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Dichotic listening (DL) tests are among the most frequently included in batteries for the diagnosis of auditory
processing disorders (APD) in children. A finding of atypical left ear advantage (LEA) for speech-related stimuli is
often taken by clinical audiologists as an indicator for APD. However, the precise etiology of ear advantage in DL
tests has been a source of debate for decades. It is uncertain whether a finding of LEA is truly indicative of a
sensory processing deficit such as APD, or whether attentional or other supramodal factors may also influence
ear advantage. Multivariate machine learning was used on diffusion tensor imaging (DTI) and functional MRI
(fMRI) data from a cohort of children ages 7–14 referred for APD testing with LEA, and typical controls with
right-ear advantage (REA). LEA was predicted by: increased axial diffusivity in the left internal capsule
(sublenticular region), and decreased functional activation in the left frontal eye fields (BA 8) during words
presented diotically as compared to words presented dichotically, compared to children with right-ear advan-
tage (REA). These results indicate that both sensory and attentional deficits may be predictive of LEA, and thus
a finding of LEA, while possibly due to sensory factors, is not a specific indicator of APD as it may stem from a
supramodal etiology.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license. 
1. Introduction

Auditory processing disorder (APD) is a deficit in the neural process-
ing of auditory stimuli (Asha. American Speech-Language-Hearing
Association, 2005), distinct from higher-order cognitive function,
which is estimated to affect 2–3% of school-aged children (Chermak
and Musiek, 1997). Children diagnosed with APD have normal periph-
eral hearing but manifest deficits in one or more areas of higher-order
auditory perception. The disorder is highly heterogeneous in nature,
with a long list of behavioral indications (Asha. American Speech-
Language-Hearing Association, 2005), such as difficulty understanding
spoken language in noisy backgrounds or competingmessages; difficul-
ty following complex auditory directions or commands; difficulty
in sound localization and lateralization; and difficulty in auditory
discrimination. Thus, there is a wide variety of tests used in diagnostic
procedures for APD (Emanuel, 2002; Emanuel et al., 2011; Jerger and
hildren's Hospital of Pittsburgh
States. Tel.: +1 412 692 3212;
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Musiek, 2000). Behavioral findings from a study of over 1000 children
in the U.K. suggest that many children referred for APD testing may in
fact suffer a cognitive and/or attention deficit rather than a sensory
processing deficit (Moore et al., 2010). Thus, a key difficulty in APD
diagnosis is differential diagnosis of APD as opposed to other supramodal
influences such as attention, memory, cognition, and ability to follow
directions (Cacace and Mcfarland, 2005; Katz and Tillery, 2005).

Dichotic listening (DL) tests are among themost frequently included
and important tests used when diagnosing APD in children (Emanuel,
2002; Emanuel et al., 2011). In DL tasks, two different auditory stimuli
are presented simultaneously to the right and left ears and the listener
is required to report what was heard. Most individuals report
speech-related stimuli presented to their right ear with greater accura-
cy compared to their left ear in the “free recall” condition (individuals
report stimuli in either order), a phenomenon known as the right-ear
advantage (REA). The REA has been a robust finding (Hugdahl, 2002;
Hugdahl and Hammar, 1997), since it was first described in the 1960s.
However, not every individual demonstrates a REA; somewhere around
15–20% of right-handed individuals exhibit either no ear advantage
(NEA) or a left-ear advantage (LEA) (Bryden, 1988). Moncrieff (2011)
also reports that the prevalence of LEA in typically achieving children
is approximately 20%.

Many clinical audiologists consider ear advantage (EA) scores to
be indicators of hemispheric dominance for language as well as
cense. 
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Table 1
Demographic and behavioral data on children classified as left-ear advantage (LEA)
and right-ear advantage (REA) whose data was included in the fMRI study.

REA LEA p

#M, #F 10M, 2F 10M, 2F 1.00
Age (months) 133.6 ± 24.3 129.9 ± 23.4 0.71
# words identified in right ear
(SCAN3 Competing words free recall)

17.3 ± 1.7 12.2 ± 1.8 b .001

# words identified in left ear
(SCAN3 Competing words free recall)

14.2 ± 2.0 16.8 ± 2.2 b0.01

Sqrt. # of retained frames 10.2 ± 1.0 9.5 ± 1.5 0.20

9V.J. Schmithorst et al. / NeuroImage: Clinical 3 (2013) 8–17
neurologically-based auditory processing, language, and learning
disorders (Keith, 1984). The common interpretation among clinical
audiologists is that a REA for verbal stimuli indicates left hemisphere
dominance for language. A LEA for verbal stimuli, on the other hand,
is considered to indicate mixed or reversed dominance for language:
a finding that is common among children with phonologic, reading,
language and learning disorders (Hugdahl, 2005; Kimura, 1961;
Newman and Sandridge, 2007). The rationale for the inclusion of DL
tests in test batteries is that abnormal findings can result from the
presence of APD (Asha. American Speech-Language-Hearing Associa-
tion, 2005; Debonis and Moncrieff, 2008). Thus, a finding of LEA may
indicate a sensory deficit which is thought to be associated with right-
hemisphere language dominance. However, both the etiologies of
right-hemisphere language dominance and of EA are unknown, lending
doubt to this interpretation. Attentional or other supramodal influences
may be responsible, or partly responsible, for EA, right-hemisphere
dominance, or both.

The association between LEA and right-hemispheric dominance is
also uncertain. This construct is based on evidence of loci of language
function obtained from multiple studies (Kimura, 1961). However,
the prevalence of NEA/LEA is significantly greater than the prevalence
of right-hemisphere lateralization for language processing in right-
handed individuals. The prevalence of right-hemisphere lateralization
is estimated at only between 1 and 5% (Knecht et al., 2000; Loring
et al., 1990). Also, validation studies in normal adults and epileptic
patients of speech-related DL (e.g. Bethmann et al., 2007; Fernandes et
al., 2006; Fontoura et al., 2008; Hugdahl et al., 1997; Hund-Georgiadis
et al., 2002; Strauss et al., 1987; Van Ettinger-Veenstra et al., 2010;
Zatorre, 1989) confirmed the REA as predictive of left-hemisphere
dominance, but not LEA as predictive of right-hemisphere dominance.

Moreover, the interpretation of LEA made by clinical audiologists
(e.g. that of indicating mixed or reversed language dominance and a
possible sensory deficit) has never been tested using techniques of
evoked potentials or imaging studies. American Academy of Audiolo-
gy (Musiek et al., 2010) recognized the need for brain imaging and
other electrophysiologic research to ascertain the status of the central
auditory nervous system in children and adults. In this study we in-
vestigate whether functional MRI (fMRI) and diffusion tensor MRI
(DTI) data can be used to predict whether a given individual will
show a REA or a LEA. Toward this end, we use multivariate machine
learning (ML) techniques (Haynes and Rees, 2006; Norman et al.,
2006; O'toole et al., 2007; Pereira et al., 2009). These techniques repre-
sent a novel method for analyzing neuroimaging data which provide
several advantages over standard analyses. While standard analyses
(e.g. Worsley et al., 2002) are mass-univariate, multivariate analyses
may show greater sensitivity (Pereira et al., 2009) to detect significantly
different patterns of activation or structural differences between
groups, when these differences are spread out over several regions.
Mass-univariate analyses must implement a procedure for multiple
statistical comparisons across regions, and while several regions may
individually fail to meet a given threshold (corrected for multiple
comparisons), the data combined over those regions may in fact meet
that threshold.

2. Materials and methods

2.1. Participants

The LEA study cohort consisted of right-handed children 7–14 years
old (N = 13) who were recruited from the auditory processing disor-
ders (APD) clinic at Cincinnati Children's Hospital Medical Center
(CCHMC). All children were native English speakers with no diagnosed
cognitive or neurological pathologies or hearing loss. These children
had been referred for APD assessment due to listening and hearing
complaints despite normal peripheral hearing, and were administered
the SCAN3 APD test battery (Keith, 2009). Children with a LEA were
identified from results of the competing words free recall subtest of
the SCAN3 battery. Parents reported complaints such as difficulty un-
derstanding speech in background noise, following oral instructions,
and rapid speech. These children often had difficulty following direc-
tions and difficulty localizing the source of the signal/speech, and
frequently requested speakers to repeat oral information. However,
parents reported no concerns or symptoms in regard to cognitive or
neurological pathology; thus, in accordancewith standard clinical prac-
tice, no specific cognitive or neurological evaluation was conducted.
None of the participants received a diagnosis of APD after administra-
tion of the test battery (whichwas a chance occurrence, as APD diagno-
sis was not used as an inclusion or exclusion criterion).

