0 (y0) = 1.

As K is a separable closed convex bounded set with the RNP, Edgar’s integral representation
theorem ([4], see [6, Theorem 16.12]), gives us that there exists a probability measure µ on K
with µ

(
ext(K )

)
= 1 (so µ(E) = 1) such that

1 = y∗0 (y0) =

∫
K

y∗0 (y)dµ(y) =
∫

E
y∗0 (y)dµ(y) 6

∫
E
|||y|||dµ(y) 6 1.

Therefore, |||y||| = 1 µ-a.e. in E , which is clearly false. Thus we get a contradiction and K is
nonremotal from 0. �

Since remotality from 0 is equivalent to having a vector of maximal norm, we get the following
corollary.

Corollary 8. Let X be an infinite-dimensional Banach space. Then there is a closed convex set
K contained in the open unit ball of X such that sup{‖x‖ : x ∈ K } = 1.

Remark 9. Similar to Remark 4 (see also Remark 6), let us note that for a separable weakly
closed and bounded set E such that its closed convex hull K has the RNP, our arguments show
that if F(x, K ) 6= ∅ then it has an extreme point of K .
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Remark 10. Going into the details of the proofs of Remark 3 and Theorem 7, one realizes that
for every infinite-dimensional Banach space X , there is a locally convex Hausdorff topology τ ,
which is weaker than the norm topology and such that there is a τ -compact convex set K which
is not remotal (from 0). Indeed, if X does not have the Schur property, then the set K is actually
weak compact. Otherwise, X contains a subspace Y isomorphic to `1, and the set K ⊂ Y is
compact for the topology τ ′ of Y which it inherits from the weak∗ topology of `1 as dual of c0.
Since we may extend the topology τ ′ of Y to a locally convex Hausdorff topology τ of X (still
weaker than the norm topology of X ), we get that K is τ -compact, as desired.
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