Typically developing children (N = 20) were recruited as controls
from the Cincinnati area via flyer and word of mouth. All of these chil-
dren had a typical right ear advantage (REA) on the competing words
free recall subtest of the SCAN3 test battery. The Institutional Review
Boards at CCHMC and the University of Cincinnati approved all experi-
ments. Informed consent from one parent and assent from each child
were obtained before testing. Demographic information is reported in
Tables 1 and 2 for those children for whom usable fMRI and DTI data
were successfully obtained, respectively. All childrenwere right handed
based on a questionnaire filled out by parents that included a question
“is your child right/left handed/inconsistent”. They were asked to base
their response according to which hand the child used for writing,
throwing, striking a match, scissors, toothbrush, spoon, knife, and a
computer mouse. There were 2 children identified from the chart
review who were reported as being left handed by their parents so
they were not invited to participate in the study.

2.2. Audiological testing

Peripheral hearing sensitivity for both ears was verified via standard
pure tone audiometry and immittance testing in a soundproof booth. All
children had pure-tone thresholds of 15 dB HL or better at octave fre-
quencies ranging from 250 Hz to 8000 Hz, and Type-A tympanograms.
Therewas no significant difference in pure tone average (PTA) for either
ear (p N 0.5, unpaired T-test).

Following peripheral auditory testing, the Dichotic Competing
Words (CW) subtest of the SCAN3 battery (Keith, 2009), typically
used to test children for APD, was administered to all children. Two
different monosyllabic words were presented to both ears simulta-
neously and the children were instructed to repeat both words in
any order, called the “free recall” response mode. The test included
20 word pairs presented dichotically. The word pairs were aligned
for onset and offset to eliminate any cue for the first word heard.
The EA score was calculated as the mathematical difference between
the right ear (RE) and left ear (LE) raw score. A positive value is con-
sidered a REA and a negative value a LEA. The EA scores were com-
pared to age-matched normative data. All children in the LEA group
had an atypical LEA with prevalence of 10% or less compared to the
normative data.

As part of their APD assessment, additional subtests of the SCAN3
test battery including Auditory Figure Ground, Filtered Words, Com-
peting Words-Directed Ear and Competing Sentences had been



Table 2
Demographic and behavioral data on children classified as left-ear advantage (LEA)
and right-ear advantage (REA) whose data was included in the DTI study.

REA LEA p

#M, #F 12M, 2F 8M, 2F 0.71
Age (months) 131.1 ± 27.0 131.3 ± 25.0 0.98
# words identified in right ear
(SCAN3 competing words free recall)

17.7 ± 1.1 12.0 ± 1.7 b .001

# words identified in left ear
(SCAN3 competing words free recall)

14.1 ± 2.0 16.7 ± 2.3 b .01
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administered to the children with LEA prior to recruitment in the
study. For the Auditory Figure Ground (AFG) subtest, test stimuli
consist of 20 monaural words presented in multi-talker speech back-
ground noise at an SNR of +8 dB; the stimuli are presented at inten-
sity of 8 dB greater than the background noise. For the FilteredWords
(FW) subtest, the test stimuli consist of one syllable words that have
been low-pass filtered at 750 Hz with a roll-off of 30 dB per octave.
Twenty words are administered to each ear. The Competing Words-
Directed Ear (CW-DE) subtest includes monosyllabic word pairs
presented to both ears simultaneously. The child is instructed to
repeat both words in a prescribed order: repeating from the right
ear first for the first 15 word pairs then repeating from the left ear
first for the second 15 word pairs. The Competing Sentences subtest
consists of sentence pairs presented dichotically in a focused attention
mode of administration. In this mode, the child is instructed to repeat
only the stimuli presented to the right ear for the first 10 sentence
pairs followed by repeating only the stimuli presented to the left ear
for the second 10 sentence pairs. Normative data is available for all
subtests of the SCAN3 according to the child's age.

2.3. fMRI scans

All scans were acquired on a Philips 3T Achieva system. The event-
related fMRI paradigm was similar to that used in a previously pub-
lished study (Van Den Noort et al., 2008). The paradigm consisted of
word pairs taken from the CWparadigm. 20word pairs were presented
dichotically. Silent gradient intervals were used for the word presenta-
tions (Schmithorst and Holland, 2004); this method allows the presen-
tation of stimuli without any background scanner noise. This technique
has been shown to provide similar or better activation than using con-
tinuous scanning (Vannest et al., 2009). The children responded orally
by repeating back the heard words. For the control task, the two
words were presented diotically, one after the other. Diotic presenta-
tion was selected as a control task in order to control for cognitive pro-
cesses related to receptive language, expressive language, working
memory, and sublexical auditory processing. A 6-second scanning
period (in which three image volumes are acquired) followed a
5-second stimulus presentation period. fMRI–EPI scan parameters
were: TR/TE = 2000/38 ms, matrix = 64 × 64, FOV = 24 cm ×
24 cm, SENSE factor = 2, slice thickness = 5 mm, 25 slices acquired
covering the whole brain. The stimuli were presented using Presenta-
tion software (Neurobehavioral Systems Inc., Albany, CA) and the
order of presentation was randomized at runtime. One scan run
was obtained with 40 trials (20 dichotic, 20 diotic) with 11 s per trial
(5 second stimulus presentation, 6 second scanning period) for a total
acquisition time of 7 min 20 s. In-scanner performance was monitored
via an MRI-compatible microphone.

2.4. DTI scans

The 15-direction standard Philips EPI-DTI sequencewas usedwith the
following parameters: FOV = 22.4 cm × 22.4 cm, matrix = 112 × 112,
slice thickness = 2 mm, 60 slices were acquired for 2 mm isotropic
resolution over the whole brain, b value = 1000 s/mm2, SENSE
factor = 2.
2.5. First-level analyses

The fMRI scans were motion-corrected using an affine transforma-
tion and a pyramid iterative algorithm (Thevenaz et al., 1998) (scans
were not smoothed prior to analysis as a “searchlight” procedure
(described below) is to be used.). Themotion correctionwas performed
separately for the sets of 1st, 2nd, and 3rd scans after the silent period.
The motion correction was performed repeatedly for each set of refer-
ence images. The remainder of the 1st level analysis for fMRI was
performed using in-house routines written in IDL (ENVI, Boulder, CO).
The optimalmotion correction results (e.g. which set of reference of im-
ageswere chosen)were selected using themaximumnumber of frames
meeting a cost function threshold selected via visual inspection
(Szaflarski et al., 2006). The entire dataset was discarded if there were
not at least 47 retained frames. This happened for 9 participants, leaving
a total of 24 participants with usable data. A General Linear Model
(GLM) was performed separately on the 1st, 2nd, and 3rd scans after
the silent period with manner of presentation (diotic vs. dichotic)
the variable of interest, and linear and quadratic terms to account
for scanner drift as covariates of no interest. Results were combined
into a single Z-score map of functional activation and transformed
into stereotactic (Talairach) space (Talairach and Tournoux, 1988) at
3.75 mm × 3.75 mm by 5 mm resolution.

The DTI scans were pre-processed in a similar manner as that
described in Schmithorst et al. (2005). Scans were visually inspected
for gross motion artifacts and slice drop-outs due to motion during
the diffusion sensitizing gradients. This resulted in datasets being
discarded from 9 participants, leaving a total of 24 participants with
usable data (21 participants had usable data for both DTI and fMRI).
Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity
(AD), and radial diffusivity (RD) maps were computed from the tensor
components. These maps were transformed into standard Montreal
Neurological Institute (MNI) space using the following procedure
(routines written in SPM8, Wellcome Institute of Cognitive Neurology,
London, UK). The T1-weighted anatomical images were segmented
into gray, white, and CSF images using the segmentation procedure in
SPM8. The FA maps were co-registered to the white matter maps
using a 6-parameter rigid-body transformation, and this transformation
was applied to the other DTI parameter maps. The white matter maps
for each child were normalized to the white matter template (using
the non-linear normalization routine). This transformation was then
applied to the DTI parameter maps. Only voxels with FA N 0.25 and
white matter probability N 0.9 were retained for further analysis.

2.6. ML analyses

ML analyses were performed using in-house code written in
IDL (ENVI, Boulder, CO). The ML analyses were performed using a
searchlight approach with a 5 × 5 × 5 cube and a Support Vector
Machine (SVM) classifier (Vapnik, 1995). The searchlight cube was
chosen to be similar in magnitude to spatial filters typically used
for voxelwise fMRI and DTI analyses (e.g. Schmithorst and Holland,
2006; Schmithorst et al., 2005, 2007, 2011). The SVMLight program
(Joachims, 1999) was used when there was more than one indepen-
dent variable; in-house codewas written in IDL for the special case of
one independent variable. The ML analyses only included voxels
where each participant had a usable data point (e.g. in the brain for
fMRI, in white matter with FA N 0.25 and WM probability N 0.9 for
DTI).

The classifier accuracy in distinguishing LEA children from REA chil-
dren was estimated using leave-one-subject-out cross-validation. To
avoid biasing the classification accuracy estimator (Pereira et al.,
2009), the following steps were performed only on the training data
for each cross-validation run. For each voxel, the mean value (Z-score
map for fMRI; FA, RD, MD, or AD for DTI) was determined for the
5 × 5 × 5 cube centered on the voxel (the mean value, rather than a



Table 3
Performance (as age-normed percentile rank) on four subtests of the SCAN3 test for
auditory processing disorders: Auditory Figure Ground, Filtered Words, Competing
Words-Directed Ear and Competing Sentences, for all children with a LEA.

Participant # Auditory Figure
Ground

Filtered
Words

Competing
Words-Directed Ear

Competing
Sentences

1 9 37 63 37
2 5 63 37 37
3 50 50 84 37
4 75 84 50 63
5 25 50 84 50
6 25 75 75 16
7 25 75 63 63
8 25 75 50 63
9 91 91 75 50
10 50 50 63 37
11 50 75 5 2
12 37 91 75 50
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weighted average found via e.g. Gaussian filtering, was chosen due to its
superior SNR). Feature selection: Feature selection was performed by
ranking all voxels in the brain. The metric used was accuracy on an
SVM classifier (using data from a single voxel only) estimated using
leave-one-subject-out cross-validation (since these steps involve only
the training data for each cross-validation run in which one participant
is left out, each training run for estimation of classifier accuracy using
leave-one-subject-out cross-validation will therefore include data
from N-2 participants.). The voxels were ranked according to the per-
formance of the classifier, and only data from the top-ranked voxels
were retained for further analysis. The number of voxels to retain was
chosen a priori as between 1 and 10. Classification: An SVM classifier
was trained for each set (e.g. from 1 to 10) of retained voxels, and the
number of voxels to retain was determined based on which classifier
performed the best. The voxels to retain and the parameters for the
classifier were stored and then used to classify the test subject.

One of the children was scanned twice, on different days. Both
datasets were retained for analysis, since having more training data
available is always optimal for ML. When the doubly-scanned partic-
ipant was the test subject for the cross-validation, however, the other
scan from the participant was removed from the training set to avoid
bias. In order to estimate accuracy from cross-validation, the doubly-
scanned participant was counted as being correctly classified if he/she
was correctly classified both times, incorrectly classified if he/she was
incorrectly classified both times, and assigned a value of 0.5 if one of
the datasets resulted in a correct classification while the other
resulted in an incorrect classification.

For those classifiers shown to be better than chance level, the clas-
sifiers were re-trained using the entire dataset using the above proce-
dure. Classifier maps (incorporating all voxels included in the
classifier and 5 × 5 × 5 cubes centered on them) were constructed
to display the relevant voxels (e.g. where the searchlight was located).
For each region, ROIs were drawn and the fMRI or DTI values for each
class (REA vs. LEA) were obtained. Data values were averaged from
both sets of the doubly-scanned participant. Post-hoc analyses were
performed on the resulting data to further investigate the significance
of the regions included in the classifiers (relevant regions may incorpo-
rate less than 125 voxels due to the part of the searchlight cube being
outside the region of usable data. Also, we note that in this study we
are classifying individual subjects and the training data is independent
from the test data, unlike applications such as classification of cognitive
states from neuroimaging data, where the training and test data are
correlated. Thus, the null distribution is equivalent to that obtained
from chance classification and it is not necessary to use permutation
testing to derive the null distribution.).

2.7. Post-hoc tractography analysis

To investigate the DTI results further, the white matter parcellation
map (ICBM DTI-81 Atlas) (Mazziotta et al., 1995) was used to classify
the relevantwhitematter region. Additionally, probabilistic tractography
(Behrens et al., 2003) was performed, using the voxels relevant for
classification from the DTI results as the starting seed points. The proba-
bilistic tractographywas performedusing routines in FSL (fMRIB, Oxford,
UK). The streamlines were transformed back into MNI space and then
averaged across participants.

2.8. Post-hoc fMRI analyses to investigate possible effects of participant
motion

Differences in participantmotion between the LEA and REA children
could conceivably affect the results. Thus, an additional analysis was
conducted on the average activation in the ROI. A GLM was performed
with functional activation as the independent variable and side of ear
advantage, participant motion (parameterized by the square root of
the number of retained frames), and their interaction as dependent
variables.

3. Results

Based on the classification, there were significant differences in
(out-of-scanner) performance in the left and right ears of the competing
words free recall test between the groups; however, there were no sig-
nificant differences in age, sex ormotion inside the scanner between the
groups for either the fMRI or the DTI study (Tables 1 and 2). As all
the control participants demonstrated a REA, it was not necessary to
exclude any participant based on the dichotic testing results.

Performance on the other subtests of the SCAN3 test battery, admin-
istered to all children with LEA, is given in Table 3 as age-normed
percentile scores (scoreswere converted into Z-scores for further statis-
tical analysis). There was no significant difference from normal for
Auditory Figure Ground (T(11) = −1.41, ns), Competing Sentences
(T(11) = −1.44, ns) or Competing Words Directed Ear (T(11) =
1.21, ns). However, there was a significant difference from normal for
the Filtered Words subtest (T(11) = 3.39, p b 0.01).

For the fMRI task, there were highly significant within-subject
correlations between the in-scanner performance during the dichotic
condition and the results of the DL test performed outside the scanner
(the same words were used for both tests, although the in-scanner
presentation order was randomized.). For the number correct in the
right ear, overall correlation was R = 0.96 (p b 0.001); in children
with right-ear advantage, correlationwas R = 0.97 (p b 0.001); in chil-
dren with left-ear advantage, correlationwas R = 0.82 (p b 0.005). For
the number correct in the left ear, overall correlation was R = 0.95
(p b 0.001); in children with right-ear advantage, correlation was
R = 0.94 (p b 0.001); in children with left-ear advantage, correlation
was R = 0.94 (p b 0.001) (due to the difference in correlation coeffi-
cients (R = 0.94 vs. R = 0.82) between in-scanner and out-of-
scanner performance in the LEA group between the left and right ears,
we tested for an in-scanner performance × side interaction on out-of-
scanner performance; the result was not significant (T(20) = 0.23,
p N 0.5).) For the ear advantage (# correct right − # correct left), over-
all correlationwas R = 0.99 (p b 0.001); for the childrenwith right-ear
advantage, correlation was R = 0.86 (p b 0.001); for the children with
left-ear advantage, correlation was R = 0.96 (p b 0.001). Root mean
square (rms) differences in scores between the two test administrations
were also computed: rms differences for the right ear, left ear, and
difference were 0.94, 0.96, and 0.68, respectively. No child displayed a
difference in the side of ear advantage between the two tests. A system-
atic difference between the two test administrations was reached at a
trend level for the right ear (T(23) = 2.055, p = 0.051) and the left
ear (T(23) = 1.74, p = 0.095), with children performing better on av-
erage in the scanner, likely due to a training effect. However, these



Fig. 1. Region found to predict LEA or REA during a speech-related dichotic listening
task in children for the functional contrast of listening to words presented dichotically
vs. words presented diotically (images in radiologic orientation; slice locations: Z =
+41 mm to Z = +56 mm, Talairach coordinate system.).

Fig. 2. Functional activation (Z-scores, mean ± s.d.) for the contrast of diotic listening
vs. dichotic listening, for the region of the left frontal eye fields (shown in Fig. 1), for
children with LEA vs. children with REA.
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effects canceled each other out in the computation of ear difference
scores, where no significant effect was seen (T(23) = 0.29, p N 0.5).
All children performed very well in the diotic condition, with each
child correctly identifying at least 34 out of the 40 words presented.
No difference was seen between REA and LEA children (p N 0.5,
unpaired T-test).

A classifier of LEA vs. REA was successfully trained for the fMRI
data. The accuracy of the classifier was 87.5% (95% confidence interval
67.6%–95.3%). The accuracy is significantly different from chance
(p b 0.001). The relevant region (Fig. 1; Table 4) is the left middle/
superior frontal gyrus in the region of the frontal eye fields (BA 8).
Post-hoc analysis (Fig. 2) revealed greater activation for children
with REA during the diotic presentation in the left frontal eye
fields (p b 1e−4, one-sample T-test) as compared to the dichotic
presentation; however, no difference was found in children with
LEA (p N 0.5, one-sample T-test). Analyzing possible effects of partic-
ipant motion, the GLM revealed a significant main effect of EA side
(T(20) = 5.24, p b 1e−4) but no significant main effect of motion
(T(20) = 0.9, p N 0.5); there was a trend towards an interaction
(T(20) =−1.7, p b 0.1). Removing the effects of motion via stepwise
regression for both groups still resulted in a highly significant difference
between groups (p b 1e−4, unpaired T-test). These results allow us to
Table 4
Region (from Fig. 1) found to predict left-ear advantage (LEA) or right-ear advantage
(REA) for the functional contrast of listening to words presented dichotically vs.
words presented diotically.

Region X, Y, Z (mm Talairach) # Voxels

Left middle/superior frontal gyrus (BA 8) −16, 33, 45 61
conclude that our results are not unacceptably biased by participant
motion.

From the DTI data, no classifier of LEA vs. REA was successfully
trained for FA, MD, or RD. However, a classifier was successfully
trained for the AD data. The accuracy of the classifier was 87.5%
(95% confidence interval 67.6%–95.3%). The accuracy is significantly
different from chance (p b 0.001). The relevant region (Fig. 3;
Table 5) is in the left internal capsule. This region was classified as
the retrolenticular part using the DTI atlas; however, the atlas does
not distinguish between the retrolenticular and sublenticular parts.
Post-hoc analysis (Fig. 4) revealed greater AD for children with LEA
compared to those with REA (p b 0.005, unpaired T-test). This region
also had greater MD in children with LEA (p b 0.01, unpaired T-test),
but no significant difference in FA (p N 0.5, unpaired T-test) or RD
(p N 0.5, unpaired T-test). AD was correlated with MD (R = 0.56,
p b 0.01) and FA (R = 0.55, p b 0.01) but not RD (R = −0.19,
p N 0.35). For convenience the results of both classifiers are summa-
rized in Table 6.
Fig. 3. Region found to predict LEA or REA during a speech-related dichotic listening
task in children for axial diffusivity (images in radiologic orientation; slice locations:
Z = −4 mm to Z = +6 mm, MNI coordinate system.).
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Table 5
Region (from Fig. 2) found to predict left-ear advantage (LEA) or right-ear advantage
(REA) from axial diffusivity (AD).

Region X, Y, Z (mm MNI) # Voxels

Left internal capsule (sublenticular region) −32, −31, 3 58

Table 6
Performance of the classifiers used to predict LEA or REA during a speech-related dichotic
listening task in children.

Classifier Accuracy (%) Accuracy (95%
confidence
limit)

p REA
accuracy
(%)

LEA
accuracy
(%)

fMRI (dichotic
vs. diotic)

87.5 67.6–95.3 b0.001 83.3 91.2

DTI (AD) 87.5 67.6–95.3 b0.001 85.7 90.0
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The tractography results revealed the most probable connections
to be to the posterior part of the thalamus and the auditory cortex
(Fig. 5, left), indicating the relevant white matter tract as the auditory
radiations, and showing the region in Fig. 4 to be the sublenticular,
and not the retrolenticular, part of the internal capsule. However, the
tractography results also show connections though the corticospinal
tract (Fig. 5, right).

4. Discussion

There are some neuroimaging and electrophysiology studies in the
literature that investigate dichotic listening (Eichele et al., 2005;
Jancke and Shah, 2002; Jancke et al., 2001; Thomsen et al., 2004;
Westerhausen et al., 2006, 2009a). Schmithorst et al. (2011) pub-
lished a DTI study that investigated the structural correlates of some
tests used to diagnose APD in normal children. However, this is the
first study, to our knowledge, which uses machine-learning techniques
to predict results of one of the tests, i.e. the competing words free recall
subtest. Machine-learning techniques are much more powerful than
standard statistical analyses for ascertaining the clinical value of diag-
nostic tests as they relate to a given pathology. While standard statisti-
cal analyses are only capable of informing the investigator that the
average result of a given test or tests (to a given degree of statistical
significance) differs dependent on pathology, machine-learning tech-
niques inform on the sensitivity and specificity of a specific test battery.

4.1. DTI classifier

LEAwas found to be predicted by increased AD in the posterior limb
of the internal capsule, including projections to the auditory cortex
(indicating the sublenticular portion). The AD values did not significant-
ly correlatewith RD. IncreasedMD, but no significant difference in RD or
FA, was found in children with LEA (despite this difference in MD, we
were unable to successfully train a classifier using MD. A region that
meets a nominal (uncorrected) threshold for significant between-
group differences will not necessarily be detected when attempting to
Fig. 4. Axial diffusivity (10−3 mm2/s; mean ± s.d.) for the region shown in Fig. 3 for
children with LEA vs. children with REA.
train a classifier, due to the fact that the whole brain is searched each
training run. In fact, the region may not even be found with a conven-
tional voxelwise GLM analysis, due to the necessity to correct for multi-
ple comparisons. Additionally, the mathematics of an SVM classifier is
different from a GLM.).

Physiological interpretation of DTI parameters is open to debate,
and there are a number of possible explanations for differences in
AD. One interpretation is that increased AD indicates a pattern of
reduced tortuosity in the fiber anatomy and/or increased axonal
fiber organization (Dubois et al., 2008). This result has been shown
histologically in rat experiments (Takahashi et al., 2000) and in-
creased AD (without any change in RD) has been shown developmen-
tally in adolescent older vs. younger males (Ashtari et al., 2007). Also,
many studies have shown changes in AD resulting from axonal or
neuronal injury or degeneration; however, the direction of the change
varies depending on the specific pathology. Increased AD was found
as a result of neurodegeneration in patients with amyotrophic lateral
sclerosis (Metwalli et al., 2010). However, axonal injury in a mouse
model of multiple sclerosis was found to result in decreased AD
(Budde et al., 2009; Kim et al., 2006). Yet another possibility is that in-
creased AD results from decreased neurofibrils (such as microtubules
and neurofilaments) and loss of glial cells (Kinoshita et al., 1999) in
response to intoxication with methylmercury chloride (MMC). To
make matters more complicated yet, patients with optic neuritis
displayed an initial decrease of AD, followed by an increase over base-
line 1 year after onset (Naismith et al., 2009). Future research needs
to be performed to better understand the etiology of differences in
AD. Nevertheless, we find the explanations of axonal injury, decreased
neurofibrils, or neurodegeneration unlikely for our study, given that
the axonal injury and decreased neurofibrils were found in mice
exposed to toxins, and our study cohort consisted of normal children
without obvious neuropathology.

Therefore, we consider reduced tortuosity and increased organiza-
tion as themost likely explanation for the increased AD. Increased orga-
nization (as reflected by increased AD) is consistent with enhanced
efferent connectivity. Cortical feedback (through the corticofugal path-
way) is known to alter the representation of auditory information at the
subcortical level of processing (Luo et al., 2008; Ma and Suga, 2007,
2008; Suga et al., 2002; Xiao and Suga, 2002) in animal models. This
feedback is both excitatory and inhibitory (Luo et al., 2008). Thus, chil-
dren with LEAmay be exhibiting increased inhibition of the signal from
the right ear due to increased connectivity in the efferent auditory path-
way. This may be possibly the result of inefficiencies in the gray matter
pruning process, which begins around the younger age range of our
study (Giedd et al., 1999).

However, we cannot rule out the DTI results being due to impaired
afferent connectivity, as DTI is unable to resolve the directionality of
the connectivity difference (e.g. thalamo-cortical vs. cortico-thalamic).
Thalamo-cortical projections appear to be related to multimodal and
polysensory integration (Kriegeskorte, 2009; Kriegeskorte et al.,
2008). If impaired afferent connectivity is the reason for the increase
in AD, the causal direction of the relationship between LEA and deficits
in multimodal integration is at present unclear.

The tractography results also indicate connections to the motor/
premotor regions. This may be an artifact, due to our large effective
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Fig. 5. Probabilistic tractography results using the region in Fig. 3 as the starting seed, thresholded from aminimumof 1% of streamlines passing through each voxel, showing the relevant
tracts to be the auditory radiations (left) and corticospinal tract (right) (slice locations: Coronal slice, Y = −25.5 mm; sagittal slice, X = −22.5 mm, MNI coordinate system).
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voxel size (e.g. from the 5 × 5 × 5 searchlight region used) encom-
passing part of the posterior limb of the internal capsule. However,
it may also be the case that LEA is associated with differences in con-
nectivity to premotor regions, as they have been hypothesized to
be implicated in speech processing via articulatory representations
(Hickok and Poeppel, 2007; Kluender and Lotto, 1999; Liberman
and Whalen, 2000; Wilson et al., 2004).
4.2. fMRI classifier

Children with REA activate the left frontal eye fields (BA 8) to a
greater extent under the diotic than under the dichotic condition,
while no difference was found in children with LEA. These results are
consistent with previously published studies suggesting that attention-
al factors may play an important role in side of ear advantage. Frontal
eye field activation has been noted in several neuroimaging studies in-
volving auditory attention (Lipschutz et al., 2002; Tzourio et al., 1997;
Zatorre et al., 1999) and dichotic listening (Thomsen et al., 2004). The
frontal eye fields play an important role in attentional explanations of
the REA (Kinsbourne, 1970, 1973, 1975, 1980). In thismodel, greater ac-
tivation of the left hemisphere to language stimuli extends to the
lateral-orienting frontal eye fields, biasing attention contralaterally to-
wards the right side of space (Astafiev et al., 2003; Corbetta et al.,
1998; Kodaka et al., 1997; Taylor et al., 2008; Wardak et al., 2006).
This results in a right-sided advantage for the detection of sensory stim-
uli including visual, somatosensory, and auditory. In the children with
REA, this right-sided attentional bias (as reflected by frontal eyefield ac-
tivation) is greater in the absence of dichotic competition, as is expected
as there is no distractor on the contralateral side.

Our findings that side of ear advantagemay be related to attentional
differences are also consistent with previously published studies inves-
tigating laterality and dichotic listeningperformance in individualswith
attention deficit hyperactivity disorder (ADHD). Normal controls, but
not adults with ADHD, displayed a REA for word recognition (Hale
et al., 2006); the interaction was statistically significant, despite the
small sample size (22 controls vs. 22 adults with ADHD). ADHD partic-
ipants also displayed worse performance for words presented to the
right ear compared to controls. Interestingly, individuals with ADHD
also displayed better performance overall during dichotic listening in-
volving the presentation of emotional stimuli, and also better perfor-
mance in the left ear, leading the authors to posit greater right
hemisphere and lower left hemisphere contribution in individuals
with ADHD. Children with ADHD displayed a REA during a version of
dichotic listening when they were instructed to focus attention on the
left ear (Oie et al., in press); similar results were also found in adults
(Dramsdahl et al., 2011), again indicating a link between spatial atten-
tion and ADHD.
4.3. Implications for clinical practice

Side of ear advantage was found to be strongly predicted by differ-
ences in activation in the frontal eye fields related to the mode of pre-
sentation (diotic vs. dichotic). These results are consistent with LEA
being the result of differences in directional biases of attention, as
persons with an attentional deficit may focus their listening attention
differently than typical listeners, resulting in a left ear advantage
(LEA) on free recall dichotic listening tests. However, our results are
also consistent with a neuroanatomical underpinning to LEA at the
sensory level. Differences in connectivity in the area of the auditory
radiations in the left hemisphere (connecting the medial geniculate
to auditory cortex) were also shown to predict a finding of LEA as
accurately as functional activation differences in the frontal eye fields.
Whether this is due to excess efferent, inhibitory connections (as we
find more likely) or due to impaired afferent, ascending connections
are unknown at this time. Such a deficit is likely associated with im-
paired speech comprehension, as it inhibits the flow of information
into the left auditory cortex and subsequently into language processing
areas in the left hemisphere. Therefore, although previous investiga-
tions indicate that LEA is sensitive to sensory deficits, we find that it
cannot be taken as a specific indicator for modality specific APD.

Our results also support the concern of Moore et al. (2010) that
many children referred for APD testing may in fact have a cognitive/
attention rather than an auditory perceptual deficit, underscoring the
importance of dissociating supramodal influences in APD diagnostic
test batteries. In addition to attention and cognition, other examples
of supramodal influence include memory, ability to follow instructions,
motivation, etc. While none of the study participants with a LEA
received a diagnosis of APD, and they performed on average at near-
normal or above-normal levels on the other SCAN3 subtests (not
involving dichotic listening), they were referred for APD testing with
complaints regarding speech perception. The between-test differences
in performance are not surprising: large differences in patterns of
correlations between brain connectivity and task performance on indi-
vidual tests used for APD diagnosis, including degraded speech, have
previously been found (Schmithorst et al., 2011).

Our results also support previous studies (e.g. Bethmann et al., 2007;
Hugdahl et al., 1997) showing that a finding of LEA is not predictive for
atypical right-hemispheric language dominance, as we have identified
two mechanisms by which LEA could also arise in a child with normal
left-hemisphere dominance.

4.4. The etiology of ear advantage

Additionally, our results can inform the ongoing debate over the
etiology of ear advantage, for which there is currently no consensus.
In the structural model of DL (Kimura, 1964, 1967, 1973), the (weaker)
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ipsilateral connections in the ascending auditory pathway are suppressed
(via some sort of “occlusion” mechanism) at some point in the auditory
pathway during presentation of dichotic stimuli. Each hemisphere then
exclusively receives input from the contralateral ear. Input from the
left ear must therefore traverse interhemispherically from the right audi-
tory cortex across the corpus callosum before it can be processed in the
language areas of the left hemisphere. Therefore stimuli presented to
the right ear have a more direct connection to the language areas, with-
out the need for a “callosal relay” (Westerhausen and Hugdahl, 2008;
Zaidel, 1983) resulting in delay and/or attenuation of auditory informa-
tion for stimuli presented to the left ear. In the attentional model
(Kinsbourne, 1970, 1973), the processing of language stimuli in the
left hemisphere biases subsequent attention towards the contralateral
(right) hemispace. This model is based on a “filter” theory of selective at-
tention (Broadbent, 1958), in which due to limited capacity for informa-
tion processing in a given channel, only a proportion of sensory input is
accepted for subsequent processing, the remainder being rejected. Since
the right-ear message is mainly projected towards an already-activated
left hemisphere, the attentional system is biased towards accepting
the message presented in the right ear, and rejecting that presented in
the left ear.

Evidence in support of the structural model comes from
commisurotomized patients who can recognize monaural stimuli
but completely fail to recognize stimuli presented to the left ear during
a dichotic presentation (Sidtis, 1988; Sparks and Geschwind, 1968;
Springer and Gazzaniga, 1975; Springer et al., 1978). The structural
model finds additional support from magnetoencephalography (MEG)
studies (Brancucci et al., 2004; Della Penna et al., 2007) that show inhi-
bition of the ipsilateral auditory pathway for dichotic stimuli with sim-
ilar fundamental frequencies and for dichotic stimuli with different
intensities. However, one of the most important findings favoring the
attentional model is that change in lateralization occurs when listeners
are instructed to direct attention to either the left or the right ear
(Foundas et al., 2006; Hugdahl, 1995; Hugdahl and Andersson, 1986).
Additionally, the REA has also been shown to be a right side of space
advantage, in several experiments which either used loudspeakers
instead of earphones (Hublet et al., 1976; Morais, 1975; Morais and
Bertelson, 1973), or simulated the position of sounds by altering ampli-
tude and/or phase (Morais and Bertelson, 1975). Also supporting the
attentional model are studies showing a REA even for monaural stimu-
lation (Henry, 1979, 1983), undercutting the assumption in the struc-
tural model that an occlusion mechanism is necessary to elicit a REA.

These twomodels (structural vs. attentional/supramodal), however,
are not mutually exclusive. A recent study (Westerhausen et al., 2009b)
demonstrated interactions between top-down (e.g. free-report vs. fo-
cused attention) and bottom-up (interaural intensity difference) factors
for ear advantage, suggesting that attentional and sensory components
are not independent, but interacting. Our results, inwhich EAwas found
to be predicted both by attentional factors and by neuranatomical
differences below the level of the auditory cortex, lend support to this
framework. It should be pointed out, however, that our results are
confounded by the fact that the LEA children were referred for APD
testing whereas the REA children were not.

4.5. Relation of LEA to other measures of auditory processing

While children with LEA did not show a significant difference from
normal on either Auditory FigureGround (speech in noise) or Competing
Sentences, they did perform significantly better than normal on low-pass
Filtered Words. For this task, it is likely that participants are using spec-
tral information (normally processed in the right hemisphere) to aid
with lexical decision (Obleser et al., 2008; Schonwiesner et al., 2005),
and childrenwith LEAmay have amore direct input into the right hemi-
sphere, as information does not need to traverse interhemispherically
across the corpus callosum if the main input is from the left ear. In
normal children, structural connectivity across the corpus callosum
has been associated with performance on the Filtered Words test
(Schmithorst et al., 2011). However, further research will be necessary
on this topic.

4.6. Limitations

The study is subject to some limitations. The study population was
biased towards males, which might limit its generalizability; however,
sex differences are not consistently reported in DL (Bryden, 1988),
and while a recent meta-analysis (Voyer, 2011) found some evidence
of greater laterality in males, the effect size was rather small (d =
0.054). Additionally, this study utilized the free-recall version of dich-
otic listening, in which the listener reports back the two words heard
in any order. Further research will investigate whether performance
on directed-ear versions of dichotic listening testsmay also be predicted
via neuroimagingdata. In this study lateralizationwas taken as a dichot-
omous variable; however, it can also be parameterized as a continuous
variable and predicted using a different type of classifier such as
Support Vector Regression (Vapnik et al., 1997).

A possible limitation is the selection of the control group from a
community population. A more matched control group would have
consisted of children with REA referred for APD testing due to com-
plaints regarding speech perception but not eventually diagnosed
with APD. The choice of control population to use involves a tradeoff
of information obtained about the precise neuroanatomical and
neurofunctional correlates of EA versus information available about
the clinical relevance of DL testing for APD in children referred for
APD testing. If (hypothetically) attentional factors would accurately
predict LEA in children referred for APD testing versus REA in children
referred for APD testing, wewould be able to draw the same conclusion
as we have in the current study. However, a much stronger conclusion
would have been available from a (hypothetical) failure to predict LEA
from attentional factors: in our current study design, we would have
been able to conclude that a finding of LEA is specific to a sensory pro-
cessing deficit and hence of more significant clinical value for APD diag-
nosis. As the main focus of this study was to investigate the clinical
relevance of EA for APD diagnosis, we chose to use a community-
based sample for our control population.

5. Conclusion

In children referred for APD testing, LEA during a dichotic listening
task involving speech-related stimuli was found to be predicted by
greater axial diffusivity in the sublenticular part of the left internal
capsule; and lesser functional activation in the left frontal eye fields
during diotic speech-related presentations relative to dichotic pre-
sentations. Results show that LEA may be predicted by attentional
or other supramodal differences as well as sensory deficits and there-
fore not specific to APD.

Acknowledgment

The authors thank Tom Mitchell, Ph.D., for the helpful discussion
regarding the implementation of ML.

References

Asha. American Speech-Language-Hearing Association, 2005. (Central) Auditory pro-
cessing disorders [technical report]. Available from www.asha.org/policy.

Ashtari, M., Cervellione, K.L., Hasan, K.M., Wu, J., Mcilree, C., Kester, H., Ardekani, B.A.,
Roofeh, D., Szeszko, P.R., Kumra, S., 2007. White matter development during late
adolescence in healthy males: a cross-sectional diffusion tensor imaging study.
NeuroImage 35, 501–510.

Astafiev, S.V., Shulman, G.L., Stanley, C.M., Snyder, A.Z., Van Essen, D.C., Corbetta, M.,
2003. Functional organization of human intraparietal and frontal cortex for attending,
looking, and pointing. Journal of Neuroscience 23, 4689–4699.

Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S.,
Matthews, P.M., Brady, J.M., Smith, S.M., 2003. Characterization and propagation

http://www.asha.org/policy
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0010
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0010
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0010
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0015
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0015
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0020


16 V.J. Schmithorst et al. / NeuroImage: Clinical 3 (2013) 8–17
of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine
50, 1077–1088.

Bethmann, A., Tempelmann, C., De Bleser, R., Scheich, H., Brechmann, A., 2007. Determin-
ing language laterality by fMRI and dichotic listening. Brain Research 1133, 145–157.

Brancucci, A., Babiloni, C., Babiloni, F., Galderisi, S., Mucci, A., Tecchio, F., Zappasodi, F.,
Pizzella, V., Romani, G.L., Rossini, P.M., 2004. Inhibition of auditory cortical responses
to ipsilateral stimuli during dichotic listening: evidence from magnetoencephalogra-
phy. European Journal of Neuroscience 19, 2329–2336.

Broadbent, D., 1958. Perception and Communication. Pergamon, London.
Bryden, M.P., 1988. An overview of the dichotic listening procedure and its relation

to cerebral organization. In: Hugdahl, K. (Ed.), Handbook of Dichotic Listening:
Theory, Methods, and Research. Wiley, Chichester, UK, pp. 1–43.

Budde, M.D., Xie, M., Cross, A.H., Song, S.K., 2009. Axial diffusivity is the primary corre-
late of axonal injury in the experimental autoimmune encephalomyelitis spinal
cord: a quantitative pixelwise analysis. Journal of Neuroscience 29, 2805–2813.

Cacace, A.T., Mcfarland, D.J., 2005. The importance of modality specificity in diagnosing
central auditory processing disorder. American Journal of Audiology 14, 112–123.

Chermak, G., Musiek, F.E., 1997. Central Auditory Processing Disorders. New Perspec-
tives. Singular Publishing Group, San Diego.

Corbetta, M., Akbudak, E., Conturo, T.E., Snyder, A.Z., Ollinger, J.M., Drury, H.A.,
Linenweber, M.R., Petersen, S.E., Raichle, M.E., Van Essen, D.C., Shulman, G.L.,
1998. A common network of functional areas for attention and eye movements.
Neuron 21, 761–773.

Debonis, D.A., Moncrieff, D., 2008. Auditory processing disorders: an update for speech-
language pathologists. Pathology 17, 4–18.

Della Penna, S., Brancucci, A., Babiloni, C., Franciotti, R., Pizzella, V., Rossi, D., Torquati, K.,
Rossini, P.M., Romani, G.L., 2007. Lateralization of dichotic speech stimuli is based
on specific auditory pathway interactions: neuromagnetic evidence. Cerebral Cortex
17, 2303–2311.

Dramsdahl, M., Westerhausen, R., Haavik, J., Hugdahl, K., Plessen, K.J., 2011. Cognitive
control in adults with attention-deficit/hyperactivity disorder. Psychiatry Research
188, 406–410.

Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J.F., Cointepas, Y., Duchesnay, E.,
Le Bihan, D., Hertz-Pannier, L., 2008. Asynchrony of the early maturation of white
matter bundles in healthy infants: quantitative landmarks revealed noninvasively
by diffusion tensor imaging. Human Brain Mapping 29, 14–27.

Eichele, T., Nordby, H., Rimol, L.M., Hugdahl, K., 2005. Asymmetry of evoked potential
latency to speech sounds predicts the ear advantage in dichotic listening. Brain Re-
search. Cognitive Brain Research 24, 405–412.

Emanuel, D.C., 2002. The auditory processing battery: survey of common practices.
Journal of the American Academy of Audiology 13, 93–117 (quiz 8–9).

Emanuel, D.C., Ficca, K.N., Korczak, P., 2011. Survey of the diagnosis and management
of auditory processing disorder. American Journal of Audiology 20, 48–60.

Fernandes, M.A., Smith, M.L., Logan, W., Crawley, A., Mcandrews, M.P., 2006. Compar-
ing language lateralization determined by dichotic listening and fMRI activation
in frontal and temporal lobes in children with epilepsy. Brain and Language 96,
106–114.

Fontoura, D.R., Branco Dde, M., Anes, M., Costa, J.C., Portuguez, M.W., 2008. Language
brain dominance in patients with refractory temporal lobe epilepsy: a comparative
study between functional magnetic resonance imaging and dichotic listening test.
=5 66, 34–39.

Foundas, A.L., Corey, D.M., Hurley, M.M., Heilman, K.M., 2006. Verbal dichotic listening in
right and left-handed adults: laterality effects of directed attention. Cortex 42, 79–86.

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T.,
Evans, A.C., Rapoport, J.L., 1999. Brain development during childhood and
adolescence: a longitudinal MRI study. Nature Neuroscience 2, 861–863.

Hale, T.S., Zaidel, E., Mcgough, J.J., Phillips, J.M., Mccracken, J.T., 2006. Atypical brain
laterality in adults with ADHD during dichotic listening for emotional intonation
and words. Neuropsychologia 44, 896–904.

Haynes, J.D., Rees, G., 2006. Decoding mental states from brain activity in humans. Na-
ture Reviews. Neuroscience 7, 523–534.

Henry, R.G., 1979. Monaural studies eliciting an hemispheric asymmetry: a bibliography.
Perceptual and Motor Skills 48, 335–338.

Henry, R.G., 1983. Monaural studies eliciting an hemispheric asymmetry; a bibliography:
II. Perceptual and Motor Skills 56, 915–918.

Hickok, G., Poeppel, D., 2007. The cortical organization of speech processing. Reviews.
Neuroscience 8, 393–402.

Hublet, C., Morais, J., Bertelson, P., 1976. Spatial constraints on focused attention:
beyond the right-side advantage. Perception 5, 3–8.

Hugdahl, K., 1995. Dichotic listening: probing temporal lobe functional integrity. In:
Davidson, R.J., Hugdahl, K. (Eds.), Brain Asymmetry. The MIT Press, Cambridge, MA.

Hugdahl, K., 2002. Dichotic listening in the study of auditory laterality. In: Hugdahl, K.
(Ed.), The Asymmetrical Brain. MIT Press, Cambridge, MA, pp. 441–476.

Hugdahl, K., 2005. Symmetry and asymmetry in the human brain. European Review 13
(S2), 119–133.

Hugdahl, K., Andersson, L., 1986. The “forced-attention paradigm” in dichotic listening
to CV-syllables: a comparison between adults and children. Cortex 22, 417–432.

Hugdahl, K., Hammar, A., 1997. Test–retest reliability for the consonant-vowel syllables
dichotic listening paradigm. Journal of Clinical and Experimental Neuropsychology
19, 667–675.

Hugdahl, K., Carlsson, G., Uvebrant, P., Lundervold, A.J., 1997. Dichotic-listening perfor-
mance and intracarotid injections of amobarbital in children and adolescents.
Preoperative and postoperative comparisons. Archives of Neurology 54, 1494–1500.

Hund-Georgiadis, M., Lex, U., Friederici, A.D., Von Cramon, D.Y., 2002. Non-invasive
regime for language lateralization in right- and left-handers by means of functional
MRI and dichotic listening. Experimental Brain Research 145, 166–176.
Jancke, L., Shah, N.J., 2002. Does dichotic listening probe temporal lobe functions?
Neurology 58, 736–743.

Jancke, L., Buchanan, T.W., Lutz, K., Shah, N.J., 2001. Focused and nonfocused attention
in verbal and emotional dichotic listening: an FMRI study. Brain and Language 78,
349–363.

Jerger, J., Musiek, F., 2000. Report of the consensus conference on the diagnosis of
auditory processing disorders in school-aged children. Journal of the American
Academy of Audiology 11, 467–474.

Joachims, T., 1999. Making Large-scale SVM Learning Practical. Advances in Kernel
Methods — Support Vector Learning. MIT Press, Cambridge, MA.

Katz, J., Tillery, K.L., 2005. Can central auditory processing tests resist supramodal influences?
American Journal of Audiology 14, 124–127 (discussion 43–50).

Keith, R.W., 1984. Dichotic listening in children. In: Beasley, D.S. (Ed.), Audition in
Children: Methods of Study. College-Hill Press, San Diego, CA.

Keith, R., 2009. SCAN-3 for Children: Tests for Auditory Processing Disorder. Pearson
Education, San Antonio, TX.

Kim, J.H., Budde, M.D., Liang, H.F., Klein, R.S., Russell, J.H., Cross, A.H., Song, S.K., 2006.
Detecting axon damage in spinal cord from a mouse model of multiple sclerosis.
Neurobiology of Disease 21, 626–632.

Kimura, D., 1961. Cerebral dominance and the perception of verbal stimuli. Canadian
Journal of Psychology 15, 166–171.

Kimura, D., 1964. Left-right differences in the perception of melodies. Journal of Exper-
imental Psychology 16, 355–358.

Kimura, D., 1967. Functional asymmetry of the brain in dichotic listening. Cortex 3,
163–168.

Kimura, D., 1973. The asymmetry of the human brain. Scientific American 228, 70–78.
Kinoshita, Y., Ohnishi, A., Kohshi, K., Yokota, A., 1999. Apparent diffusion coefficient on

rat brain and nerves intoxicated with methylmercury. Environmental Research 80,
348–354.

Kinsbourne, M., 1970. The cerebral basis of lateral asymmetries in attention. Acta
Psychologica 33, 193–201.

Kinsbourne, M., 1973. The control of attention by interaction between the cerebral
hemispheres. In: Kornblum, S. (Ed.), Attention and Performance IV. Academic
Press, New York, pp. 239–255.

Kinsbourne, M., 1975. The mechanism of hemispheric control of the lateral gradient
of attention. In: Rabbitt, P.M.A., Dornic, S. (Eds.), Attention and Performance V.
Academic Press, London, pp. 81–97.

Kinsbourne, M., 1980. Dichotic imbalance due to isolated hemisphere occlusion or
directional rivalry? Brain and Language 11, 221–224.

Kluender, K.R., Lotto, A.J., 1999. Virtues and perils of an empiricist approach to speech
perception. Journal of the Acoustical Society of America 105, 503–511.

Knecht, S., Drager, B., Deppe, M., Bobe, L., Lohmann, H., Floel, A., Ringelstein, E.B.,
Henningsen, H., 2000. Handedness and hemispheric language dominance in
healthy humans. Brain 123 (Pt 12), 2512–2518.

Kodaka, Y., Mikami, A., Kubota, K., 1997. Neuronal activity in the frontal eye field of the
monkey is modulated while attention is focused on to a stimulus in the peripheral
visual field, irrespective of eye movement. Neuroscience Research 28, 291–298.

Kriegeskorte, N., 2009. Relating population-code representations between man,
monkey, and computational models. Frontiers in Neuroscience 3, 363–373.

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K.,
Bandettini, P.A., 2008. Matching categorical object representations in inferior
temporal cortex of man and monkey. Neuron 60, 1126–1141.

Liberman, A.M., Whalen, D.H., 2000. On the relation of speech to language. Trends in
Cognitive Sciences 4, 187–196.

Lipschutz, B., Kolinsky, R., Damhaut, P.,Wikler, D., Goldman, S., 2002. Attention-dependent
changes of activation and connectivity in dichotic listening. NeuroImage 17, 643–656.

Loring, D.W., Meador, K.J., Lee, G.P., Murro, A.M., Smith, J.R., Flanigin, H.F., Gallagher,
B.B., King, D.W., 1990. Cerebral language lateralization: evidence from intracarotid
amobarbital testing. Neuropsychologia 28, 831–838.

Luo, F., Wang, Q., Kashani, A., Yan, J., 2008. Corticofugal modulation of initial sound
processing in the brain. Journal of Neuroscience 28, 11615–11621.

Ma, X., Suga, N., 2007. Multiparametric corticofugal modulation of collicular duration-
tuned neurons: modulation in the amplitude domain. Journal of Neurophysiology
97, 3722–3730.

Ma, X., Suga, N., 2008. Corticofugal modulation of the paradoxical latency shifts of
inferior collicular neurons. Journal of Neurophysiology 100, 1127–1134.

Mazziotta, J.C., Toga, A.W., Evans, A., Fox, P., Lancaster, J., 1995. A probabilistic atlas of
the human brain: theory and rationale for its development: the international con-
sortium for brain mapping (ICBM). NeuroImage 2, 89–101.

Metwalli, N.S., Benatar, M., Nair, G., Usher, S., Hu, X., Carew, J.D., 2010. Utility of axial
and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration
in amyotrophic lateral sclerosis. Brain Research 1348, 156–164.

Moncrieff, D.W., 2011. Dichotic listening in children: age-related changes in direction
and magnitude of ear advantage. Brain and Cognition 76, 316–322.

Moore, D.R., Ferguson, M.A., Edmondson-Jones, A.M., Ratib, S., Riley, A., 2010. Nature of
auditory processing disorder in children. Pediatrics 126, e382–e390.

Morais, J., 1975. The effects of ventriloquism on the right-side advantage for verbal ma-
terial. Cognition 3, 127–139.

Morais, J., Bertelson, P., 1973. Laterality effects in diotic listening. Perception 2, 107–111.
Morais, J., Bertelson, P., 1975. Spatial position versus ear of entry as determinant of the

auditory laterality effects: a stereophonic test. Journal of Experimental Psychology.
Human Perception and Performance 1, 253–262.

Musiek, F.E., Baran, J.A., Bellis, T.J., Chermak, G.D., Hall Iii, J.W., Keith, R.W., Medwestky,
L., Loftus West, K., Young, M., Nagle, S., 2010. American Academy of Audiology Clin-
ical Practice Guidelines: Diagnosis, Treatment and Management of Children and
Adults with Central Auditory Processing Disorder.

http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0020
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0020
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0025
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0025
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0030
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0030
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0030
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0035
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0040
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0040
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0040
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0045
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0045
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0045
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0050
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0050
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0055
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0055
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0060
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0060
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0065
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0065
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0070
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0070
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0070
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0075
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0075
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0075
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0080
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0080
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0080
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0085
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0085
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0085
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0090
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0090
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0095
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0095
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0100
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0100
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0100
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0100
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0105
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0105
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0105
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0105
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0110
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0110
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0115
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0115
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0120
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0120
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0120
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0125
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0125
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0130
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0130
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0135
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0135
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0140
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0140
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0145
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0145
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0150
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0150
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0155
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0155
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0160
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0160
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0165
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0165
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0170
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0170
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0170
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0175
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0175
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0175
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0180
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0180
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0180
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0185
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0185
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0190
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0190
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0190
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0195
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0195
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0195
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0200
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0200
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0205
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0205
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0210
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0210
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0215
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0215
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0220
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0220
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0225
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0225
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0230
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0230
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0235
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0235
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0240
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0245
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0245
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0245
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0250
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0250
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0255
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0255
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0255
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0260
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0260
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0260
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0265
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0265
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0270
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0270
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0275
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0275
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0280
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0280
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0280
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0285
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0285
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0290
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0290
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0295
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0295
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0300
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0300
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0305
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0305
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0310
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0310
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0315
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0315
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0315
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0320
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0320
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0325
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0325
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0325
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0330
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0330
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0330
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0335
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0335
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0340
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0340
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0345
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0345
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0350
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0355
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0355
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0355
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0360
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0360
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0360


17V.J. Schmithorst et al. / NeuroImage: Clinical 3 (2013) 8–17
Naismith, R.T., Xu, J., Tutlam, N.T., Snyder, A., Benzinger, T., Shimony, J., Shepherd, J.,
Trinkaus, K., Cross, A.H., Song, S.K., 2009. Disability in optic neuritis correlates
with diffusion tensor-derived directional diffusivities. Neurology 72, 589–594.

Newman, C.W., Sandridge, S.A., 2007. Diagnostic audiology. In: Hughes, G., Pensak, M.
(Eds.), Clinical Otology. Thieme Press, New York, NY.

Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyondmind-reading:multi-voxel
pattern analysis of fMRI data. Trends in Cognitive Sciences 10, 424–430.

Obleser, J., Eisner, F., Kotz, S.A., 2008. Bilateral speech comprehension reflects differen-
tial sensitivity to spectral and temporal features. Journal of Neuroscience 28,
8116–8123. http://dx.doi.org/10.1523/JNEUROSCI.290-08.2008.

Oie, M., Skogli, E.W., Andersen, P.N., Hovik, K.T., Hugdahl, K., 2013. Differences in cog-
nitive control in children and adolescents with combined and inattentive subtypes
of ADHD. Child Neuropsychology (in press).

O'toole, A.J., Jiang, F., Abdi, H., Penard, N., Dunlop, J.P., Parent, M.A., 2007. Theoretical,
statistical, and practical perspectives on pattern-based classification approaches
to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience
19, 1735–1752.

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: a
tutorial overview. NeuroImage 45, S199–S209.

Schmithorst, V.J., Holland, S.K., 2004. Event-related fMRI technique for auditory
processing with hemodynamics unrelated to acoustic gradient noise. Magnetic
Resonance in Medicine 51, 399–402.

Schmithorst, V.J., Holland, S.K., 2006. Functional MRI evidence for disparate developmen-
tal processes underlying intelligence in boys and girls. NeuroImage 31, 1366–1379.

Schmithorst, V.J., Wilke, M., Dardzinski, B.J., Holland, S.K., 2005. Cognitive functions
correlate with white matter architecture in a normal pediatric population: a diffu-
sion tensor MRI study. Human Brain Mapping 26, 139–147.

Schmithorst, V.J., Holland, S.K., Plante, E., 2007. Object identification and lexical/semantic
access in children: a functional magnetic resonance imaging study of word-picture
matching. Human Brain Mapping 28, 1060–1074.

Schmithorst, V.J., Holland, S.K., Plante, E., 2011. Diffusion tensor imaging reveals white
matter microstructure correlations with auditory processing ability. Ear and Hearing
32, 156–167.

Schonwiesner, M., Rubsamen, R., Von Cramon, D.Y., 2005. Hemispheric asymmetry for
spectral and temporal processing in the human antero-lateral auditory belt cortex.
European Journal of Neuroscience 22, 1521–1528.

Sidtis, J., 1988. Dichotic listening after commissurotomy. In: Hugdahl, K. (Ed.), Hand-
book of Dichotic Listening: Theory, Methods and Research. Wiley & Sons, New
York, pp. 161–184.

Sparks, R., Geschwind, N., 1968. Dichotic listening after section of neo-cortical
commisures. Cortex 4, 3–16.

Springer, S., Gazzaniga, M., 1975. Dichotic testing of partial and complete split-brain
subjects. Neuropsychologia 13, 341–346.

Springer, S., Sidtis, J., Wilson, D., Gazzaniga, M., 1978. Left ear performance in dichotic
listening following commissurotomy. Neuropsychologia 16, 305–312.

Strauss, E., Gaddes, W.H., Wada, J., 1987. Performance on a free-recall verbal dichotic
listening task and cerebral dominance determined by the carotid amytal test.
Neuropsychologia 25, 747–753.

Suga, N., Xiao, Z., Ma, X., Ji, W., 2002. Plasticity and corticofugal modulation for hearing
in adult animals. Neuron 36, 9–18.

Szaflarski, J.P., Schmithorst, V.J., Altaye, M., Byars, A.W., Ret, J., Plante, E., Holland, S.K.,
2006. A longitudinal functional magnetic resonance imaging study of language
development in children 5 to 11 years old. Annals of Neurology 59, 796–807.

Takahashi, M., Ono, J., Harada, K., Maeda, M., Hackney, D.B., 2000. Diffusional anisotro-
py in cranial nerves with maturation: quantitative evaluation with diffusion MR
imaging in rats. Radiology 216, 881–885.
Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain.
Thieme Medical Publishers, Inc., New York.

Taylor, P.C., Rushworth, M.F., Nobre, A.C., 2008. Choosing where to attend and the
medial frontal cortex: an FMRI study. Journal of Neurophysiology 100, 1397–1406.

Thevenaz, P., Ruttimann, U.E., Unser, M., 1998. A pyramid approach to subpixel regis-
tration based on intensity. IEEE Transactions on Image Processing 7, 27–41.

Thomsen, T., Rimol, L.M., Ersland, L., Hugdahl, K., 2004. Dichotic listening reveals
functional specificity in prefrontal cortex: an fMRI study. NeuroImage 21,
211–218.

Tzourio, N., Massioui, F.E., Crivello, F., Joliot, M., Renault, B., Mazoyer, B., 1997. Func-
tional anatomy of human auditory attention studied with PET. NeuroImage 5,
63–77.

Van Den Noort, M., Specht, K., Rimol, L.M., Ersland, L., Hugdahl, K., 2008. A new verbal
reports fMRI dichotic listening paradigm for studies of hemispheric asymmetry.
NeuroImage 40, 902–911.

Van Ettinger-Veenstra, H.M., Ragnehed, M., Hallgren, M., Karlsson, T., Landtblom, A.M.,
Lundberg, P., Engstrom, M., 2010. Right-hemispheric brain activation correlates to
language performance. NeuroImage 49, 3481–3488.

Vannest, J.J., Karunanayaka, P.R., Altaye, M., Schmithorst, V.J., Plante, E.M., Eaton, K.J.,
Rasmussen, J.M., Holland, S.K., 2009. Comparison of fMRI data from passive listen-
ing and active-response story processing tasks in children. Journal of Magnetic
Resonance Imaging 29, 971–976.

Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer, New York.
Vapnik, V., Golowich, S., Smola, A., 1997. Support vector method for function approxima-

tion, regression estimation, and signal processing. In:Mozer,M., Jordan,M., Petsche, T.
(Eds.), Neural Information Processing Systems. MIT Press, Cambridge, MA.

Voyer, D., 2011. Sex differences in dichotic listening. Brain and Cognition 76, 245–255.
Wardak, C., Ibos, G., Duhamel, J.R., Olivier, E., 2006. Contribution of the monkey frontal

eye field to covert visual attention. Journal of Neuroscience 26, 4228–4235.
Westerhausen, R., Hugdahl, K., 2008. The corpus callosum in dichotic listening studies

of hemispheric asymmetry: a review of clinical and experimental evidence. Neuro-
science and Biobehavioral Reviews 32, 1044–1054.

Westerhausen, R., Woerner, W., Kreuder, F., Schweiger, E., Hugdahl, K., Wittling,
W., 2006. The role of the corpus callosum in dichotic listening: a combined
morphological and diffusion tensor imaging study. Neuropsychology 20,
272–279.

Westerhausen, R., Gruner, R., Specht, K., Hugdahl, K., 2009a. Functional relevance of
interindividual differences in temporal lobe callosal pathways: a DTI tractography
study. Cerebral Cortex 19, 1322–1329.

Westerhausen, R., Moosmann, M., Alho, K., Medvedev, S., Hamalainen, H., Hugdahl, K.,
2009b. Top-down and bottom-up interaction: manipulating the dichotic listening
ear advantage. Brain Research 1250, 183–189.

Wilson, S.M., Saygin, A.P., Sereno, M.I., Iacoboni, M., 2004. Listening to speech activates
motor areas involved in speech production. Nature Neuroscience 7, 701–702.

Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C., 2002. A
general statistical analysis for fMRI data. NeuroImage 15, 1–15.

Xiao, Z., Suga, N., 2002. Modulation of cochlear hair cells by the auditory cortex in the
mustached bat. Nature Neuroscience 5, 57–63.

Zaidel, E., 1983. Disconnection syndrome as a model for laterality effects in the normal
brain. In: Hellige, J.B. (Ed.), Cerebral Hemisphere Asymmetry: Method, Theory, and
Application. Praeger, New York, pp. 95–151.

Zatorre, R.J., 1989. Perceptual asymmetry on the dichotic fused words test and cerebral
speech lateralization determined by the carotid sodiumamytal test. Neuropsychologia
27, 1207–1219.

Zatorre, R.J., Mondor, T.A., Evans, A.C., 1999. Auditory attention to space and frequency
activates similar cerebral systems. NeuroImage 10, 544–554.

http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0365
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0365
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0370
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0370
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0375
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0375
http://dx.doi.org/10.1523/JNEUROSCI.290-08.2008
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0385
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0385
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0385
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0390
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0390
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0390
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0390
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0395
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0395
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0400
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0400
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0400
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0405
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0405
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0410
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0410
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0410
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0415
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0415
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0415
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0420
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0420
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0420
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0425
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0425
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0425
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0430
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0430
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0430
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0435
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0435
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0440
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0440
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0445
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0445
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0450
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0450
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0450
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0455
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0455
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0460
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0460
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0465
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0465
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0465
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0470
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0470
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0475
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0475
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0480
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0480
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0485
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0485
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0485
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0490
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0490
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0490
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0495
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0495
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0495
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0500
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0500
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0505
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0505
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0505
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0510
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0515
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0515
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0515
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0520
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0525
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0525
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0530
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0530
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0530
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0535
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0535
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0535
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0540
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0540
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0540
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0545
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0545
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0550
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0550
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0555
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0555
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0560
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0560
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0565
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0565
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0565
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0570
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0570
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0570
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0575
http://refhub.elsevier.com/S2213-1582(13)00084-3/rf0575

	Left ear advantage in speech-related dichotic listening is not specific toauditory processing disorder in children: A machine-learning fMRI andDTI study
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. Audiological testing
	2.3. fMRI scans
	2.4. DTI scans
	2.5. First-level analyses
	2.6. ML analyses
	2.7. Post-hoc tractography analysis
	2.8. Post-hoc fMRI analyses to investigate possible effects of participant motion

	3. Results
	4. Discussion
	4.1. DTI classifier
	4.2. fMRI classifier
	4.3. Implications for clinical practice
	4.4. The etiology of ear advantage
	4.5. Relation of LEA to other measures of auditory processing
	4.6. Limitations

	5. Conclusion
	Acknowledgment
	References


